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* Correspondence: zbigniew.pozorski@put.poznan.pl

Abstract: The problem of local instability in the compressed facing of a sandwich panel is considered
in the paper. The case of a facing resting on an infinite core is examined, but the validity of such a
simplification has been discussed in detail. An energy approach is used to solve the problem. The
general procedure for considering the influence of the core parameter variability on the value of
stress causing the facing instability is presented. Expressions allowing us to calculate the wrinkling
stress were derived, which was the main aim of the research. The heterogeneity of the core material
is taken into account by using continuous functions describing the variability of the core material
parameters. In the examples illustrating the theory, the exponential and polynomial functions were
used. The examples are based on the actually measured elastic modules of the core. The presented
considerations were extended to the analysis of strain energies, which confirmed that the properties
of the layer adjacent to the facing (up to 2 cm thick) determine the value of the wrinkling stress. The
paper presents an example of the optimization of core material parameters in which a change in
the distribution of the core parameters led to an approximately threefold increase in the wrinkling
strength of the sandwich panel.
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1. Introduction

The subject of the analysis is sandwich panels made of thin but stiff facings and a
thick but deformable core. The core can play various roles (e.g., insulation), but most of all
it ensures the distance between the facings, which results in a significant increase in the
stiffness and load-bearing capacity of the panels. These types of integrated structures are
used in many industries. Although there are many mechanisms of failure within sandwich
panels, in most cases the load-bearing capacity of the entire element is determined by local
loss of stability, which has the form of wrinkling of the compressed facing. Compression in
the facing can be caused by compression or bending of the sandwich element, but it can also
be the result of thermal effects. In order to determine the appropriate load-bearing capacity
of the panel, it is necessary to determine the stress that causes wrinkling of the facing.

The problem of determining the wrinkling stress in the case of a facing resting on
a homogeneous core was solved by Hoff using the energy method and the linear decay
function of the core deformation [1]. Plantema [2] used the same method but applied a
different function, namely the exponential function. The differential equation method was
applied by Allen [3]. In the case of an orthotropic core, the wrinkling stress for layered
columns was determined in [4]. This solution was extended in [5], where orthotropic
sandwich plates under general loading conditions were analyzed. A very similar problem
of the wrinkling of composite-facing sandwich panels under biaxial loading was presented
in [6]. Various core models were compared there, namely the Winkler elastic foundation, a
linear decay model of Hoff–Mautner and an exponential decay model of Plantema. The
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multiaxial loading problem was also discussed in [7], but the case of the anisotropic core
was considered. The strip model of the core was proposed in this work. The solution of the
facing wrinkling problem for the sandwich panel with composite facings and orthotropic
core was also presented in [8]. The authors derived the governing buckling equation
using the energy method. In papers [9–11], the wrinkling problem was discussed using
higher-order theories.

The influence of the heterogeneity of the core on the value of critical stresses was
presented in [12]. Two cases were considered in this study: a piecewise functionally graded
core and a continuously functionally graded core using the Hoff method. It was shown
that a desirable increase of the wrinkling stress can be achieved using thin layers of a stiffer
core adjacent to the facing. Interestingly, a similar conclusion was formulated in [13], which
also used a layered core. The solution for four-point bending of a laminated beam with
a physically non-linear core was presented in [14]. An energetic approach was applied,
and the sinh function was used to describe the deformation of the core. The application
of the extended high-order sandwich panel theory to the problem of the wrinkling of a
sandwich panel with functionally graded core was presented in [15]. Two symmetrical
types of functionally graded material distributions were considered in the paper.

Scientific research on wrinkling of thin facing is still of great interest because the
problem of local loss of stability is important in many applications [16]. For example, many
biological tissues are exposed to wrinkling. Therefore, the influence of material parameters
on the formation of wrinkles is investigated [17]. A lot of work is devoted to designing
controllable hierarchical wrinkling surfaces [18,19]. Improving anti-wrinkling properties is
also important in the textile industry [20]. Of course, the value of the wrinkling stress also
affects the solutions of sandwich elements with a hybrid core [21].

This paper considers the case of a facing resting on a core with variable material
parameters. A continuous function of the variability of these parameters was assumed.
The focus is on the exponential and polynomial functions, but there are no obstacles for
it to be of any function. The main purpose of the research is to derive the equations for
the wrinkling stress of a sandwich panel with the material properties of the panel core
varying in thickness. In order to determine the critical stress, the energy approach was used
similarly to [2]. The paper also presents an optimization problem consisting of determining
the variability of material parameters, which ensures the maximum wrinkling stress under
certain constraints. The optimization of material solutions seems to be very important in
the context of modern applications of sandwich elements [22]. Any possible increase in the
value of the critical stress practically results in a corresponding increase in the load-bearing
capacity of the sandwich element.

This work can be considered in the context of previous analyses [23,24]. These articles
did not deal a heterogeneous core but a homogeneous orthotropic core. The paper [23]
presented a spatial numerical model of a sandwich panel for which an analysis of the
influence of material parameters on the value of the wrinkling stress was performed. It
has been shown that this stress depends on both the modulus of elasticity and the shear
modulus of the core material. In [24], an analytical solution for a compressed facing
resting on an orthotropic core was presented. Classical solutions to the problem with a
homogeneous isotropic core were also compared, showing differences in relation to the
strain energy of the core.

The motivation to take up the presented issue was that the current technological
possibilities of the production of sandwich panels allows for the production of a core
with parameters varying in its thickness. The study of the variability of these parameters
does not pose any major problems either. The digital image correlation (DIC) method
is commonly used [25]. Figure 1 shows an example of the measurement results made
with the ARAMIS 6M apparatus, which can later be analyzed using the GOM Correlate
2020 program. As a result, the values of the modulus of elasticity averaged for a given core
layer are determined. The discrete values of material parameters are given for a specific
point location on the core thickness. An exemplary distribution is shown in Figure 2.
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Figure 1. Measurement using the DIC method: (a) research stand and (b) exemplary results of
longitudinal deformations.
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sandwich panel; the z-axis is shown in Figures 1 and 3.
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One of the key problems that manufacturers of sandwich panels are currently working
on is to obtain such a distribution of the core parameters that will ensure the maximum load-
bearing capacity of the sandwich element with the minimum use of raw materials. Due to
the growing technological possibilities of producers and a great emphasis on sustainable
development of the industry, the issue of optimal distribution of the core material presented
in the article seems to be strongly justified.

2. Formulation of the Problem

During the bending of a sandwich panel with thin facings, one facing is compressed
and the other is stretched. The case of unidirectional compression of the ideally flat facing
is considered. The influence of initial irregularities of facing was no taken into account. A
detailed analysis of this issue will be the subject of further research. Due to compression,
the instability of the facing occurs, which has the character of periodic wrinkling. In order
to determine the critical stress causing the local instability (wrinkling stress), the facing
resting on the infinite core is examined (Figure 3). Such a simplification is allowed when
the core is so thick that deformations of one facing do not affect the other facing. This issue
will be discussed in an example.

Linear constitutive relationships were assumed for the facing and core materials. It
was also assumed that the properties of the core change continuously along its thickness.
In general, the modulus of elasticity ECz (in the direction perpendicular to the facing) is
independent of the shear modulus GCxz. As in [2,12]. Core deformations in the longitudinal
direction (along the x-direction) were not included in the energy equilibrium equation.
In other words, any vertical lines indicated before deformation remain vertical during
wrinkling. The justification for this approach can be found, inter alia, in [24].

3. Determination of the Wrinkling Stress
3.1. General Equations

In order to determine the wrinkling stress, the energy approach was used in this paper.
The basic Equations (1)–(11) can be found in [2].

Assume that the form of the facing deformation wF(x) is sinusoidal (W—deformation
amplitude):

wF(x) = W sin
πx
l

, (1)

and the core deformation wC(x, z) disappears exponentially (k > 0):

wC(x, z) = wF(x)e−kz = We−kz sin
πx
l

. (2)

The energy balance equation for the system shown in Figure 3 can be written (per unit
width and over the length l) as:

UF + UC = UP, (3)

where:

UF =
1
2

∫ l

0
BF

(
∂2wF

∂x2

)2

dx (4)

is the strain energy of the facing due to bending,

UC =
1
2

∫ ∞

0

∫ l

0

1
ECz

σ2
Czdxdz +

1
2

∫ ∞

0

∫ l

0

1
GCxz

τ2
Cxzdxdz (5)

is the strain energy of the core, and

UP =
1
2

∫ l

0
P
(

∂wF
∂x

)2
dx =

PW2π2

4l
= σFx

tFW2π2

4l
(6)

is the work done by applied load P. Load P in (6) is expressed as the product of the
normal stress in the facing σFx and the thickness of facing tF. The symbol BF denotes
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the facing bending stiffness per unit width. For a beam it equals EFt3
F/12, for a plate it

is EFt3
F

12(1−ν2
F)

= E∗Ft3
F/12, where EF is modulus of elasticity and νF is Poisson’s ratio of the

facing material. The transverse normal stress σCz and the shear stress τCxz in the core are:

σCz = ECz
∂wC
∂z

= −ECzkWe−kz sin
πx
l

, (7)

τCxz = GCxz
∂wC
∂x

= GCxz
π

l
We−kz cos

πx
l

, (8)

where the modulus of elasticity ECz (in the direction perpendicular to the facing) and shear
modulus GCxz (in plane x-z) of the core material are functions of the position variable z.

After substituting (4)–(8) to (3) and several transformations, we obtain the expression
for the normal stress in the facing σFx, which is a function of two variables, k and l:

σFx =
EFt2

Fπ2

12l2 +
k2l2

π2tF

∫ ∞

0
ECze−2kzdz +

1
tF

∫ ∞

0
GCxze−2kzdz. (9)

For any functions ECz(z) and GCxz(z), the wrinkling stress σw is equal to σFx while
meeting the conditions for the minimum:

∂σFx
∂l

= 0, (10)

∂σFx
∂k

= 0. (11)

From condition (11), l2 can be determined, which is then substituted into (10). Finally,
the optimal k and l are obtained, resulting in the wrinkling stress σw = σFx. Below are
presented solutions for two types of functions (exponential and polynomial) describing
ECz(z) and GCxz(z).

3.2. Exponential Function of Material Parameters

Let the exponential form of the core parameters variability be assumed:

ECz(z) = Ee−mz, (12)

GCxz(z) = Ge−nz, (13)

where E, G, m and n are positive constants. Then Equation (9) takes the form:

σFx =
EFt2

Fπ2

12l2 +
k2l2

π2tF
· E
2k + m

+
1
tF
· G
2k + n

(14)

and optimality conditions (10) and (11) take the form:

l2 =
G
E
· (2k + m)2

(2k + n)2 ·
π2

k(k + m)
, (15)

(2k + n)4

(2k + m)3 ·(k + m)2 − 12·G2

EFt3
FE

= 0. (16)

To find the wrinkling stress, one should find k (16), then l2 (15) and σw = σFx (14).
For the special case m = n, the Equation (16) becomes the cubic equation with respect

to k. This equation can be solved by the Cardano method. It can be shown that Equation (16)
has one real solution:

k = −5
6

m +
3

√√√√ m3

216
+

A
2
−

√
A
16

(
m3

27
+ A

)
+

3

√√√√ m3

216
+

A
2
+

√
A
16

(
m3

27
+ A

)
, (17)
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where constant A > 0 is:

A =
12·G2

EFt3
FE

. (18)

3.3. Polynomial Function of Material Parameters

The general form of a polynomial describing the variability of the core parameters is
taken as:

ECz(z) = a1z2 + b1z + c1, (19)

GCxz(z) = a2z2 + b2z + c2, (20)

where a1, b1, c1, a2, b2 and c2 are constants. Then Equation (9) takes the form:

σFx =
EFt2

Fπ2

12l2 +
k2l2

π2tF
·
(

a1

4k3 +
b1

4k2 +
c1

2k

)
+

1
tF
·
(

a2

4k3 +
b2

4k2 +
c2

2k

)
(21)

and optimality conditions (10) and (11) lead to:

l2 = π2·
3a2
4k4 +

b2
2k3 +

c2
2k2

c1 − a1
k2

, (22)

(
a1

4k3 +
b1

4k2 +
c1

2k

)
·
(

3a2

4k4 +
b2

2k3 +
c2

2k2

)2
−

EFt3
F

12k2 ·
(

c1 −
a1

k2

)2
= 0. (23)

If k is find from Equation (23), l2 (22) and σw = σFx (21) are also obtained.

4. Examples
4.1. Material Parameters

The distribution of the elasticity modulus presented in Figure 2 is considered, which
will be described with the exponential function or the polynomial of degree 2. A certain
disadvantage of the exponential function is that it correctly reflects the variability of material
parameters only when the values disappear along with the variable z. For this reason,
for the determination of ECz(z) and GCxz(z), only data for six points (up to a depth of
z = 0.0521 m) were taken into account; see Table 1, Figure 4.

Table 1. Laboratory determined values of ECz for the position z.

z [m] 0.00814 0.0176 0.0272 0.0371 0.0470 0.0521

ECz [kPa] 8509 6282 3146 2173 2093 1994

Materials 2022, 15, x FOR PEER REVIEW 7 of 13 
 

 

For the sake of simplicity, it is assumed that the function 𝐺஼௫௭(𝑧) = ா಴೥(௭) ଶ(ଵାν಴), where 
ν஼ = 0.3. This also means that 𝑚 = 𝑛 in (12)–(16). Calculations were performed for the 
established 𝐸ி = 2.1 ∙ 10ି଼ kPa and 𝑡ி = 0.0005 m. These are typical parameters of man-
ufactured sandwich panels. 

Table 1. Laboratory determined values of 𝐸஼௭ for the position 𝑧. 𝒛 [m] 0.00814 0.0176 0.0272 0.0371 0.0470 0.0521 𝑬𝑪𝒛 [kPa] 8509 6282 3146 2173 2093 1994 
 

(a) (b) 

  
Figure 4. Function 𝐸஼௭(𝑧): (a) exponential, (b) polynomial of degree 2. 

4.2. The Exponential Function 
From Figure 4a, the following function parameters can be read: 𝐸 = 10178 kPa and 𝑚 = 34.86 [1/m], which means 𝐺 = 3915 kPa. For these parameters, one obtains: 𝑘 =41.54 [1/m], 𝑙 = 0.03459 [m], 𝜎௪ = 138.6 [MPa]. 

4.3. The Polynomial Function 
From Figure 4b, the following function parameters can be read: 𝑎ଵ = 5,000,000 

kN/m4, 𝑏ଵ = −441,315  kN/m3, 𝑐ଵ = 11,993  kN/m2, which means 𝑎ଶ = 1,923,077 
kN/m4, 𝑏ଶ = −169,737 kN/m2 and 𝑐ଶ = 4612.7 kN/m2. For these parameters, a quantity 𝑘 is sought which will satisfy the condition (23). The values of the left side of Equation 
(23) presented as a function of the variable 𝑘 are shown in Figure 5. 

 
Figure 5. The values of the left side of Equation (23) presented as a function of the variable 𝑘. 

Figure 4. Function ECz(z): (a) exponential, (b) polynomial of degree 2.



Materials 2022, 15, 6687 7 of 12

For the sake of simplicity, it is assumed that the function GCxz(z) =
ECz(z)

2(1+νC)
, where

νC = 0.3. This also means that m = n in (12)–(16). Calculations were performed for the
established EF = 2.1 × 10−8 kPa and tF = 0.0005 m. These are typical parameters of
manufactured sandwich panels.

4.2. The Exponential Function

From Figure 4a, the following function parameters can be read: E = 10, 178 kPa
and m = 34.86 [1/m], which means G = 3915 kPa. For these parameters, one obtains:
k = 41.54 [1/m], l = 0.03459 [m], σw = 138.6 [MPa].

4.3. The Polynomial Function

From Figure 4b, the following function parameters can be read: a1 = 5, 000, 000 kN/m4,
b1 = −441, 315 kN/m3, c1 = 11, 993 kN/m2, which means a2 = 1, 923, 077 kN/m4,
b2 = −169, 737 kN/m2 and c2 = 4612.7 kN/m2. For these parameters, a quantity k is
sought which will satisfy the condition (23). The values of the left side of Equation (23)
presented as a function of the variable k are shown in Figure 5.
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It turns out that for k values lower than 30, the expression quickly goes to infinity,
while for large values of k, expression (23) is negative and goes to zero. The condition (23)
is satisfied for: k = 32.94 [1/m], which means: l = 0.03612 [m], σw = 154.9 [MPa].

4.4. Comparison of the Results

It is worth noting now that the discrepancy between the results obtained for two differ-
ent functions does not result from the determination method itself, but from differences in
the values of the respective functions ECz(z) and GCxz(z). It is enough to note that exponen-
tial functions have values E(z = 0) = 10, 178 kPa, G(z = 0) = 3915 kPa, while polynomial
functions obtain values E(z = 0) = 11, 993 kPa, G(z = 0) = 4612.7 kPa. The difference
between the wrinkling stresses 138.6 MPa and 154.9 MPa is reflected very accurately (error
of 0.1%) by the known expression σw = α 3

√
EFEG, where α is a certain factor. On this basis,

it is possible to confirm the findings of other authors [12,13], that the wrinkling stress is
determined mainly by the modules for the core layer directly adjacent to the facing.

5. Energy Considerations

In order to trace the relationship between the energies expressed in (4) and (5), we
consider two cases: the exponential function from the example above (E = 10, 178 kPa
and m = 34.86 [1/m]) and the constant function (E = 10, 178 kPa and m = 0 [1/m]). For
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these two cases, Figure 6 shows the UC components (divided by W2), determined for the
successive layers of the core with a thickness of 0.005 m (z2 − z1 = 0.005):

UCEz =
1

2W2

∫ z2

z1

∫ l

0

1
ECz

σ2
Czdxdz, (24)

UCGz =
1

2W2

∫ z2

z1

∫ l

0

1
GCxz

τ2
Cxzdxdz. (25)

1 
 

 
 

UCEz     UCGz UCEz     UCGz 

Figure 6. The components of UC (divided by W2) determined for the successive layers of the core
with a thickness of 0.005 m: (a) m = 34.86 [1/m], (b) m = 0 [1/m].

Figure 7 presents the comparison of the energy UF/W2 with energies UCEz and UCGz
summed over the entire thickness of the core and denoted as UCE and UCG, respectively.
Figure 8 compares the expression e−kz, which illustrates the disappearance of displacements
in the core.
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ECz(z) = 10178·e−mz: (a) m = 34.86 [1/m], (b) m = 0 [1/m].

On the basis of Figures 6–8, it can be concluded that in both cases the vast majority
of the core strain energy (over 90%) is stored in a 2 cm thick layer adjacent to the facing,
which confirms the observations formulated in [12,13]. Core deformation decays more
slowly than strain energy does. In the case of a core with constant stiffness (Figure 8b),
the reduction of displacements by 90% occurs for z = 0.035 m; for a core with variable
stiffness, a similar reduction takes place for z = 0.06 m. Therefore, in the two presented
cases, disregarding the influence of the tensile facing is justified when the core thickness
is 7 cm and 12 cm, respectively. These thicknesses correspond to twice the depth of the
zone of significant core deformation. Obviously, in the case of a constant stiffness core,
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both energy and displacement decay faster. It should also be noted that in the case of a
core with constant material parameters UF = UCE = UCG, while for a core with variable
stiffness (decreasing with thickness) UF = UCE, but the energy UCG is higher than the
others (UCE = UCG only for k = 0). This means that in the case of a core with decreasing
stiffness, the wrinkling stress is slightly more determined by the shear strain energy UCG
than the normal strain energy UCE.
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6. Optimal Distribution of Material Parameters

A core in which the parameters ECz(z) and GCxz(z) change exponentially (12) and (13)
is analyzed. It is obvious that the stiffer the core, the higher the wrinkling stress value.
However, let us introduce the following constraints (C, D—constants):∫ ∞

0
ECzdz =

∫ ∞

0
Ee−mzdz =

1
m

E = C, (26)

∫ ∞

0
GCxzdz =

∫ ∞

0
Ge−mzdz =

1
n

G = D. (27)

which can be interpreted as the limit of the stiffness summed over the thickness of the
core. To simplify the presentation, it can be assumed that m = n. Using (26), (27) and
(15), it is possible to express the normal stress σFx as a function of the variable m (k also
depends on m):

σFx =
EFt2

F
12
· C
D
·k(k + m) +

D
tF
· m
(k + m)

. (28)

Bearing in mind that k is expressed by (17), the condition for obtaining the maximum
stresses is:

∂σFx
∂m

= 0. (29)

For the assumed values C = 300 kN/m and D = 300/2.6 = 115.385 kN/m, according
to (28), the maximum wrinkling stress is obtained for m = 142.4 and is σw = 230.77 MPa.

For comparison, for m = 10, which corresponds to the distribution of material param-
eters close to uniform, the wrinkling stress is 68.82 MPa. The dependence of σw on m is
shown in Figure 9.
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Figure 9. The dependence of σw on m.

Interestingly, for the optimal m (in the sense (26)–(29)), the value of k is close to zero,
and l increases significantly (it is on the order of a few meters—depending on the accuracy
of m determination). Moreover, for optimal m, as z increases, the strain energy in the core
disappears, but the core deformations (e−kz) do not disappear at all but remain at the same
level. A comparison of the distribution of ECz(z) and e−kz for three different levels of m is
presented in Figure 10. It seems as if the analyzed layered structure was trying to convey
its deformations into the core. In practice, a second facing will appear at some distance
from the facing to be compressed, disturbing these deformations.
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7. Conclusions

The problem of the local instability (wrinkling) of the facing resting on the deformable
core was analyzed in the paper. The case of uniaxial compression of the facing was
considered. The core was assumed to be infinitely thick. Such a simplification, although it
may turn out to be very limiting, is in many cases acceptable due to the rapid decay of the
strain energy and deformation of the core.

In the first part of the paper, using the energy approach, the procedure for determining
the wrinkling stress was presented in the case of a core with any variation in its material
parameters. This procedure was used to obtain a solution for a core, in which material
parameters are expressed with an exponential or polynomial function. The equations
are illustrated with examples that use discrete values of core modules determined on its
thickness. The presented procedure is general and can be applied to any function describing
the variability of the core properties.
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The considerations concerning the strain energy in the system showed the following:

• More than 90% of the strain energy of the core is stored to a depth of about 2 cm from
the facing, which means that the value of the wrinkling stress is mainly determined by
the layer adjacent to the facing;

• Core deformation is reduced by 90% at a depth of 6 cm (core with variable parameters)
or at a depth of 3.5 cm (core with constant parameters), which means that considering
the theoretical case of an infinitely thick core is acceptable in most cases;

• The strain energy of the facing deformation is always equal to the normal strain energy
of the core; the shear strain energy of the core is equal to them only when the core
parameters are constant across the thickness;

• In the case of non-linear (disappearing with thickness) distribution of core mate-
rial parameters, the shear strain energy of the core has a decisive influence on the
wrinkling stress.

The last part of the work presents an example of optimizing the distribution of core
material parameters, the aim of which was to maximize the wrinkling stress. An optimal
solution was obtained for the assumed class of exponential functions and for the introduced
constraints. The solution is characterized by high material modules in the layers adjacent
to the facing and a quick reduction of these modules in the thickness of the core.

The presented considerations explain the enormous and practical influence of the dis-
tribution of core material parameters on the load-bearing capacity of a complete sandwich
panel. The derived equations can be directly used in the production of sandwich panels
with a better distribution of the core material parameters.
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