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Abstract: This study proposes a high-performance magnetic shielding structure composed of MnZn
ferrite and mu-metal film. The use of the mu-metal film with a high magnetic permeability restrains
the decrease in the magnetic shielding coefficient caused by the magnetic leakage between the gap
of magnetic annuli. The 0.1–0.5 mm thickness of mu-metal film prevents the increase of magnetic
noise of composite structure. The finite element simulation results show that the magnetic shielding
coefficient and magnetic noise are almost unchanged with the increase in the gap width. Compared
with conventional ferrite magnetic shields with multiple annuli structures under the gap width of
0.5 mm, the radial shielding coefficient increases by 13.2%, and the magnetic noise decreases by 21%.
The axial shielding coefficient increases by 22.3 times. Experiments verify the simulation results of
the shielding coefficient of the combined magnetic shield. The shielding coefficient of the combined
magnetic shield is 16.5%. It is 91.3% higher than the conventional ferrite magnetic shield. The main
difference is observed between the actual and simulated relative permeability of mu-metal films. The
combined magnetic shielding proposed in this study is of great significance to further promote the
performance of atomic sensors sensitive to magnetic field.

Keywords: MnZn ferrite; mu-metal film; magnetic shield; magnetic noise; atomic sensors

1. Introduction

Numerous ultra-high sensitivity atomic sensors that use quantum effects to detect
physical quantities, such as atomic magnetometer [1,2], atomic gyroscope [3,4], atomic
clock [5], and superconducting quantum interferometer [6,7], are magnetic-field sensitive.
The stability of the environmental magnetic field has a direct effect on the measurement
performance of sensors. Consequently, passive magnetic shielding and active magnetic
compensation are widely used in the aforementioned sectors [8–10].

The accuracy of the magnetometer limits the accuracy of the active magnetic compen-
sation. Moreover, its high-power consumption requires an external current source [9,10].
The passive magnetic shield uses the characteristics of higher permeability of magnetic
material compared with air to cancel the magnetic flux density around the material. Uti-
lizing a magnetic material with a higher permeability sufficiently reduces the magnetic
flux density within the magnetic shield. A common magnetic shield that achieves a high
shielding coefficient involves using a mu-metal multilayer shielding [11]. This type of
magnetic shield successfully suppresses the influence of the fluctuating magnetic field in
the environment on the sensors inside the magnetic shield. Nevertheless, it possesses a
high conductivity. The Johnson current generated by the material results in a magnetic
noise level of ~10 fT/Hz1/2. This prevents the atomic sensors from being made more

Materials 2022, 15, 6680. https://doi.org/10.3390/ma15196680 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15196680
https://doi.org/10.3390/ma15196680
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma15196680
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15196680?type=check_update&version=2


Materials 2022, 15, 6680 2 of 11

sensitive. A high-performance magnetic shield must have a high shielding coefficient and
a low magnetic noise [12,13].

Reducing the magnetic noise of magnetic shielding systems has become a research
priority in recent years. Kornack and Lee investigated the analytical formula for magnetic
shielding noise [14,15]. The magnetic noise was computed using the power loss based on
the fluctuation dissipation theory [16]. It was discovered that the magnetic noise was mostly
caused by the complex permeability and conductivity of the material. The conductivity of
MnZn ferrite material was ~10−6 S/m less than that of mu-metal material [17,18]. Through
theoretical calculation and experimental research, the noise of the ferrite shield has been
reduced by 25 times to 0.75 fT/Hz1/2 compared with the noise of the mu-metal shield,
which is above 40 Hz. Bevan employed square ferrite magnetic shielding in 2018 to reduce
the magnetic noise level of the NMR gyroscope [19]. In addition, low-noise ferrite shielding
is utilized in several high-sensitivity atomic sensors and measurement techniques, such as
co-magnetometer [20,21], demonstrating its superior performance.

As observed in the previous research, the practical application of a ferrite magnetic
shield presents several challenges. In lieu of being integrally created, numerous magnetic
annuli are spliced together to produce the ferrite magnetic shield to meet the requirements
of a large-scale magnetic shielding system and limit the influence of magnetic noise [22,23].
Due to the surface roughness and non-uniformity of the magnetic annuli, there will be
an air gap, approximately 0.1–0.5 mm, in the ferrite shield when magnetic annuli are
spliced [22]. The air gap between magnetic annuli diminishes the shielding coefficient and
increases the radial magnetic noise. The shielding coefficient of ferrite magnetic shielding
deteriorates. This decreases the environmental magnetic noise reduction and increases
self-induced magnetic noise. Its effectiveness is impacted by the superposition of the two
forms of magnetic noise. The research on the air gap of ferrite magnetic annuli focuses
solely on its effect on the shielding coefficient and magnetic noise. There is currently no
solution for the air gap. The air gap cannot be eliminated by finishing the contact surface of
magnetic annuli.

This research quantitatively evaluates how the air gap of ferrite annuli affects the axial
and radial shielding coefficient and magnetic noise. To reduce the effect of the gap on
the shielding coefficient and magnetic noise, a magnetic shielding structure comprised of
ferrite and mu-metal film is proposed. This configuration can use the mu-metal material
to suppress the magnetic leakage field at the ferrite air gap. Outside the ferrite magnetic
shielding, a mu-metal film is adhered to lessen the magnetic shielding noise of the mu-metal
film. The shielding performance of ferrite and mu-metal film combination magnetic shield
(FMCS) is quantified using the finite element method (FEM). This configuration has a better
shielding coefficient than conventional ferrite magnetic shields. The magnetic noise study
results indicated that this design reduced the effect of the air gap on magnetic noise. In
addition, the configuration accounted for the occurrence of an air gap between the ferrite
magnetic shield and the mu-metal film when they adhered. In this case, the shielding
coefficient and magnetic noise were also explored in this work. Finally, the magnetic
shielding coefficient measuring platform was constructed, and the experiment verified the
accuracy of the calculation.

2. Methods
2.1. The Magnetic Shielding Structure Composed of Ferrite and Mu-Metal Film

The FMCS schematic comprises a ferrite shield and a mu-metal film. In Figure 1,
the x-direction is the radial, while the z-direction is the axial. The size of the magnetic
shielding model established by simulation and experiment is identical. Five magnetic
annuli and two end caps constitute the ferrite shield. Each annulus has a height of 45 mm,
an inner diameter of 114 mm, and a wall thickness of 13 mm. The thickness of the two
end caps is 10 mm. In practical application, there are four 22 mm diameter access holes
in the radial direction and two 28 mm diameter access holes in the axial direction. This
study exclusively examines the effect of the air gap between ferrite magnetic annuli to
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prevent the access hole from influencing the results, and the access hole is not accounted
for in the simulation. The ferrite magnetic shield material is the soft MnZn ferrite with
a spinel structure. Figure 2 depicts the morphology of the MnZn ferrites, consisting of
aggregated crystallites with homogeneous grains. Low porosity is present in the MnZn
ferrite sample, and no air gaps emerge at the grain boundary. Owing to the discontinuous
grain development during the sintering process, a few vacancies are observed within the
grain. This intra-granular vacancy may impede the mobility of the domain wall, resulting
in an adverse effect on the magnetic permeability. The composition of the MnZn ferrite is
analyzed using an inductively coupled plasma emission spectrometer (Agilent, Palo Alto,
CA, USA). The main elements, Fe, Mn, and Zn are shown in Table 1, in which other elements
such as Na, P, Si, and Ca are also included. The addition of trace elements can reduce the
loss. However, the mass fraction (wt.%) of other elements should not exceed 0.15%. The
complex permeability of the ferrite magnetic shield is also measured experimentally. The
real component of the complex permeability is 10029, and the imaginary component is
150 [24].

Figure 1. The schematic diagram of the FMCS structure.

Figure 2. Morphology of high permeability MnZn ferrite. Grain boundary and air vacancy were
indicated within the dashed lines.

Table 1. Composition analysis results of MnZn ferrite materials.

Element Fe Zn Mn Na P Si Ca

wt.% 48.7568 13.4317 11.7299 0.0681 0.0676 0.0473 0.0288
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A mu-metal film is adhered to the exterior of the ferrite magnetic shield. The thickness
of the film ranges from 0.1 mm to 0.5 mm. The real component of the complex permeability
of mu-metal film is 30,000, while the imaginary component is 1000. There are two methods
for pasting. The first one involved tightly pasting the ferrite and mu-metal film, and the
outside of the film was fixated using adhesive tape. The second one involved attaching the
ferrite and mu-metal film using an insulating double-sided tape, creating a space between
them. Both cases were analyzed in this work.

2.2. Analysis Method of Shielding Coefficient and Noise

The magnetic shielding coefficient is represented by the coefficient S. It is defined as
the ratio of the magnetic flux density Bshield at the center point of the magnetic shield when
the shield was present to the magnetic flux density B0, with the shield at the same point
without the shield. The equation is as follows [25]:

S =
Bshield

B0
(1)

The magnetic shielding coefficient for complex structures can be calculated using
FEM and the commercial program ANSYS Electromagnetics Suite 19.2 (ANSYS Maxwell
3D, Canonsburg, PA, USA). To generate a highly uniform space magnetic field during
the simulation of the static shielding coefficient, the magnetic field was simulated using
the boundary condition approach. During the simulation, the magnetic flux density used
was 25 µT, which was the actual measured magnetic flux density of the environment.
Magnetic noise was an additional essential parameter for evaluating the performance
of magnetic shielding. It consisted of the residual environmental magnetic noise after
magnetic shielding and magnetic noise produced by magnetic shielding materials. The
multilayer magnetic shield could attain a shielding coefficient of 104 to 106. The residual
ambient magnetic noise was less than 0.1 fT/Hz1/2, and the magnetic noise generated by
magnetic shielding materials dominated.

Generally, reciprocal approaches were used to calculate the magnetic noise δB. The
magnetic noise was obtained by calculating the power loss, Ps, in the material. Ps was
caused by the magnetic field generated by the known excitation coil. The area was A, and
the carry current is I [14,15].

δB =

√
8kBT

√
Ps

ωAI
(2)

where the Boltzmann constant is kB, angular frequency is ω, and the Kelvin temperature is
T. The power loss of low-frequency materials was mainly composed of eddy current power
loss Pe =

∫
V

1
2 σE2dV and hysteresis power loss Ph =

∫
V

1
2 µ′′Hm

2dV. The magnetic noise
of FMCS is:

δBFBCS =

√
8kBT

√
Ptot

e + Ptot
h

+ Pmu
e + Pmu

h

ωAI
(3)

where Ptot
e and Ptot

h
are the eddy current power loss and hysteresis power loss of ferrite

shield, respectively. Pmu
e and Pmu

h
are the eddy current power loss and hysteresis power

loss of mu-metal film, respectively.

3. Experimental Calculation Results and Discussion
3.1. Magnetic Shielding Coefficient

A Ferrite magnetic shield is difficult to manufacture and process, especially when a
large size is required. For this reason, a cylindrical ferrite shield is usually made of several
short ferrite annuli pasted with ceramic adhesive. The thickness of the ceramic adhesive
and the unevenness of the contact surface led to air gaps [23]. The air gap between magnetic
annuli causes magnetic leakage. The cloud diagram of magnetic flux density when the air
gap width was 0.5 mm is shown in Figure 3a, and Figure 3b demonstrates that the FMCS
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structure effectively prevented magnetic leakage at the air gap of the ferrite magnetic shield.
The thickness of mu-metal film used for simulation was 0.5 mm.

Figure 3. Magnetic flux density maps along the x–z plane; (a) conventional ferrite shield and
(b) FMCS.

The relationship between mu-metal film thickness and magnetic shielding coefficient
was investigated to quantify the inhibitory effect of FMCS structure on the air gap of the
ferrite shield and to enhance the shielding coefficient. The conventional ferrite magnetic
shielding coefficient variation with the gap width was first calculated. As shown in Figure 4,
the x- and z-direction shielding coefficients decreased by 16.2% and 98.1%, respectively,
when the gap width changed from 0 to 0.5 mm.

Figure 4. Relationship between magnetic shielding coefficient of the conventional ferrite and the
gap width. When the gap width increases from 0 mm to 0.5 mm, the shielding coefficient for the x-
and z-direction gradually decreases. The blue and red lines denote the x- and z-direction shielding
coefficients, respectively.

Figure 5 illustrates the relationship between the magnetic shielding coefficient of the
FMCS structure and the gap width for different film thicknesses. As shown in Figure 5a, the
x-direction shielding coefficient of FMCS structure with varying film thicknesses decreases
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gradually as the gap width increases. When gap width increased from 0 to 0.5 mm, the
shielding coefficient decreased by approximately 3.8%. Shielding coefficient increased as
layer thickness increased. When the gap width was equivalent to 0.5 mm, the shielding
coefficient of film (0.1 mm and 0.5 mm) increased by 9.8% and 13.2%, respectively, compared
with conventional ferrite shielding. FMCS structure effectively suppressed the influence of
the air gap on the x-direction shielding coefficient of conventional ferrite magnetic shielding.
Figure 5b shows the relationship between the z-direction magnetic shielding coefficient of
the FMCS structure and the width of the gap for different film thicknesses. Although the
z-direction shielding coefficient decreased in the presence of an air gap, the width of the
gap did not affect the shielding coefficient. In addition, the shielding coefficient improved
with an increase in the layer thickness. When the gap width was 0.5 mm and film thickness
was 0.1 mm, the z-direction shielding coefficient of the FMCS structure was 350, whereas
the traditional ferrite magnetic shielding coefficient was only 15. The shielding coefficient
increased by a factor of 22.3.

 
Figure S3. The linear relationship between ln K and (1/T). 

  
(a) (b) 

 
 

Figure 5. Relationship between the FMCS structure magnetic shielding coefficient and the gap width
for different film thickness; (a) x-direction magnetic shielding coefficient, (b) z-direction magnetic
shielding coefficient.

In addition, the ferrite and mu-metal film were attached to the FMCS framework with
insulating double-sided tape, resulting in a gap between them. This configuration was also
examined. Figure 6 depicts the results of the shielding coefficient calculation. When there
was an air gap (width = 0.1 mm) between ferrite and mu-metal film (thickness = 0.5 mm),
the shielding coefficient decreased by approximately 4.1% and 76.2%, respectively, com-
pared to that in close contact. In practical application, ferrite and mu-metal films must be
firmly pasted.

3.2. Magnetic Shield Noise

Magnetic noise is another important parameter for evaluating the shielding perfor-
mance. Magnetic noise limits the enhancement of the sensitivity index, particularly in
ultra-high-sensitivity magnetometers [26]. The sensitive axis of the magnetic field is gener-
ally oriented in the radial direction with an excellent magnetic shielding coefficient [2,4,27].
This study analyzed the influence of air gap on the shielding coefficient of conventional
ferrite magnetic shields and FMCS structures. As shown in Figure 7, the air gap width
increased from 0 to 0.5 mm, the thermal magnetization noise increased by 34.3%, and the
eddy current noise decreased. However, the eddy current noise accounted for less than 1%
of the total noise, which can be ignored.
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Figure 6. Shielding coefficient with an air gap between ferrite and mu-metal film. The ferrite and
mu-metal film are fixed with insulating double-sided tape. The gap width caused by the isolation of
double-sided adhesive tape is 0.1 mm.

Figure 7. Magnetic noise of conventional ferrite magnetic shield in the presence of an air gap between
ferrite annuli.

The magnetic noise calculation results of the FMCS structure are shown in Figure 8.
As illustrated in Figure 8a, when mu-metal film was close to the ferrite magnetic shield,
the FMCS structure demonstrated a noticeable effect on suppressing the air gap of the
ferrite magnetic annuli. The magnetic noise increased by 4.5% when the air gap width was
extended from 0 to 0.5 mm, but the magnetic noise did not increase with the increase of air
gap width. When the air gap width was 0.5 mm and the film thickness was 0.1 mm, the
magnetic noise of the FMCS structure was 21% less than that of the typical ferrite magnetic
shield. The magnetic noise could be reduced further by increasing the film thickness.
Figure 8b shows the magnetic noise of the FMCS structure when the ferrite shield and the
film were adhered with double-sided tape and there was a gap between them. In this case,
despite being able to maintain the air gap, the magnetic noise reduction was only 6.3% less
than with standard ferrite magnetic shielding. Increasing the thickness of the film could
also reduce the magnetic noise, but the effect was minimal.
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Figure 8. The magnetic noise calculation results of FMCS structure: (a) magnetic noise when there is
no air gap between ferrite and mu-metal film and (b) magnetic noise when there is an air gap between
ferrite and mu-metal film. The ferrite and mu-tal film are fixed with insulating double-sided tape.

4. Experimental Setup and Results

As the current commercial atomic magnetometer has a sensitivity of tens of fT, it
is difficult to detect the magnetic noise of ferrite magnetic shielding. The noise may be
measured by building an ultra-high sensitive magnetic shielding measurement device
based on the spin-exchange relaxation-free (SERF) effect. The device is complicated and
is easily affected by optical or electrical noise detection. It is challenging to isolate the
magnetic noise. Therefore, this study only measured the shielding coefficient to verify the
advantages of the proposed FMCS structure and the simulation results. The schematic
illustration of the magnetic shielding coefficient measurement platform is shown in Figure 9.
The magnetic shield composed of one layer of aluminum magnetic shield and four layers of
mu-metal magnetic shields suppressed the external magnetic field to avoid the fluctuation
of the external magnetic field from distorting the measurement results. The combined
magnetic shield had a shielding coefficient of approximately 105 and a residual magnetic
field of approximately 0.5 nT. The triaxial coil generated a known uniformly stable magnetic
field. The magnetic field generated by the coil was enhanced under the impact of the
ferromagnetic boundary of the outer combined magnetic shield. The three-axis coil was
calibrated within the combined magnetic shield. The radial and axial coils were 25 nT/mA
and 35 nT/mA, respectively. A commercial atomic magnetometer was used to measure the
magnetic field in the FCMS structure.

For MnZn ferrite materials, σ ≈ 1 Ω−1m−1, correspondingly, the threshold frequency
was higher than kHz, and below the threshold frequency, the shielding coefficient of ferrite
magnetic shield did not change with the frequency, while the application frequency of
SERF magnetometer was below 100 Hz. We also measured the frequency dependence
of the shielding coefficient of the FMCS structure from DC to 100 Hz. The change of the
shielding coefficient with frequency was only 2%. Figure 10 depicts the residual magnetic
field in the FMCS structure and the conventional magnetic shield when the known DC
external magnetic field was applied. Due to the increase in magnetic permeability, the
x-direction shielding coefficient (a) of the conventional ferrite magnetic shield increased
with the external magnetic field. When the external magnetic field was between 400 and
1800 nT, the average shielding coefficient was 703.26, which was close to the simulation
value, proving that the analysis was accurate. The external magnetic field applied when
measuring the z-direction magnetic shielding coefficient of conventional magnetic shielding
was between 50 and 120 nT. The reason why the magnetic field applied in the z-direction
was smaller than that in the x-direction was to prevent the residual magnetic field inside
the shield from exceeding the measuring range of the atomic magnetometer due to the
smaller measuring range of the atomic magnetometer and the smaller shielding coefficient
in the z-direction. The average value of the z-direction shielding coefficient was 36.3, which
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confirmed that the air gap of a conventional ferrite magnetic shield with multiple annuli
significantly impacted the axial shielding coefficient. Our experiments proved that the
FMCS structures were superior to the conventional ferrite magnetic shielding. The average
shielding coefficients of the FMCS structure (c) in the x and z directions were 819.22 and
383.6, respectively, which was an increase of 16.5% and 91.3% over the conventional ferrite
magnetic shielding. The difference between the measured value and the simulated value
was mainly due to the air gap during the film pasting process and the permeability of
the material.

Figure 9. Schematic illustration of the magnetic shielding coefficient measurement platform. The
ferrite shield size is the same as the structure used in the simulation, and the thickness of the film is
0.5 mm.

Figure 10. The (a) x-direction and (b) z-direction shielding coefficient of conventional ferrite magnetic
shield versus applied external magnetic field; (c) Shielding coefficient of the FMCS when the external
magnetic field is applied.
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5. Conclusions

In this study, a high-performance magnetic shielding structure composed of ferrite
and mu-metal film is proposed. Mu-metal film with a high relative permeability was used
to suppress the reduction of magnetic shielding coefficient resulting from magnetic leakage
in the magnetic annuli gap. The thickness of the mu-metal film, between 0.1 and 0.5 mm,
prevented the increase in combined magnetic noise. FEM was used to calculate the shielding
coefficient and magnetic noise of ferrite and mu-metal film combined shielding layer under
varying gap widths of magnetic annuli. The results showed that the magnetic shielding
coefficient and magnetic noise of the FMCS structures barely changed as the gap width
increased. Under the gap width of 0.5 mm, the x-direction shielding coefficient increased by
13.2%, whereas the magnetic noise decreased by 21% compared to the conventional ferrite
magnetic shielding with a gap. The shielding coefficient in the z-direction increased by
22.3 times. In addition, the influence of different assembly methods of ferrite and mu-metal
film on the magnetic shielding performance was analyzed. The shielding performance
declined when there was a gap between ferrite and the double-sided adhesive tape-pasted
film. The gap between the film and the ferrite magnetic shielding must be avoided when
the FMCS structure was employed to increase the shielding coefficient and decrease the
magnetic noise. Amorphous, nanocrystalline, and other thin film materials may be utilized
apart from mu-metal materials.

The experiments validated the shielding coefficient simulation results for the combined
magnetic shield. The experimental results showed that the shielding coefficient of the
composite magnetic shield was 16.5% and 91.3% greater than that of the conventional
ferrite magnetic shield, respectively. The main difference was between the actual relative
permeability of the mu-metal film and its simulated relative permeability. The high-
performance combined magnetic shielding proposed in this study is of great significance
for enhancing the sensitivity of atomic sensors.
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