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Abstract: To develop strong refractory high-entropy alloys for use at elevated temperatures as
well as to overcome grain-boundary brittleness, an equimolar HfMoNbTaTiZr alloy was prepared,
and a minor amount of boron (0.1 at.%) was added into the alloy. The microstructures of the
alloys were characterized, and their macro-to-microscale mechanical properties were measured.
The microstructural observations indicated that the matrices of both the alloys were composed of
a body-centered cubic solid-solution structure, and the added boron induced the precipitation of
hexagonal close-packed borides (most likely the (Hf, Zr)B2) at the grain boundaries. The modulus and
hardness of differently oriented grains were about equivalent, suggesting a diminished anisotropy,
and many small slips occurred on multiple {110} planes. While the hardness of the matrix was not
increased, the intergranular precipitation of the borides markedly raised the hardness of the grain
boundaries. Owing to the enhanced grain boundary cohesion, the work hardenability and ductility
were effectively improved with the addition of boron.

Keywords: refractory alloy; high-entropy alloy; boride; grain boundary; mechanical property

1. Introduction

With the needs of robust materials for use in elevated-temperature environments,
high-temperature materials have been strongly demanded in recently years. However, the
insufficient strength of nickel-based superalloys at temperatures higher than 1200 ◦C limits
the further development of more efficient turbine-jet engines in the aerospace industry [1].
The design concept of high-entropy alloys (HEAs) with equimolar or near-equimolar ra-
tios of multiprincipal elements has been proposed for about two decades [2]. Since that,
many new stable solid-solution alloy systems without the formation of detrimental brittle
phases have been developed [2–5]. Among them, body-centered cubic (BCC) refractory
high-entropy alloys (RHEAs) are of great interest as they show very good mechanical
performance such as high retaining strengths or lessened softening at elevated tempera-
tures owing to their special dislocation activities [6–8]. The first developed single-phase
WTaMoNbV RHEA even had a yield strength of about 400 MPa at the high temperature
of 1600 ◦C, but the high density and low room-temperature ductility render its industrial
application limited [9,10]. Subsequently, the HfNbTaTiZr solid-solution RHEA with a
lower density and a higher ductility was developed, but its relatively low strength and
particularly the serious high-temperature softening countervail the advantage of the high
elevated-temperature strength of typical RHEAs [11–13]. For single-phase solid-solution
RHEAs, although the mechanical properties may be improved by the adjustment of the
compositions, the strength–ductility trade-off problem remains [14], and the development
of other robust RHEAs is still demanded.

In recent years, heterostructural HEAs with microstructural heterogeneity to gen-
erate plastic discontinuity and thus mechanical strengthening have been intensively de-
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veloped for overcoming the strength–ductility trade-off problem [15–18]. The proposed
heterostructures include multiphase (most often called complex concentrated alloys), eu-
tectic dual-phase and single-phase (grain-size gradient) structures [19–21]. Among them,
the precipitation-strengthened heterostructure without the need of marked changes in
the fabrication process is more efficient and can be applied to the industry more easily.
By adjusting compositions or adding minor alloying elements to form fine precipitates
in the matrix or at the grain boundaries, local stress accumulations are thereby expected
to activate special deformation mechanisms and alter the dislocation gliding modes for
significantly strengthening the alloys [22]. The strengthening effect depends on the co-
herency between the precipitates and the matrix; e.g., the yield strength and elongation
of the (FeCoNi)86-Al7Ti7 alloy with the precipitation of L12 phase even reach 1 GPa and
50%, respectively [23–25]. Boron has also been widely added in alloys to improve the
cohesive strength of grain boundaries [26], e.g., to change the fracture mode of Ni3Al
from intergranular to transgranular and thus prevent early failure [27], or to lower the
migration rate of grain boundaries and inhibit grain growth at high temperatures [28].
Additionally, the short-range order in an Fe40Mn40Co10Cr10 alloy caused by the addition
of boron atoms or the precipitation of borides was reported to retard the motion and in-
crease the density of dislocations [29], and the discontinuous intergranular precipitation of
borides in high-strength steels avoided the intergranular fracture [30], both improving the
mechanical properties of the alloys [31,32]. As the grain-boundary brittleness is a major
issue for BCC RHEAs, a minor amount of boron element (0.1 at.%) was hence added into
an HfMoNbTaTiZr RHEA in the present study for potential precipitation of borides at the
grain boundaries and improvement of grain boundary cohesion, then to yield a larger work
hardenability and better ductility.

2. Materials and Methods

Equimolar HfMoNbTaTiZr RHEA samples (denoted as RHEA) were prepared by
arc melting the constituent elements Hf, Mo, Nb, Ta, Ti and Zr (high purity > 99.99%)
in vacuum (about 1.3 Pa) and the casting of ingots in a water-cooled Cu mold. Before
that, the chamber was purged with pure argon and vacuumed, and Ti was melted to
absorb the remaining oxygen in the chamber. For the preparation of HfMoNbTaTiZr
RHEA samples with 0.1 at.% boron (denoted as RHEA-B), a proper minor amount of
TiB2 was added. For a high chemical homogeneity, each sample was remelted three
times at least. The cast samples were then homogenized at 1200 ◦C for 24 h and water
quenched. The crystal structures of RHEA and RHEA-B samples were determined by
using X-ray diffraction (XRD, D2 PHASER, Bruker, Billerica, MA, US) from 20◦ to 80◦ at a
scanning speed of 6◦/min, and the lattice parameters were calculated from the diffraction
peaks. The microstructures were observed by applying a field-emission scanning electron
microscope (SEM, SU-8010, Hitachi, Japan) equipped with energy dispersive spectrometry
(EDS, Horiba, Japan), and the chemical compositions were determined by using SEM EDS
and the wavelength dispersive spectrometry (WDS) of electron probe microanalysis (EPMA,
JXA-8500F, JEOL, Japan). The crystal orientations and composing phases were identified
by applying a field-emission SEM (Supra 55, Zeiss, Germany) equipped with an electron
backscatter diffraction (EBSD, AztechHKL, Oxford, UK).

The hardness of the bulk RHEA and RHEA-B samples were measured by using a
Vickers hardness tester, while the micro-to-nanoscale elastic modulus and hardness of
the differently oriented single grains (〈100〉, 〈110〉 and 〈111〉, as identified by EBSD) were
measured by applying instrumented nanoindentations (Hysitron Triboindenter® TI 980,
Bruker, Billerica, MA, US) with the XPM (accelerated property mapping) mode. The
contact area of the Berkovich indenter (diamond tip radius of 100 nm) was calibrated
by using fused silica, and the load was ramped to 8000 µN for the indentation tests.
The deformation behavior of the alloy samples was characterized by conducting in situ
micropillar compression tests in an SEM. Single-crystalline 〈100〉 oriented micropillars were
first cut (with a top Pt protective coating at the cutting locations) from a corresponding
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grain by using a focused ion beam system (FIB, NX 2000, Hitachi, Japan) and were milled
to a diameter of about 2 µm and a length of 5 to 6 µm with an ultralow current of below
50 pA for preventing the ion damage of the surface. The micropillars were then in situ
compressed in an SEM (JSM-IT500, JEOL, Japan) by using a microcompression module
(Hysitron Picoindenter® PI 88, Bruker, Billerica, MA, USA) in a displacement-controlled
mode at a strain rate of 10−3/s for a total strain of 20%. For macro-compression tests,
cylindrical specimens of bulk polycrystalline RHEA and RHEA-B samples were prepared
by electric discharge cutting to a diameter of 5 mm and a height of 8 mm and were
ground and polished. The compression tests were then conducted by applying the Instron
4468 tester at a strain rate of 10−3/s to the fracture of the specimens, and the fractographies
were observed by using an SEM (JEOL JSM-IT500).

3. Results and Discussion
3.1. Basic Properties and Crystal Structure

The design rule of equimolar HfMoNbTaTiZr RHEA was based on the properties of
previous WTaMoNbV and HfNbTaTiZr RHEAs: W was removed due to the high density
and the low ductility of WTaMoNbV, and Mo was added owing to the low elevated-
temperature strength of HfNbTaTiZr. Minor 0.1 at.% B boron was added for precipitation
strengthening and improving the property of grain boundaries. Table 1 provides the basic
properties of the constituent metallic elements in the RHEA [33–40], and Table 2 lists the
mixing enthalpies between each two elements [41]. According to the calculation rule of
lattice distortion [42], the parameter delta δ of the RHEA sample is expected to be as
high as about 5.8%. Several advantages of the RHEA are anticipated: (1) the much larger
atomic sizes of Hf and Zr than others to generate a large lattice distortion and enhance
the solid-solution strengthening, (2) the high modulus of Mo to raise the stiffness, (3) the
high melting points of Nb and Ta (BCC stabilizers) to elevate the strength at elevated
temperatures and (4) the light-weight Ti to lower the density of the alloy.

Table 1. Basic Properties of The Constituent Metallic Elements of RHEA [33–40] and The Average
Properties of RHEA by The Rule of Mixture.

Hf Mo Nb Ta Ti Zr RHEA

Density (g/cm3) 13.31 10.28 8.57 16.65 4.51 6.51 9.97
Modulus (GPa) 78 329 105 186 116 68 147

Atomic radius (Å) 1.55 1.45 1.45 1.45 1.40 1.55 1.48
Lattice constant (Å) 3.19 3.14 3.30 3.30 2.95 3.23 3.41

Table 2. Mixing Enthalpies Between The Constituent Metallic Elements of RHEA [41].

Mixing Enthalpy (kJ/mole) Hf Mo Nb Ta Ti Zr

Hf 0 −4 4 3 0 0
Mo 0 −6 −5 −4 6
Nb 0 0 2 4
Ta 0 1 3
Ti 0 0
Zr 0

From the small mixing enthalpies between each of the two elements given above and
the great contribution of the high mixing entropy, the formation of a simple solid-solution
structure without intermetallic compounds is expected, as also identified by the XRD and
EBSD analyses in Figure 1. The XRD patterns in Figure 1a indicate the formation of a
single-phase BCC structure in both the RHEA and RHEA-B samples. Owing to the higher
cohesive energy of boron to the metallic elements than that of the metallic-to-metallic
constituents [26], a smaller lattice parameter was expected, and thus a slight shift of the
diffraction peaks to a higher angle was observed upon the addition of boron. However, as
more carefully characterized in the SEM image and EBSD phase map in Figure 1b,c, besides
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the major BCC phase composing the matrix of the RHEA-B sample, the minor addition
of boron segregating at the grain boundaries was observed to induce the intergranular
precipitation of the second phase (hexagonal close-packed, HCP) along the grain boundaries
although the amount of the second phase was too small to be efficiently identified in the
XRD analyses.
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Figure 1. (a) XRD patterns of RHEA and RHEA-B samples; (b) SEM image and (c) EBSD phase map
of RHEA-B sample (red: BCC; blue: HCP; standard: the phases of Ti element).

3.2. Microstructure and Chemical Composition

The EBSD IPF maps in Figure 2 show the microstructure of the RHEA and RHEA-B
samples and indicate the random orientations of the equiaxed grains in the homogenized
samples without a texture or a preferred orientation. The grain size of the RHEA was
about 130 µm, but the grain size of the RHEA-B was much smaller, only about 40 µm. As
suggested above in Figure 1b, the addition of boron and the intergranular precipitation of
HCP borides were believed to hinder the migration of grain boundaries and thus limit the
growth of grains during homogenization at 1200 ◦C, leading to an effective grain refinement.
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Figure 2. EBSD IPF maps of (a) RHEA and (b) RHEA-B samples showing the microstructure and
different grain orientations.

Figure 3 show the SEM EDS elemental mappings of the RHEA and RHEA-B samples,
and Table 3 lists the chemical compositions of the samples in different regions. Basically,
the average data were close to the designed compositions, and the constituent metallic
elements were uniformly distributed in the RHEA sample and the matrix of the RHEA-B
sample. As mentioned above, the segregation of Hf and particularly Zr to generate borides
at the grain boundaries of the RHEA-B sample, leaving slightly higher contents of Mo,
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Nb, Ta and Ti in the matrix than the average level, was obvious. However, due to the
low atomic weight of boron and the detection limit of SEM EDS analysis, the EDS was
not sufficient to accurately identify the amount of boron in the precipitates. The chemical
analysis was thus additionally carried out by using EPMA WDS, which indicated that the
enrichment of boron in the region of grain boundaries with the precipitates was about
3–5 at.%, which is low (due to the low atomic weight of boron and the large detection area);
however, it was much higher than the minor-added amount, 0.1 at.%. According to the
mutual solubility of Hf and Zr as well as their very large negative mixing enthalpies with
boron (the formation heats of borides: HfB2 −90 kJ/mole and ZrB2 −98 kJ/mole [42]),
precipitates in the form of (Hf, Zr)B2 at the grain boundaries of the RHEA-B sample are
expected, which is consistent with the observed HCP phase and the high diffusivity of
boron atoms to the grain boundaries [43].
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Table 3. Chemical Compositions of RHEA and RHEA-B Samples Measured by SEM EDS.

Hf Mo Nb Ta Ti Zr

RHEA (average) 16.89 ± 0.84 17.01 ± 0.85 16.72 ± 0.84 17.18 ± 0.86 15.79 ± 0.79 16.41 ± 0.82
RHEA-B (average) 17.90 ± 0.90 15.91 ± 0.80 17.01 ± 0.85 14.99 ± 0.75 14.75 ± 0.74 19.44 ± 0.97
RHEA-B (matrix) 16.10 ± 1.29 18.20 ± 1.18 18.35 ± 0.66 17.57 ± 1.02 15.73 ± 0.38 14.05 ± 1.62

RHEA-B (precipitate) 31.29 ± 0.71 1.60 ± 0.74 5.01 ± 0.52 2.34 ± 0.35 8.40 ± 0.55 51.36 ± 0.86

3.3. Nanoindenting Modulus and Hardness

The Vickers hardness of the bulk RHEA and RHEA-B samples were measured to be
HV 473 (±7.0) and HV 477 (±1.0), respectively, which were lower than that of WTaMoNbV,
HV 535 [8,10], but much higher than that of HfNbTaTiZr, HV 390 [11]. The addition of
boron was not observed to raise the hardness of the bulks as the amount of solutes was
only 0.1 at.% and many of them segregated to the grain boundaries, as also verified by
the nanoindentation tests. Figure 4 further presents the nanoindentation mappings of the
RHEA-B sample around a grain junction area, and Figure 5 shows the accumulative plots
of the nanoindentation modulus and hardness of the RHEA and RHEA-B samples for
differently oriented grains (〈100〉, 〈110〉 and 〈111〉). The results indicated that, consistent
with the Vickers hardness tests, the mechanical properties of the matrices of both the
samples were almost equivalent. More importantly, the modulus and hardness of the
precipitates (the grain boundaries; modulus of 160 to 170 GPa and a hardness of 10 to
11 GPa) were markedly higher than those of the matrix (the grains; modulus of 120 to
130 GPa and a hardness of 6.5 to 7.0 GPa).
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Additionally, as revealed in Figure 5, a diminished mechanical anisotropy in either the
RHEA sample or the RHEA-B sample is another interesting behavior of HEAs [44]. While
the modulus and hardness of the 〈111〉 grains were slightly higher than those of the 〈110〉
grains and particularly the 〈100〉 grains (a higher hardness owing to a smaller Schmid factor
along the 〈111〉 direction), the mechanical properties of the differently oriented grains were
very close. Attributable to the disordered distribution of constituent atoms and the conse-
quent random chemical bonds [44] and local chemical fluctuations [45], the neighboring
bindings and the energy barriers for activating a dislocation motion were altered, therefore
causing a decrease in anisotropy in both the elastic and plastic perspectives.

3.4. Micropillar Compression and Deformation

Figure 6 shows the in situ SEM compression tests of the 〈100〉 oriented single-crystalline
micropillars of the RHEA sample. From the stress–strain curves, the 0.2% yield stress was
determined to be 1510 MPa, and the compressive stress at a strain of 20% was 2060 MPa.
The SEM images of the compressed micropillars present typical slip deformation, with an
inclined angle of 45◦ about the stress axis 〈100〉, suggesting the activation of dislocation
gliding on the regular {110} 〈111〉 slip systems in BCC alloys with a large Schmid factor of
0.408. However, different from the drastic plastic deformation of traditional BCC alloys [46],
the stress drops were relatively small, corresponding to the observed multiple small slip
lines. It is expected that, owing to the large lattice distortions caused by the incorporation
of multiprincipal elements with different atomic sizes, the defect activities would change
from the long-distance gliding of few, long perfect dislocations to the short-distance gliding
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of a high density of fragmented partial dislocations (or stacking faults) on multiple {110}
slip planes at the same time, therefore leading to the small altitudes of many stress drops.
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Figure 6. In situ SEM compression tests of 〈100〉 oriented single-crystalline micropillars of RHEA
sample: (a) stress–strain curves, (b) SEM image of micropillar before compression, (c,d) SEM images
of compressed micropillars.

3.5. Macro-Compressive Strength and Ductility

The minor addition of boron effectively improved the mechanical properties of the
alloy, as presented in the macro-compressive stress–strain curves and fractographies of
the RHEA and RHEA-B samples in Figure 7, and as the yield stresses, ultimate strengths,
fracture strains and work hardening percentages listed in Table 4. While the yield stress only
slightly increased from 1.57 GPa for the RHEA (close to the value obtained by the above
micropillar compression, 1.51 GPa) to 1.61 GPa for the RHEA-B, the work hardenability
and ductility were more obviously improved. The ultimate compressive strength of the
RHEA, 1.75 GPa at a fracture stain of 12.3%, showed a similarly low hardenability (for
only about 11%) and ductility to typical refractory alloys. In comparison, The RHEA-B
exhibited a much higher ultimate compressive strength of 2.05 GPa (hardening for 27%)
and fracture stain up to 19.3%. As observed in the fracture surfaces, attributable to the
precipitation of borides at the grain boundaries much enhancing the boundary cohesion,
the failure mode changed from a mainly intergranular facture for the RHEA sample (as the
grain-boundary cracking as marked) to a major portion of the transgranular fracture for the
RHEA-B sample (almost no fracture at the grain boundaries as marked). The minimized
grain boundary decohesion inhibited the early failure of the RHEA-B, thus effectively
improving the mechanical properties.
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Figure 7. Macro-compression tests of RHEA and RHEA-B samples: (a) stress–strain curves, (b) SEM
fractography of RHEA, (c,d) SEM fractographics of RHEA-B (red dashed lines: grain boundaries).

Table 4. Macro-Compressive Yield Stresses, Ultimate Strengths, Fracture Stains and Work Hardening
Percentages of RHEA and RHEA-B samples.

Yield Stress (GPa) Ultimate Strength (GPa) Fracture Stain (%) Work Hardening (%)

RHEA 1.57 ± 0.01 1.75 ± 0.02 12.3 ± 0.5 11.5 ± 0.01
RHEA-B 1.61 ± 0.02 2.05 ± 0.04 19.3 ± 1.2 27.3 ± 0.03

4. Conclusions

An equimolar HfMoNbTaTiZr RHEA was developed in this study, and the addition
of a minor amount of boron (0.1 at.%, RHEA-B) further overcame the grain-boundary
brittleness. As indicated by the microstructural observations and chemical analyses, a
simple BCC-phase, solid-solution structure was formed in the matrices of both the alloys.
The addition of boron did not obviously increase the hardness of the matrix but induced
the intergranular precipitation of the HCP-phase (Hf, Zr)B2 borides which markedly raised
the hardness of the grain boundaries. Attributable to the lattice distortions caused by
the random distribution of different constituent elements, a diminished anisotropy in the
mechanical properties was noticed, and the deformation behavior was mediated by many
small slips on multiple {110} planes. Owing to the enhanced grain boundary cohesion with
the addition of boron and the intergranular precipitation of borides, the work hardenability
and ductility of the alloy were effectively improved, and the failure mode obviously
changed from a mainly intergranular facture to a major portion of the transgranular fracture.
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