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Abstract: The justification of the applicability of constitutive models to exploring technological
processes requires a detailed analysis of their performance when they are used to describe loadings
including the complex loading mode that is characteristic of these processes. This paper considers
the effect of equivalent stress overshooting after the strain-path changes known to occur in metals
and alloys. The macrophenomenological and multilevel models, which are based on crystal plasticity,
account for this effect by applying anisotropic yield criteria at the macro- and mesolevels, respectively.
We introduce a two-level constitutive statistical inelastic deformation model (identified for aluminum)
that incorporates the popular simple phenomenological anisotropic hardening law for describing the
behavior of FCC polycrystals. The results of the numerical simulation are in satisfactory agreement
with existing experimental data. Statistical analysis of the motion of a mesostress in the stress
space on the crystallite yield surface is performed. The obtained data are compared with the results
found using the isotropic hardening law. The results clarify the simulation details of statistical
crystal plasticity models under loading with strain-path changes in materials and demonstrate their
suitability for describing the processes under consideration.

Keywords: crystal plasticity; two-level statistical constitutive model; complex loading; strain-path
changes; yield surface

1. Introduction

The use of empirical methods for the research and development of the technological
processes of the thermomechanical treatment of materials and alloys [1–3] is very costly
in terms of time and economic resources, especially due to the problems associated with
the determination of processing regimes for advanced materials (functional materials—
products) [4]. Therefore, one of the most important tasks faced by researchers is to develop
mathematical models for these processes. In constructing the models, constitutive relations
or constitutive models play a key role [5–7]; they should be able to account for changes in
the structures of different materials. It has been established that the effective (operational)
properties of materials significantly depend on their structures [8].

In recent years, much attention has been given to constructing multilevel constitutive
models (CMs) of materials within the crystal plasticity (CP) framework [4,9–18]. Such
CMs are based on the introduction of internal variables (IVs) that enables one to explicitly
describe the meso- and microstructures of the materials and the deformation mechanisms
and their “carriers” at various scale levels. The evolution of IVs is described in the frame-
work of these CMs using kinetic equations highlighting the changes in the structures of
materials and their effective physical and mechanical properties [6,19–21]. The advantages
of multilevel CMs are related to their great versatility. The physical mechanisms that
control the material behavior are similar, and therefore the structures of CMs are almost
identical for the major classes of materials [6]. Certainly, the application of CMs to exploring
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various materials requires the identification of a number of parameters included in the
model formulation; however, some of these are the well-known parameters contained in
reference books.

When designing advanced CP models, for example, those that describe grain boundary
sliding [22], it is important to make sure that the basic model is correct. For this purpose,
apart from the theoretical analysis of the relations used in the model [23], the model itself
should be carefully verified by assessing the results obtained by the basic CMs (with
the same parameters) for various types of loadings, and not just for monotonic loading
generally applied for parameter identification. This is why special attention should be paid
to complex (at the macrolevel) loadings with a strain-path change (SPC) [24–28], which
are inherent in real metal-forming processes. For example, during deep drawing, at a
certain stage, there is a change in the strain mode from pure shear to biaxial tension [29].
An abrupt change in the strain path occurs in the equal-channel angular pressing (ECAP)
process when a sample is rotated between successive passes [30]. Thus, the multilevel CMs
should grant researchers the ability to describe the effects detected in complex loading
experiments. It should be noted that the effects triggered by complex loading are most
commonly investigated in experiments that involve SPCs and are performed on tubular
specimens where each of the two sections of strain is realized at monotonic (proportional)
loading with unloading between the loading stages or in a continuous manner. It is these
loadings that will be considered in our study.

As is known, in most cases that occur during active complex loading immediately after
the SPC, the equivalent stress σe decreases (the stress “dive” effect) on the stress–strain
curve illustrating the dependence of σe on the equivalent strain εe, and then the equiva-
lent stress tends (usually smoothly) to return to the values corresponding to monotonic
loading [24,25,31–35]. However, in other cases, after the stress “dive” effect, it sharply
increases, exceeding the value preceding the SPC [17,31]. Sometimes, in particular when
the SPC takes place, the σe–εe curve, after a certain strain, matches a similar curve that
corresponds to monotonic loading at the second strain path. This can be interpreted as a
manifestation of the material memory time delay effect [5,36,37] (or delaying of scalar and
vector material properties [38]). For the sake of brevity, the achievement of reduced and
increased equivalent stresses after the SPC is called the stress–strain curve monotonicity
change effect. The effect of SPCs on the response of aluminum and its alloys has been
considered in numerous works, e.g., in [39–45].

It is interesting that for some materials, after the SPC, the values of the σe–εe curve
exceed the values of σe of a similar curve constructed for monotonic loading in the strain
mode of the second section. This behavior is called the “cross-hardening effect” [46–48].
There are many experimental confirmations of the cross-hardening effect for various materi-
als and loading modes: commercially pure copper [49,50], aluminum and its alloys [51–54],
and steels [51,53,55,56]. It is worth noting that these full-scale experiments were carried out
not under active loading but with unloading between stages. The point is that continuous
loadings of the types under consideration, in particular rolling and tension sequences,
cannot be implemented experimentally.

In some experimental studies [48,51,53], the cross-hardening effect was investigated by
analyzing the interactions between the dislocations. In the first stage, a certain dislocation
substructure is formed under loading. When the strain path changes, the dislocations begin
to move along new slip systems (SSs), which can cross the structural formations created in
the first stage. To overcome these formations, greater stresses are needed in comparison
with those triggered by monotonic loading. It was shown in [54] that for metals with a
low stacking fault energy (SFE), the effect of a change in the equivalent stress due to the
SPC was less pronounced than for metals with a high stacking fault energy. This can be
attributed to the fact that in low-SFE materials, the interactions between dislocations of
active and inactive SSs result in the formation of strong barriers of the Lomer–Cottrell type,
which equally strengthens both active and inactive SSs.
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In macrophenomenological models, the cross-hardening effect is taken into account
by specifying the evolution of the yield surface (YS). Basically, two groups of models are
used. In the first group, transient processes are modeled by the shifting, expanding, or
shrinking of the yield surface with its shape remaining unchanged. One of the first models
developed in the framework of this approach was proposed in [57]. In [58], the authors
presented a plasticity model that involved tensors to highlight the strain history. Later, this
model was modified to describe softening [54], and was given the name “the MHH model”.
The second group includes models that contain relations capable of taking into account the
shape changes of the yield surface [59]. In [60], as an alternative to kinematic hardening,
the model for describing a complex shape change of the yield surface (the HAH model)
was developed and then extended to describe the orthogonal hardening and softening
effects [56,61–63]. A common feature of the proposed macrophenomenological models
is the need for a complex formulation of the evolution equations for the yield surface to
better approximate the experimental data for the individual loading cases. So, we can
conclude that these models are not universal because they cannot be applied to describe
other materials and other conditions. This is also true for the macrophenomenological
models that are based on the theory of elastoplastic processes [37,38] and the endochronic
theory of plasticity [64,65].

There are many studies [47,52,66–70] where the cross-hardening effect has been de-
scribed in terms of multilevel CP CMs that involve the laws of anisotropic hardening for
various SSs. The authors of these works have usually assumed that the latent hardening ex-
ceeds the active one, and therefore when the deformation of a representative macrovolume
takes place, an effective anisotropic YS that differs significantly from the von Mises sphere
occurs. This effect manifests itself, for example, as an increase in the equivalent flow stress
after the sample’s rotations are modeled using the ECAP technique [71,72].

In all the works cited above, the cross-hardening effect was investigated in the loading–
unloading experiments. As noted above, this is due to the impossibility of experimentally
realizing the stages of loading with SPCs that occur immediately one after another. How-
ever, in real technological processes, continuous loading with SPCs would most likely take
place, and therefore it is essential to simulate loading with SPCs without unloading [17].
It is also reasonable to analyze the difference between the results of the simulation ex-
periments with and without unloading. In particular, it would be worth considering the
assumption that the effect of unloading on the stress–strain state should be taken into
account only in the strain section that follows the strain-path change, which corresponds to
the material memory trace [32,73]. The data given below confirm this assumption.

In this paper, a simple two-level statistical CM is presented for the description of
the inelastic deformation of FCC polycrystals, where an intragranular dislocation slip
is considered as the main mechanism of crystallite deformation at the mesolevel and
the rotations of crystallite lattices are taken into account [18]. From a computational
point of view, statistical models are much more efficient than self-consistent and direct
models [8], which is why they are widely used to study the real technological processes of
thermomechanical treatment.

It is worth noting that the authors of studies on the cross-hardening effect with the
help of statistical [52,66,67] and self-consistent [47,68,70] constitutive models use special
hardening laws to provide high latent hardening. In [26], the authors considered a self-
consistent model with constant hardening matrix coefficients and noted that to correctly
describe the cross-loading contraction and latent extension, it was necessary to write kinetic
relations for the constant hardening coefficients. We demonstrate that the description of the
cross-hardening effect is also possible with the hardening law widely used in CP [74]. The
relations of the statistical constitutive model and the results of the identification of CMs for
the polycrystalline aluminum samples are given in Section 2.

Section 3 presents the analysis of the results on kinematic loadings with SPCs (con-
tinuous and with unloading). It also contains the results of a statistical analysis of the
motion of a mesostress in the stress space on the crystallite yield surface and a comparison
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of the obtained data with the data calculated using the isotropic hardening law for slip
systems. According to the authors of this study, such analysis is important from a method-
ological point of view because it clarifies the capabilities of two-level CMs for describing
complex loading.

2. Two-Level Statistical Constitutive Model for Describing Inelastic Deformation of
FCC Polycrystals

We used a two-level statistical constitutive model for describing the inelastic deforma-
tion of FCC polycrystals. In models of this type, a representative volume of a polycrystal
consisting of mesolevel elements (homogeneously deformed crystallites) is considered a
macrolevel element [18,75–77]. Polycrystal stresses are obtained at the macrolevel from the
averaging of the stress values of crystallites (hereinafter, the crystallite index is omitted):

K = 〈κ〉, (1)

where K is the weighted Kirchhoff stress tensor at the macrolevel, κ =
o
ρ/ρ̂σ is the weighted

Kirchhoff stress tensor at the mesolevel, σ is the Cauchy stress tensor at the mesolevel,
o
ρ, ρ̂

are the crystallite material densities in the initial (unloaded) and current configurations,
and 〈·〉 denotes the averaging procedure.

The system of equations used to describe the behavior of an individual crystallite is
written as [18]:

κcor ≡ dκ
dt + κ ·ω−ω · κ = ппп : (l−ω−

K
∑

k=1

.
γ
(k)b(k)n(k)),

.
γ
(k)

=
.
γ0

(
τ(k)

τ
(k)
c

)m
H(τ(k) − τ(k)c ), k = 1, . . . , K,

τ(k) = b(k)n(k) : κ, k = 1, . . . , K,
.
τ
(k)
c = F(γ(j),

.
γ
(j)
), j, k = 1, . . . , K,

ω =ω(l,
.
γ
(k)

),
.
o · oT =ω,

l = ∇̂vT = ∇̂VT = L,

(2)

where the upper index cor denotes the corotational derivative independent of the choice
of a reference frame; ппп is the elastic property tensor, whose components are constant in
the moving coordinate system, which rotates with a spinω and specifies the (quasi) rigid
motion (the corotational derivative) [78]; l = ∇̂vT is the velocity gradient; b(k) and n(k) are
the unit vectors of the slip direction and the slip plane normal (in the current configuration)
of edge dislocations; K is the doubled number of the crystallographic slip systems;

.
γ
(k) is

the shear rate for the slip system k;
.
γ
(k)
0 is the shear rate for the slip system k in the case

when the shear stress reaches its critical value; τ(k) and τ(k)c are the shear and critical shear
stresses for the slip system k; m is the strain rate sensitivity exponent of the material (in a
dislocation slip mode); H(·) is the Heaviside function; F(·) is the function for calculating
the rate of the critical shear stresses along the slip systems (hardening law); and o is the
tensor of the actual orientation of the moving coordinate system with respect to the fixed
laboratory coordinate system (LCS). The last relation in (2) is Taylor’s iso-strain hypothesis.
Note that instead of using the corotational derivative in relation (2)1, in some papers [79,80],
the authors explicitly say that they use a linear constitutive relation written in the local
coordinate system of crystallites.

In this study, we used two hardening laws (2)4:
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• anisotropic hardening law [74,81]:

.
τ
(k)
c =

K
∑

l=1
h(kl)

∣∣∣ .
γ
(l)
∣∣∣, k = 1, . . . , K,

h(kl) =
[
qlat + (1− qlat)δ

kl
]

h(l),

h(l) = h0

∣∣∣1− τ
(l)
c /τsat

∣∣∣a,

(3)

• isotropic hardening law:
.
τ
(k)
c = AB

.
Γ

B−1
, k = 1, . . . , K (4)

where h(kl) is the matrix component characterizing the effect of the slip system l on the
hardening along the slip system k, qlat is the latent hardening parameter, δkl is the Kronecker
delta, τsat is the saturation stress, h0 and a are the hardening law parameters (identified
by fitting a model to the experimental data), A and B are the isotropic hardening law

parameters, and
.
Γ =

K
∑

k=1

.
γ
(k) is the integral estimate of the plastic shear rate. The description

of the probable annihilation of the dislocations and reverse loadings at which the SS active
during the first stage can be activated in the opposite direction was beyond the scope
of this study. The considered anisotropic hardening law (3) has a simple mathematical
formulation. Note that there are other methods for correctly describing the effects under
complex loading with a strain-path change, for example, if we do not use the assumption
of a doubled number of slip systems, which is computationally efficient, the model is
complemented by equations to describe kinematic hardening [28]. In addition, it should be
noted that for materials prone to twinning, the description of complex loadings with SPC
will be even more difficult, since twinning significantly affects hardening and de-twinning
and double-twinning processes are realized during the strain-path change [27], which must
be taken into account in the model.

In some papers, the cross-hardening effect has been described using complex harden-
ing laws. Under these laws, critical shear stresses on the slip systems are determined by
the sum of the terms responsible for different hardening mechanisms. In [52], in contrast
to (3), the influence of each active SS on the hardening along other SSs was not explicitly
considered. For all SSs, it was assumed that the hardening depended on the total shear rate
and the hardening coefficient was much larger for inactive slip systems, which allowed
the implementation of “the extra latent hardening of non-active slip systems”. In [47],
the authors proposed complex kinetic relations for individual terms determined by shear
vectors to assess the interactions between the different slip systems. We have chosen the
hardening law (3) for our study because it is easy to implement and due to its transparent
physical meaning. This law is often used to simulate the deformation of aluminum samples
under monotonic loading [82–86].

The results of the calculations obtained in our investigation by applying (3) indicate
the possibility of a correct description of the cross-hardening effect when setting the
value of the latent hardening parameter qlat = 2. Usually, in crystal plasticity, qlat = 1.4
is taken to demonstrate that, at active slips along some SSs, the obstacles for inactive
SSs are created more intensively than those for this SS [18]. Note that the widely used
value of the parameter qlat = 1.4 was obtained empirically for monotonic loadings. It is
evident that for other values of qlat, the remaining model parameters can be identified to
match the experimental data. Generally speaking, researchers often report that the latent
hardening coefficient (namely, at the initial stage of inelastic deformation), including under
complex loading, can be observed in a wide range. The authors in [47] noted that “In any
case, while one can be successful in modeling monotonic straining and texture evolution
with any reasonable latent hardening scheme . . . , whether or not the evolution of latent
hardening during straining is correctly captured is not apparent until there is a strain
path change”. In [11], the authors investigated, together with the typical value of latent
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hardening parameter qlat = 1.4, the case qlat = 3, which enabled them to conclude that “the
overall behavior of the models is quite similar”. Note that generally, it is quite reasonable
to use more detailed hardening laws for describing the cross-hardening-type effects, for
example, those that explicitly describe the evolution of the dislocation densities along slip
systems and take into account the stacking fault energy. However, in this case, the CM was
more complicated—it became a three-level constitutive model [87].

Most crystal plasticity studies describe the rotation of a crystallite lattice in the frame-
work of the Taylor’s spin model [76]:

ω =
1
2
(l− lT)− 1

2

K

∑
k=1

.
γ
(k)

(b(k)n(k) − n(k)b(k)). (5)

The lattice rotation model [78,88] in which the moving coordinate system is associated
with the symmetry elements of the crystal lattice, turned out to be more physically substan-
tiated. It has previously been shown [89] that such models produce almost similar results,
only slightly differing from those obtained with the model of the rotation determined by the
orthogonal tensor in the polar decomposition of the elastic component of the deformation
gradient [90]. The Taylor’s spin model was used as it is easier to implement.

We note that the rate form of the CM used in this paper in the current configuration
provided results that were close to those obtained using the widely applied formulation in
the unloaded configuration [11,81,90–93]. A comprehensive discussion of this phenomenon
was given in [23,94], where the connection between these models was established by
employing the formulation based on an explicit selection of a moving coordinate system in
the multiplicative decomposition of the deformation gradient [78,88].

The model parameters were determined based on the experimental data for the tensile
curve plotted for the aluminum samples [95].

The representative macrovolume of a material contains 343 crystallites, assuming that
their initial orientation distribution is uniform. Table 1 contains the material parameters
and hardening law parameters determined by the identification procedure.

Table 1. Parameters of CM for the aluminum.

Parameter Definition Value

п1111
independent components of the elastic property tensor [77]

106.75 GPa
п1122 60.41 GPa
п1212 28.34 GPa

.
γ0 parameters for viscoplastic relation (2)2 [77] 0.001 s−1

m 50

τc0 initial critical shear stress for the anisotropic hardening law 6 MPa
qlat latent hardening parameter 2
τsat saturation stress 34 MPa

h0 anisotropic hardening law parameters 115 MPa
a 2.25

τc0 initial critical shear stress for the isotropic hardening law 3 MPa

A isotropic hardening law parameters 29 MPa
B 0.4

We considered kinematic loading with the velocity gradient L(t) =
.
εp1p1 −

.
ε
2 p2p2 −.

ε
2 p3p3, where pi, i = 1, 3 is the basic LCS and

.
ε = 0.0017 s−1 is the strain rate. In [74], this

loading was proposed for the statistical CM as an approximation of uniaxial tension—the
calculated equivalent stress for the polycrystals turned out to be close to the uniaxial
stresses in a full-scale experiment. For brevity, we called this kinematic loading “quasi-
uniaxial tension”. Note that according to the numerical experiments, the activities of
the slip systems under quasi-uniaxial tension and uniaxial tension were very close. This
allowed for the use of quasi-uniaxial tension as an approximation of uniaxial tension. It is
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worth noting that, due to the initial isotropy of the sample, the same results were expected
to be obtained under quasi-uniaxial tension along each of the three axes. Figure 1 shows

the dependences of the equivalent stress σe(t) =
√

3
2 S(t) : S(t) and S(t) = dev(K(t))

on the equivalent strain [96–98] εe(t) =
t∫

0

√
2
3 D′(t) : D′(t)dt, D′(t) = dev(D(t)) and

D(t) = 1
2
(
L(t) + LT(t)

)
, calculated under quasi-uniaxial tension for the two hardening

laws and under uniaxial tension along the Ox1 axis in an experiment [95].
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Figure 1 shows that the simulation results are in satisfactory agreement with the exper-
imental data [95] obtained under the considered deformations. Note that as the equivalent
strain increased, the isotropic hardening law hardly corresponded to the experimental
data since it did not take into account saturation during hardening. This law was used to
perform the test calculations at small strains. To describe the real processes of thermome-
chanical treatment taking place at large strains, the anisotropic hardening law of type (3) or
more complex ones should be used.

3. Results and Discussion

This section describes and analyzes some results of the modeling of the loading
processes with strain-path changes using a two-level CM. We considered kinematic loadings
that approximately describe the rolling and tension, simple shear, as well as the two-stage
sequences of these processes. To determine the SPC angle, we used the measure proposed
in the work [99]:

cosφD =
L1 : L2

‖L1‖‖L2‖
, (6)

where ‖A‖ =
√

A : AT is the tensor norm.
For the convenience of presenting the results, we describe the loading modes with the

strain-path changes considered in this paper:

(1) Tension–rolling

The comparison of the simulation results with the experimental data on loadings
with SPCs was performed by observing quasi-uniaxial tension along the Ox3 axis and
subsequent rolling along the Ox1 axis, which was modeled under tension along the Ox1
axis and under compression along the Ox2 axis. The approximation of the rolling process
was made through kinematic loading with a velocity gradient L(t) =

.
εp1p1 −

.
εp2p2. Note
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that the same approximation for the moderate deformations (prescribed via the deformation
gradient) was used in [100].

(2) Rolling–tension

Loadings were given as specified in mode 1 but in reverse order, i.e., at the first
stage—rolling and at the second stage—quasi-uniaxial tension along the Ox3 axis.

(3) Tension–shear

Quasi-uniaxial tension along the Ox3 axis and kinematic loading under simple shear
with a velocity gradient L(t) =

.
εp1p2 were considered.

(4) Shear–tension

Loadings were given as specified in mode 3 but in reverse order, i.e., at the first
stage—simple shear and at the second stage—quasi-uniaxial tension along the Ox3 axis.

For loading modes 1–4, the strain-path change angle (6) was φD = 90◦. Note that
in all loading modes, the texture evolution was not considered since in the studied strain
range it did form to an extent, which made it possible to reliably assess the difference in the
uniform distribution of the orientations.

Figure 2 presents the equivalent stress–equivalent strain curves plotted according to
modes 1 (at left) and 2 (at right) for the anisotropic hardening law (3) without unloading.
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Figure 2. Equivalent stress–equivalent strain curves plotted for modes 1 (a) and 2 (b) using an
anisotropic hardening law without unloading.

It can be seen that a local decrease in stress occurred in both cases. Under the loading
conditions according to mode 2 (rolling–tension) after a local decrease in stress, the equiv-
alent stress increased sharply and reached values higher than in the case of monotonic
tension (the cross-hardening effect was realized). Under mode 1 (tension–rolling), the
excess in the equivalent stress at the second stage (rolling) of the equivalent stress under
monotonic tension (Figure 2a) is explained by the large SPC angle (φD = 90◦) at significant
latent hardening (qlat = 2).

In some cases, the experiments on loading with strain-path changes were carried
out with unloading. Therefore, in order to compare the obtained numerical data and the
existing experimental results, it was necessary to analyze the considered complex loadings,
taking into account the unloading phase. Within the framework of the proposed model, the
unloading was specified as the process of deformation. It continued until the equivalent
macrostress became close (with a given error) to a value of zero under loading with a
velocity gradient L(t) = −αK(t), where α = 2× 10−4 (MPa·s)−1. Figure 3 shows the
equivalent stress–equivalent strain curves plotted for modes 1 and 2 using an anisotropic
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hardening law with unloading and the experimental data for uniaxial tension along the
Ox3 axis upon the end of the pre-rolling stage [95].

Materials 2022, 15, x FOR PEER REVIEW 9 of 19 
 

 

  

(a) (b) 

Figure 2. Equivalent stress–equivalent strain curves plotted for modes 1 (a) and 2 (b) using an ani-

sotropic hardening law without unloading. 

It can be seen that a local decrease in stress occurred in both cases. Under the loading 

conditions according to mode 2 (rolling–tension) after a local decrease in stress, the equiv-

alent stress increased sharply and reached values higher than in the case of monotonic 

tension (the cross-hardening effect was realized). Under mode 1 (tension–rolling), the ex-

cess in the equivalent stress at the second stage (rolling) of the equivalent stress under 

monotonic tension (Figure 2a) is explained by the large SPC angle ( 90
D

 =  ) at significant 

latent hardening ( = 2
lat

q ). 

In some cases, the experiments on loading with strain-path changes were carried out 

with unloading. Therefore, in order to compare the obtained numerical data and the ex-

isting experimental results, it was necessary to analyze the considered complex loadings, 

taking into account the unloading phase. Within the framework of the proposed model, 

the unloading was specified as the process of deformation. It continued until the equiva-

lent macrostress became close (with a given error) to a value of zero under loading with a 

velocity gradient = −( ) ( )t α tL Κ , where −=  42 10α  (MPa·s)−1. Figure 3 shows the equiva-

lent stress–equivalent strain curves plotted for modes 1 and 2 using an anisotropic hard-

ening law with unloading and the experimental data for uniaxial tension along the Ox3 

axis upon the end of the pre-rolling stage [95]. 

  

(a) (b) 

Figure 3. Equivalent stress–equivalent strain curves plotted for modes 1 (a) and 2 (b) using an
anisotropic hardening law with unloading and the experimental data for uniaxial tension along the
Ox3 axis upon the end of the pre-rolling stage [95].

It follows from Figure 3 that the results of modeling under loading with SPCs
are in satisfactory agreement with the experimental data [95] on the level of stresses
after the strain-path changes. Thus, the proposed statistical CM (1)–(2) is capable of
describing the cross-hardening effect in the context of simple hardening laws. Note
that the discrepancies between the obtained results and the results of the numerical
experiments without unloading (Figure 2) were observed only near the break point of
the strain path. It was shown that for the cases with and without unloading, there were
insignificant differences in the implementation of shears along the SS. Note that these
differences insignificantly affected the material response at the macrolevel. To describe
the experimentally observed softening (Figure 3b) in terms of any model, this mechanism
must be incorporated into the hardening law.

The two-level CP CM makes it possible to analyze how the IDS is realized in crystallites.
Figure 4 shows the dependences of the fraction of crystallites with a certain number

of slip systems active according to the Schmid criterion, determined using the model
describing the deformation processes under modes 1 and 2 on the equivalent strain.
The jump-like dependences occurred due to the frequent change in the active SSs (no
time-interval averaging).

The data given in Figure 4 demonstrate that under rolling (second load stage—mode 1,
first load stage—mode 2), a smaller number of active SSs were realized compared to those
that occurred under tension (first load stage—mode 1, second load stage—mode 2).

Now, it is advantageous to analyze the statistical estimates of the location of the
mesostress in the stress space on the crystallite yield surface. An assessment of the proximity
of the mesostress in the stress space to the vertex of the yield surface of a particular class
was determined by the difference between the shear stresses on the slip system and their
critical values: if the tolerance deviation did not exceed 5 MPa (as specified in this study)
for all systems, the intersection of which forms the vertex, then the mesostress in the stress
space was considered to be close to the vertex of this class. As is known, when using the
Schmid criterion for an FCC lattice, there are five classes of high-order vertices of the initial
YS corresponding to the different values of the equivalent stress [101,102]. Figure 5 gives
the dependences of the fraction of crystallites and the equivalent mesostresses in the stress
space, which are close to the vertices of specific classes, on the equivalent strain for the
given loading modes using an anisotropic hardening law without unloading. The order of
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the yield surface vertex is given in parentheses, indicating the number of the likely active
slip systems.
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anisotropic hardening law without unloading.

It should be noted that the decrease in the number of grains with eight likely active
slip systems after the strain had attained a certain value is logical—the YS was transformed
in such a way that the eighth-order vertices ceased to exist due to anisotropic hardening.
This was confirmed by the increase in the fraction of crystallites with seven likely active
slip systems (Figure 6) already under first-stage monotonic loading.

Analysis of the results given in Figure 5 indicates that, under mode 1 (tensile–rolling)
at the second loading stage, the crystallite distribution over the equivalent stress classes
occurred in such a way that the fraction of crystallites with high equivalent stress decreased,
and under mode 2 (rolling–tension) increased. The data illustrating such behavior of the
mesostress in the stress space on the YS explain the increase/decrease in the macrolevel
equivalent stresses observed in Figure 2.
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In order to visualize the transitions of the mesostress in the stress space from one
class of yield surface vertices to another, the corresponding graphs were plotted. To
this end, the distribution of the mesostress in the stress space over the yield surface
vertices at an 8% equivalent strain was taken as the initial state, and the distribution
of the mesostress in the stress space at a 10% equivalent strain was taken as the final
state. The mesostress in the stress space was considered to have passed from one class of
vertices to another if it belonged to different classes at the indicated instants of strain;
otherwise, the mesostress in the stress space was assumed to remain in its class. Figure 7
shows the graphs of the mesostresses in the stress space transitions from the yield surface
vertices at the initial state corresponding to an 8% equivalent strain and at the final state
corresponding to a 10% equivalent strain for the considered loading modes using an
anisotropic hardening law without unloading. The number of mesostresses in the stress
space that have passed via the transitions is indicated on the edges, and the number of
mesostresses in the stress space remaining in their classes in the considered range of
strain is given in brackets at the graph vertices; the last digit characterizes the number of
likely active slip systems in this class.

In the above graph, we can see that under mode 1 (tension–rolling), the number of
mesostresses in the stress space transferred to classes with high equivalent stress was
less than those under mode 2 (rolling–tension). This confirms that during tension, the
mesostresses in the stress space tended to approach the vertices with higher equivalent
stress, whereas during rolling the lower equivalent stress on the yield surface, in turn, led
to an increase/decrease in the equivalent stresses (Figure 2). The presented results are in
good agreement with the data shown in Figure 5.

For completeness analysis, we considered loading modes 1 and 2 using an isotropic
hardening law (4).

Figure 8 shows the equivalent stress–equivalent strain curves plotted for modes 1 and
2 using an isotropic hardening law without unloading.
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Figure 7. Graph representing transitions of the mesostress in the stress space from the yield surface
vertices at the initial and final states, corresponding to 8% and 10% equivalent strains, respectively,
for modes 1 (a) and 2 (b) using an anisotropic hardening law without unloading (the number of
mesostresses in the stress space that have passed via the transitions is shown on the edges, and the
number of mesostresses in the stress space that remain in their classes in the considered strain range
is shown in brackets at the graph vertices; the last digit characterizes the number of likely active slip
systems in this class).
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It can be seen in Figure 8a that in contrast to an anisotropic hardening law when using
an isotropic law, the curve for loading mode 1 (tension–rolling) at the second strain path
almost immediately after the SPC coincided with the monotonic loading curve, which
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indicates the fulfillment of the principle of fading memory. The non-fulfillment of this
principle for mode 2 (Figure 8b) is due to the fact that during the first stage of loading
(rolling), the anisotropy determined by the texture was more pronounced. When the
rotation mechanism was turned off and a larger range of deformation was considered, the
curve for the second stage of mode 2 also practically coincided with the curve for monotonic
loading. Note that the differences in the way the stress–strain curves approached (after
the SPC) the corresponding monotonic curves (from above for mode 1, from below for
mode 2), as shown in Figure 8, are due to the previous loading–loading at the first stage
being carried out with higher equivalent stress, and then the curves started to approach
from above, and vice versa.

In the case of an anisotropic hardening law, the effect of increasing the equivalent
stresses (Figure 2) was enhanced due to the presence of latent hardening along the slip
systems that were inactive at the first stage.

For the case of isotropic hardening under the same impacts, a numerical experiment
with unloading was performed, and the behavior of the mesostress in the stress space on the
yield surface of the crystallites was analyzed. The obtained results (including data on the
activity of slip systems for all modes) are in qualitative agreement with the corresponding
results for the anisotropic hardening law and they are not presented for the sake of brevity.

For loading modes 3 and 4, only the stress–strain curves for the loadings with the SPC
using anisotropic and isotropic hardening laws without unloading are given below since
the results of the statistical analysis of the behavior of the mesostress in the stress space
on the yield surface of the crystallites qualitatively correspond to the results for loading
modes 1 and 2.

Figure 9 shows the equivalent stress–equivalent strain curves plotted for loading
modes 3 and 4 using an anisotropic hardening law without unloading.
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Figure 9. Equivalent stress–equivalent strain curves plotted for loading modes 3 (a) and 4 (b) using
an anisotropic hardening law without unloading.

The difference between the monotonic curves for quasi-uniaxial tension and simple
shear is consistent with the experimental data for aluminum alloy AA6061 [17].

We note that in [17], the authors analyzed in detail the change in the yield surface using
the CP FEM for different loadings; however, not much attention was paid to studying the
behavior of the mesostress in the stress space on the yield surface for the crystallites that
make up the macroscale RV. In this paper, we considered a two-level statistical CM to carry
out a statistical analysis of the behavior of the mesostress in the stress space on the yield
surface of crystallites, which is important for understanding the capabilities of CP CM.

The considered effects manifested themselves in an analogous way in the case of
isotropic hardening (4).
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Figure 10 presents the equivalent stress–equivalent strain curves plotted for loading
modes 3 and 4 using an isotropic hardening law without unloading.
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an isotropic hardening law without unloading.

It was observed that the equivalent stress at the final stage under mode 4 (shear–
tension) was significantly higher than that observed under mode 3 (tension–shear). These
results are consistent with the experimental data on the evolution of the yield surface
obtained in [17] for an aluminum alloy AA606.

Based on the above analysis, we can conclude that the differences in the behavior of
the mesostress in the stress space on the yield surface of the crystallites for modes 1 and 2
(3, 4) were caused by the differences in the evolution of the internal defect structure under
different loadings. This, in turn, led to “transitions” between the stress–strain curves for
the given loadings. If we consider this issue in the context of the motion of the mesostress
in the stress space on the yield surface, then it can be noted that generally, the yield surface
of a crystallite has a complex shape and depending on the specified rigid loading, the
mesostress in the stress space tended to fall on the faces and edges of the yield surface, as
well as at its vertices with different equivalent stress.

4. Conclusions

In this study, we demonstrated the potential of a two-level statistical constitutive
model for describing the behavior of FCC polycrystals. The identification of the model
parameters for polycrystalline aluminum was carried out based on the experimental data
for monotonic tension and complex loading with strain-path changes. The behavior of the
mesostress in the stress space on the yield surface of the crystallites was comprehensively
analyzed. It was found that the effects of the increases/decreases in the stresses at a change
in the strain path were associated with the characteristic transitions of the mesostress in the
stress space between the yield surface vertices at the mesolevel. The obtained results are in
satisfactory agreement with the known data, meaning that the yield surface of polycrystals
is anisotropic and transforms in a complex way. At the same time, the development of a
universal scalar measure of accumulated plastic strain, which could be used to introduce the
generalized single curve hypothesis (at least for monotonic loading of materials with cubic
symmetry and initially uniform distribution of grain orientations) is an important factor in
solving the problems of technological plasticity. A possible solution is to apply the scalar
characteristics (for example, averaged accumulated shears) of deformation mechanisms at
lower scale levels, which implies the use of multilevel constitutive models [103].

Thus, it is shown that the basic two-level constitutive crystal plasticity models are able
to describe experimentally observed effects under moderate strains and analyze complex



Materials 2022, 15, 6586 15 of 18

loading processes, which allows one to use them as a basis for extended models. These
models can be complicated by considering large deformation gradients (taking into account
texture) as well as by describing other mechanisms (refinement, recrystallization, fracture,
etc.). Many research teams, including the authors of this paper, are involved in studying
these issues.

Author Contributions: Conceptualization, A.S. and P.T.; methodology, P.T. and A.S.; software, K.R.;
validation, K.R., A.S. and P.T.; formal analysis, A.S. and K.R.; investigation, A.S., K.R. and P.T.; data
curation, A.S. and K.R.; writing—original draft preparation, A.S.; writing—review and editing, A.S.,
K.R. and P.T.; visualization, K.R.; supervision, P.T.; funding acquisition, A.S. and K.R. All authors
have read and agreed to the published version of the manuscript.

Funding: The study was carried out with financial support from the Ministry of Education and
Science of the Russian Federation as part of the implementation of the national project “Science
and Universities” (the state task fulfillment in the laboratory of multilevel structural and functional
materials modeling, project no. FSNM-2021-0012).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Valiev, R.Z.; Korznikov, A.V.; Mulyukov, R.R. The structure and properties of metallic materials with a submicron-grained

structure. Phys. Met. Metallogr. 1992, 73, 373–384.
2. Kozlov, E.V.; Zhdanov, A.N.; Koneva, A.N. Barrier Retardation of Dislocations. Hall-Petch Problem. Phys. Mesomech. 2006, 9, 75–85.
3. Valiev, R.Z.; Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci.

2006, 51, 881–981. [CrossRef]
4. Trusov, P.V. Classical and Multi-Level Constitutive Models for Describing the Behavior of Metals and Alloys: Problems and

Prospects (as a Matter for Discussion). Mech. Solids 2021, 56, 55–64. [CrossRef]
5. Truesdell, C. A First Course in Rational Continuum Mechanics; Academic Press: London, UK, 1977; p. 304.
6. Trusov, P.; Ashikhmin, V.; Volegov, P.; Shveykin, A. Constitutive relations and their application to the description of microstructure

evolution. Phys. Mesomech. 2010, 13, 38–46. [CrossRef]
7. Zhilin, P.A. Rational Continuum Mechanics; Polytechnic University Press: Saint-Petersburg, Russia, 2012; p. 584. (In Russian)
8. Trusov, P.V.; Shveykin, A.I.; Kondratyev, N.S.; Yants, A.Y. Multilevel Models in Physical Mesomechanics of Metals and Alloys:

Results and Prospects. Phys. Mesomech. 2021, 24, 391–417. [CrossRef]
9. McDowell, D.L. A perspective on trends in multiscale plasticity. Int. J. Plast. 2010, 26, 1280–1309. [CrossRef]
10. Roters, F.; Eisenlohr, P.; Hantcherli, L.; Tjahjanto, D.; Bieler, T.; Raabe, D. Overview of constitutive laws, kinematics, homogeniza-

tion and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 2009, 58,
1152–1211. [CrossRef]

11. Khadyko, M.; Dumoulin, S.; Cailletaud, G.; Hopperstad, O. Latent hardening and plastic anisotropy evolution in AA6060
aluminium alloy. Int. J. Plast. 2016, 76, 51–74. [CrossRef]

12. Diehl, M. Review and outlook: Mechanical, thermodynamic, and kinetic continuum modeling of metallic materials at the grain
scale. MRS Commun. 2017, 7, 735–746. [CrossRef]

13. Beyerlein, I.J.; Knezevic, M. Review of microstructure and micromechanism-based constitutive modeling of polycrystals with a
low-symmetry crystal structure. J. Mater. Res. 2018, 33, 3711–3738. [CrossRef]

14. Knezevic, M.; Beyerlein, I.J. Multiscale Modeling of Microstructure-Property Relationships of Polycrystalline Metals during
Thermo-Mechanical Deformation. Adv. Eng. Mater. 2018, 20, 1700956. [CrossRef]

15. Han, F.; Diehl, M.; Roters, F.; Raabe, D. Using spectral-based representative volume element crystal plasticity simulations to
predict yield surface evolution during large scale forming simulations. J. Mater. Process. Technol. 2019, 277, 116449. [CrossRef]

16. Li, Y.L.; Kohar, C.P.; Mishra, R.K.; Inal, K. A new crystal plasticity constitutive model for simulating precipitation-hardenable
aluminum alloys. Int. J. Plast. 2020, 132, 102759. [CrossRef]

17. Iftikhar, C.M.A.; Li, Y.L.; Kohar, C.P.; Inal, K.; Khan, A.S. Evolution of subsequent yield surfaces with plastic deformation along
proportional and non-proportional loading paths on annealed AA6061 alloy: Experiments and crystal plasticity finite element
modeling. Int. J. Plast. 2021, 143, 102956. [CrossRef]

18. Trusov, P.V.; Shveikin, A.I. Multilevel Models of Mono—And Polycrystalline Materials: Theory, Algorithms and Applied Examples; SB
RAS Publ.: Novosibirsk, Russia, 2019; p. 605. (In Russian) [CrossRef]

http://doi.org/10.1016/j.pmatsci.2006.02.003
http://doi.org/10.3103/S002565442101012X
http://doi.org/10.1016/j.physme.2010.03.005
http://doi.org/10.1134/S1029959921040056
http://doi.org/10.1016/j.ijplas.2010.02.008
http://doi.org/10.1016/j.actamat.2009.10.058
http://doi.org/10.1016/j.ijplas.2015.07.010
http://doi.org/10.1557/mrc.2017.98
http://doi.org/10.1557/jmr.2018.333
http://doi.org/10.1002/adem.201700956
http://doi.org/10.1016/j.jmatprotec.2019.116449
http://doi.org/10.1016/j.ijplas.2020.102759
http://doi.org/10.1016/j.ijplas.2021.102956
http://doi.org/10.15372/MULTILEVEL2019TPV


Materials 2022, 15, 6586 16 of 18

19. McDowell, D.L. Internal state variable theory. In Handbook of Materials Modeling; Yip, S., Ed.; Springer: Cham, The Netherlands,
2005; pp. 1151–1169.

20. Ashikhmin, V.N.; Volegov, P.S.; Trusov, P.V. Constitutive Relations with Internal Variables: General Structure and Application to
Texture Formation in Polycrystals. PNRPU Mech. Bull. 2006, 14, 11–26. (In Russian)

21. Horstemeyer, M.F.; Bammann, D.J. Historical review of internal state variable theory for inelasticity. Int. J. Plast. 2010, 26,
1310–1334. [CrossRef]

22. Shveykin, A.; Trusov, P.; Sharifullina, E. Statistical Crystal Plasticity Model Advanced for Grain Boundary Sliding Description.
Crystals 2020, 10, 822. [CrossRef]

23. Trusov, P.; Shveykin, A.; Kondratev, N. Some Issues on Crystal Plasticity Models Formulation: Motion Decomposition and
Constitutive Law Variants. Crystals 2021, 11, 1392. [CrossRef]

24. Vasin, R.A. Properties of Plasticity Functionals for Metals, Determined in Experiments on Two-Link Strain Trajectories. Elast.
Inelast. 1987, 115–127. (In Russian)

25. Zubchaninov, V.G. Stability and Plasticity; Fizmalit: Moscow, Russia, 2008; Volume 2, p. 336. (In Russian)
26. Kim, H.; Barlat, F.; Lee, Y.; Bin Zaman, S.; Lee, C.S.; Jeong, Y. A crystal plasticity model for describing the anisotropic hardening

behavior of steel sheets during strain-path changes. Int. J. Plast. 2018, 111, 85–106. [CrossRef]
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