
Citation: Krot, K.; Iskierka, G.;

Poskart, B.; Gola, A. Predictive

Monitoring System for Autonomous

Mobile Robots Battery Management

Using the Industrial Internet of

Things Technology. Materials 2022, 15,

6561. https://doi.org/10.3390/

ma15196561

Academic Editors: Andre Batako,

James Ren and Anna Burduk

Received: 21 August 2022

Accepted: 18 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Predictive Monitoring System for Autonomous Mobile Robots
Battery Management Using the Industrial Internet of
Things Technology
Kamil Krot 1, Grzegorz Iskierka 1,* , Bartosz Poskart 1 and Arkadiusz Gola 2

1 Faculty of Mechanical Engineering, Wrocław University of Science and Technology, ul. Łukasiewicza 5,
50-371 Wrocław, Poland

2 Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36,
20-618 Lublin, Poland

* Correspondence: grzegorz.iskierka@pwr.edu.pl

Abstract: The core of the research focuses on analyzing the discharge characteristic of a lithium NMC
battery in an autonomous mobile robot, which can be used as a model to predict its future states
depending on the amount of missions queued. In the presented practical example, an autonomous
mobile robot is used for in-house transportation, where its missions are queued or delegated to
other robots in the system depending on the robots’ predicted state of charge. The system with the
implemented models has been tested in three scenarios, simulating real-life use cases, and has been
examined in the context of the number of missions executed in total. The main finding of the research
is that the battery discharge characteristic stays consistent regardless of the mission type or length,
making it usable as a model for the predictive monitoring system, which allows for detection of
obstruction of the default shortest paths for the programmed missions. The model is used to aid
the maintenance department with information on any anomalies detected in the robot’s path or the
behavior of the battery, making the transportation process safer and more efficient by alerting the
employees to take action or delegate the excessive tasks to other robots.

Keywords: predictive monitoring; autonomous mobile robot; AMR; IIoT; Node-RED; automation
stack

1. Introduction

Predictive maintenance is an often adopted approach for mitigating downtime of
automated production systems by monitoring the condition of parts of the system to
perform maintenance when it is most cost-effective [1]. Predictive monitoring on the
other hand focuses on optimizing the production in real time, based on the monitored
parameters in industrial applications [2,3]. In the context of battery management, predictive
monitoring is widely used in electric vehicles, where the battery state of charge data can
be used to plan the optimal route of the vehicle [4] but also to optimize the health of
the battery [5] and its charging process [6,7]. Predictive monitoring does not have to be
limited to industrial applications. It can be similarly applied in medical [8] and business [9]
fields to control the system based on the measured parameters. As Internet of Things
solutions rise, more processes and workstations are being interconnected through wireless
communication, allowing for the creation of flexible manufacturing systems that can adapt
to the changing production demands and conditions in the plant [10]. While the flexibility
and the adaptivity of such manufacturing systems allow for the process to be continuous
even after some unexpected disturbances in the system, it is crucial to monitor the entire
system and optimize the process based on predictions of its future state based on the current
and historic data [11].

The problem of battery discharge used in different types of vehicles has been widely
discussed in the recent literature. Amin et al. [12] evaluated the discharge process on
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the LeFePO4 battery pack under different discharge current, while Xie et al. [13] pro-
posed the model of predictive energy management for plug-in hybrid electric vehicles,
considering optimal battery depth of discharge. Intelligent data-driven prognostic method-
ologies for estimating the remaining useful life until the end-of-discharge in real-time for
lithium-polymer batteries was presented by Eleftheroglou et al. [14]. A data-driven power
management strategy for plug-in hybrid electric vehicles including optimal battery depth
of discharging was proposed by Xie, Qi, and Lang [15]. The energy management tool of
a power system operating in a smart grid that contains electric vehicles was provided by
Viegas and da Costa [16]. This year, Guo and Shen proposed a data-model fusion method
for online state of power estimation of lithium-ion batteries at high discharge rate [17].
Although the proposed methods and tools are interesting, they are usually focused for
non-industrial applications. In fact, there are no available studies that present solutions that
are strictly dedicated to autonomous mobile robot battery management systems. Therefore,
the purpose of this research was to analyze the behavior of the battery during discharge in
order to create a model for predicting its future states with a selected mission queue. The ex-
ample provided in the scope of this work is based on an autonomous mobile robot MiR100,
which similarly to most battery-powered devices is equipped with a battery management
system [18,19] that measures voltage, temperature and current, from which parameters
like state of charge, state of health, and stored charge are calculated. The data provided by
the BMS can be used for predictive monitoring applications that are not only beneficial for
single robots but can also be used to manage fleets consisting of multiple robots. Manufac-
turers of autonomous mobile robots often provide such multi-robot management systems
at an additional cost and with little or no possibility of connecting them to other devices in
the network. For a single MiR100 robot, even if an excessive number of missions is queued
up, an alarm is never raised, nor does it automatically dock into a charging station, unless
it is specifically programmed in the mission. In the case of inappropriately programmed
missions, no additional supervision of the robot is offered, which may lead to waste of
energy, downtime, unexpected stoppage, certain missions not being executed, among other
problems, making the production process suboptimal.

As an alternative to the systems provided by the manufacturers, the authors pro-
pose an open-source, flexible approach to the problem using Node-RED, an open-source
programming environment for Industrial Internet of Things applications that enables the
implementation of the 4th generation SCADA system [20,21], supporting a wide variety of
common industrial protocols [22,23], making it adaptive to virtually all modern industrial
devices. Based on the parameters provided by the mobile robot, similar functionalities
are offered, like managing the mission queues of the robots in the fleet, monitoring their
state with the additional possibility of detecting deviations from their typical workflow,
should an anomaly in the battery discharge function occur (e.g., when the default path
is obstructed) [24]. Ultimately, the proposed system could be configured to monitor and
control multiple devices in the Industrial Internet of Things, including other workstations
or machines to manage the entire production process. It is important to notice that such a
system does not need to be confined to the industrial environment only and could be used
to plan routes on a much bigger scale between different facilities [25], especially consider-
ing the rise of electric vehicles and the accelerating research of autonomous solutions for
transportation vehicles.

The rest of this paper is organized as follows: Section 2 describes the process of
creating a lithium NMC battery discharge model for the examined mobile robot; Section 3
presents the architecture of a predictive monitoring system utilising the created model;
Section 4 shows the functionality and the algorithms implemented in the proposed system,
which provide information to the maintenance personnel as well as make autonomous
decisions in managing the queued missions in a multirobot system; Section 5 presents the
results of exemplary real-life scenarios, where the system provides an advantage from the
in-house logistics perspective; Section 6 presents the conclusion of the conducted research
and provides an outlook for further development of the system.
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2. Battery Discharge Model

A model-based approach is widely used in battery management systems of electric
vehicles or mobile robots, which utilize lithium-based batteries. In most cases, the models
used in the BMS rely on the assumption that the charge and discharge functions of lithium-
based batteries are approximately linear in the range of 20% to 90% of capacity. As a more
accurate alternative, Yu et al. [26] provide an extensive analysis of different non-linear
OCV-SoC models for lithium-based batteries, which could be implemented directly in the
BMS of electric vehicles. In the scope of this work, a battery discharge curve is modelled
for a single mission with a fixed maximum payload (100 kg) and a default length of 140 m.
The autonomous mobile robot used in the experiment (MiR100) is equipped with a single
Lithium NMC battery.

To create a reliable model of the battery discharge curve, a mission needs to be planned
through the mapped area. Figure 1 presents a layout of the machine park scanned by the
MiR100 robot with marked positions (B1–B4) and a charging station (Charger). The points
are used to program the robot’s missions, which will provide the data necessary to model
the battery discharge characteristics.
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Figure 1. Part of the production hall layout with marked workstations to be operated by the MiR100
robot and the area where the robot can create transportation routes.

A mission has been planned through the points B1–B4 and has been executed with
and without the obstruction of path between points B2 and B3. A simplified version of the
experimental mission is presented in Figure 2.
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Figure 2. Mission algorithm used in the calibration experiment.

The autonomous robot can plan a trajectory based on the previously mapped layout
visible in Figure 1 and plan a detour, should the path be obstructed as presented in
Figure 3a,b. The blue dotted line shows the planned path of the robot and the red line
between two red points is the obstacle detected by the robot’s LIDAR scanners. Upon
reaching the obstacle, the robot tries to evade it, or if the maneuver is not possible, the robot
calculates a new possible route based on the previously mapped area. The newly calculated
path to point B3 is presented in Figure 3b. Figure 3c,d show the path between points B2
and B3 without and with the obstacle respectively. Such detours may cause the mission to
be more energy-consuming, leading to fewer missions being executed during the entire
battery discharge cycle, which in turn may cause the production process to be suboptimal.
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Figure 3. Dynamic detour planning upon detecting an obstacle: (a) map before detour, (b) planned
detour upon detection of an obstacle, (c) unobstructed path, (d) obstructed path.

To prevent the planned missions from not being executed, it is important to predict
whether the robot will be able to execute the missions at the bottom of the stack. To model
the discharge curve, a series of missions has been executed from full battery capacity down
to around 10%. A single full discharge cycle takes around 10 hours with maximum payload
of 100 kg, and a single lithium NMC battery (MiR100 can be equipped with up to two
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batteries connected in parallel). Data were collected in the range of 10–100% to see how
much the values change over the entire spectrum of the battery capacity. Battery discharge
data has been plotted in Figure 4 for missions of different lengths.
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) dataset plotted for the default mission is presented in Figure 2,
and will serve as a reference for the series of measurements. Two datasets plotted for the
obstacle handling (N) present the changed energy consumption for each mission with the
unplanned detour due to the obstruction of the default path. It is important to notice that
the base mission was the same in these cases, and the distance travelled increased due to
an unplanned detour. While the obstacle handling dataset executes longer missions, which
means the energy consumption per mission is higher, to observe the characteristic of lower
energy consumption per mission, additional data was gathered in a full discharge cycle
for a comparative mission (•), which was shorter, less complex, and did not include an
obstacle in its path. At this point in the research, the calibration data needs to be collected
for each mission individually, but a more universal multivariable function fmbu could be
determined to estimate battery usage for any of the robot’s missions.

fmbu(d, t, p, c) (1)

where:

d–estimated distance to travel,
t–estimated time duration,
p–payload,
c–complexity of the mission.

Additional parameters may need to be included in the function fmbu as input variables,
which may have a significant impact on the behavior of the battery SoC. While the param-
eters mentioned above are strictly related to a mission, the function could also include
parameters related to the state of the battery itself, e.g., temperature, SoC, SoH, battery
age, etc. Further research and deeper analysis need to be conducted to determine these
parameters and the significance they have on the battery discharge.

The data necessary for the curve fitting can be gathered either in perfect conditions,
where we can assume a correct trajectory each time, or in real-life scenarios during produc-
tion processes. Assuming the perfect conditions is always difficult in real-life scenarios,
especially in industrial conditions, where performing the calibration might be financially
unjustifiable but the predictions can also be made based on larger datasets in real-life appli-



Materials 2022, 15, 6561 6 of 16

cations. In the scope of this publication, the calibration for each mission was conducted in
controlled conditions.

To extend its uptime, the lithium NMC battery should be operating in the “battery life
safe zone” rather than using the full range from 0% to 100%. Based on research [4,5,27,28],
it has been proven that the optimal discharge level for batteries is between around 20%
to 90%. Charging the battery to 90% and not to 100% significantly reduces the battery
charging time. Therefore, the system has been designed so that the robot operates in the
range of 20–90% SoC and the modelled discharge characteristic of the battery has been
limited to its operating range.

The battery discharge data from the calibration dataset has been transformed into a
polynomial function in Python using the NumPy’s polyfit function. To determine the degree
of the polynomial, the coefficient of determination R2 was used for consecutive degrees. To
choose the appropriate polynomial, a value of 0.9 for the coefficient of determination has
been chosen as the lowest acceptable value, above which the coefficient of determination
seems to stabilize, providing no significant improvement for the algorithm, but only
complicating the model for larger degrees.

As shown in Figure 5, the 9th degree polynomial meets these requirements, similarly
to model 17 presented by Yu et al. [26] as the best way to model a lithium NMC battery,
which is based on models presented by Xia et al. [29] and Sidhu et al. [30].
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The 9th degree polynomial fitted curve has reached a coefficient of determination
value of R2 = 0.91. Figure 6 presents the curve fitted to the dataset.
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The 9th degree polynomial showing the battery discharge characteristics for the
measured mission is described by Formula (2).

y(x) = −2.88362741 × 10−13x9 + 1.48231619 × 10−10x8 − 3.28727589 × 10−8x7 + 4.11692849 × 10−6x6−
3.20022662 × 10−4x5 + 1.59714909 × 10−2x4 − 5.10695739 × 10−1x3 + 1.00772980 × 101x2−

1.11378154 × 102x + 5.27168295 × 102
(2)

where:

y–percentage of energy consumption in a single mission,
x–percentage of state of charge.

The derived formula is used in the predictive algorithm to estimate future battery
usage based on the current and historic data.

3. Predictive Monitoring System Architecture

In the course of evolution of control systems for devices used in automated manufac-
turing, the idea of a layered logical structure called the automation pyramid or automation
stack has emerged [31], which is usually formed as a result of a practical implementation of
Industry 4.0 paradigm. A typical automation stack can be presented as four main layers
(Figure 7a).
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The bottom layer of the stack relates to workstations, machines, and devices such as
PLCs, sensors, or HMIs, equipped with communication interfaces and protocols enabling
data acquisition. The second layer includes SCADA systems, which use the data to monitor
and control devices at the shop floor level. These data are transferred to IT systems on the
higher level, where depending on which systems have been implemented and what their
functionality is, the data can be archived or used to provide feedback to the lowest level
of the automation stack. Selected, key information related to production parameters are
transferred to the highest level for strategic and Big Data analysis. Bearing in mind the
demand for ensuring the continuity of in-house transportation, a predictive monitoring
module for an autonomous mobile robot was proposed (Figure 7b).

The module presented in Figure 7b has been designed to be installed as an extension
to the already implemented devices without interfering with their design or the systems
included in the main automation stack. Such an approach allows the system to be inte-
grated with multiple and various devices. In the case of the presented application, the
system uses a model characteristic of the robot’s battery, but multiple characteristics or
parameters could be used for different devices in the network, provided they have been
modelled beforehand.

The proposed system gathers data from each executed mission, which is then used
to detect anomalies in their execution. An HMI is provided to monitor the transportation
processes and notify the user, should an anomaly occur. Additionally, the architecture of the
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predictive monitoring module resembles that of an automation stack, where the information
is gathered at the bottom of the stack and is then being pre-processed, archived, and
analyzed in the higher levels of the stack before being transferred to the main automation
stack of the enterprise. In the case of this application, the data are provided by the robot’s
BMS and recorded for every executed mission. If more missions are queued, the system
estimates an overall battery consumption for the entire queue based on the battery discharge
model presented in Section 2. Such information could then be used to delegate excessive
missions to other robots in the fleet or alert the maintenance personnel and command the
robot to recharge. The historic data can also be used by the top layers of the automation
stack for further analysis and planning to optimize the production process or make it more
flexible and adaptable to the changing environment.

4. System Implementation

The predictive monitoring system has been implemented using Node-RED, an open-
source and free platform for building IIoT systems and modelling flows through an intuitive,
graphical, browser-based interface, providing ready-made plugins, allowing for quick pro-
totyping, and building highly scalable solutions. In the presented use-case, communication
between the mobile robot and the predictive monitoring system was realized through an
MQTT protocol and a REST API in a wireless network. A Python script has been written to
simulate additional robots in the system, where the developed function was used to imitate
battery usage of a real robot. The main purpose of the MiR Simulator was to tune and test
the system to delegate missions between multiple robots.

The functionalities of the system are designed as consecutive steps, supporting the
maintenance department with information—displaying parameters of devices connected
in the system (temperature of batteries, positions of robots, mission queues, etc.), warning
of any detected anomalies in the execution of missions (Yellow Alert) or the ability of
the robot to execute the queued missions (Red Alert), where they are delegated to other
robots in the fleet. Monitoring of additional parameters like battery temperature has been
considered because of faulty batteries being used in some models of MiR robots, which
has been reported by the manufacturer [32]. To monitor the battery temperature, the robot
has been equipped with an external temperature sensor, providing an additional safety
mechanism for the robot against potential combustion.

More detailed algorithms of the entire system (Figure 8) and individual alerts are pre-
sented in Figures 9–11 and explained below. The diagram below shows mission monitoring
and management for the real robot–MiR100_1.
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YELLOW alert: acts as an early warning for the maintenance department to check for
obstacles in the regular path of the robot in case of higher-than-expected battery usage. The
data gathered in the process are stored in the database for the mathematical model to be
improved in further stages of research. The system allows the maintenance personnel to
choose the sensitivity of the algorithm. The block diagram of the algorithm is shown in
Figure 9.

RED alert: provides information about the queue management for a single robot,
where battery consumption is estimated for the entire queue based on the battery discharge
models. The system informs the maintenance personnel of any future missions unable to
be executed and delegates the excessive missions to other robots in the system. In the scope
of this research, the missions are delegated to the simulated robots, where they are again
assessed as to whether they have enough battery to execute them. Currently, the assessment
is done for the missions with a known characteristic, but a universal characteristic should
be possible to derive from a bigger dataset. The block diagram of the algorithm is shown in
Figure 10.

TEMP alert: the robot has been equipped with a temperature sensor to provide an
additional monitoring feature and make the robot safer against defective, damaged, or
overloaded batteries, which may cause the robot to malfunction, be damaged or even pose
a fire hazard. For lithium NMC batteries exceeding 66 ◦C starts an exothermic chemical
reaction, generating more heat. After exceeding 75 ◦C (without external cooling of the
battery), the reaction can no longer be stopped, where the accumulation of heat and gases
leads to explosion of the battery and ignition of the robot [33]. For the nominal use of the
lithium NMC battery, the temperature should stay below 40 ◦C. The temperature warning
threshold of the system has been set to 50 ◦C. This gives a safety buffer of at least 20 degrees
before starting an uncontrolled self-ignition [34,35]. The block diagram of the algorithm is
shown in Figure 11.

5. Experimental Verification

To verify the effectiveness of the designed predictive monitoring system with the
battery discharge model, an experiment has been conducted in three scenarios:

1. unobstructed path with no changes in route,
2. obstructed path with a route changed for 16 missions due to an unexpected obstacle,
3. obstructed path with a route changed, due to an unexpected obstacle, for four consec-

utive missions only, due to quick reaction of the maintenance department to Yellow
Alert with a fixed threshold of three consecutive missions of heightened battery usage.
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The experiments have been conducted under the conditions presented in Table 1.

Table 1. Experimental conditions.

Robot Payload Route Length
(Unobstructed)

Route Length
(Obstructed)

Yellow Alert
Threshold

MiR100 100 kg ~140 m ~200 m 3 missions

The following figures present the correctly (•) and incorrectly (
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Formula (2)). The battery usage is assumed to be incorrect for values greater than 115% of
the expected battery consumption. All of the experiments were conducted in the safe range
of 20% to 90% of SoC.

5.1. Scenario 1

In this case, the mobile robot was tasked with in-house transportation based on the
experimental path described in chapter 2 without any disruptions or obstacles.

As presented in Figure 12, the model detects four false positive results due to the
fluctuation in the SoC readout from the BMS. The system functions without any disruptions,
as the Yellow Alert would need three consecutive incorrectly executed missions (default
threshold value in the system). In total, 58 missions were executed in this scenario.
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5.2. Scenario 2

In this scenario, an obstacle was placed in the default and shortest path for the robot for
4 hours, forcing it to make a detour, resulting in longer distance travelled and higher battery
consumption per mission, which is indicated in Figure 13. In this scenario the obstacle
was located in the same place as during the first investigation of the battery discharge
characteristic described in chapter 2 (see Figure 3).
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The addition of an obstacle resulted in the robot executing a total of 52 missions: six
missions fewer than planned.

5.3. Scenario 3

In this scenario, the same obstacle was used; however, after three consecutive incor-
rectly executed missions, a Yellow Alert was raised, which prompted the maintenance
personnel to investigate the situation and remove the obstacle from the path.

Consequently, the robot returned to the shortest path possible for future missions as
indicated in Figure 14. The quick reaction time of the maintenance personnel allowed for
all of the 58 planned missions to be executed by the robot.
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6. Discussion

Table 2 shows the comparison between the three tested scenarios, where in the case of
scenario 2, no warning was communicated to the maintenance personnel, thus making the
system perform much worse than in the other two scenarios, executing six fewer missions
than expected.

Table 2. Scenario comparison.

Number of Missions

Nominal Battery
Usage

Excessive Battery
Usage Executed in Total

Scenario 1
(control) 54 4 58

Scenario 2
(obstacle) 34 18 52

Scenario 3
(obstacle with
Yellow Alert)

53 5 58

Upon closer inspection of scenarios 2 and 3 (see Figure 15), it becomes apparent
how important the Red Alert is for the entire system. While Yellow Alert can prompt the
maintenance personnel to fix any issues along the path of the robot, once their reaction time
becomes too long, it is necessary to delegate any missions that the robot will not be able to
complete to other robots in the fleet. In the presented case, after the additional obstacle had
been removed, the system calculated that six missions would need to be delegated to other
robots in the fleet because the state of charge during their execution would have dropped
below 20%.
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7. Conclusions and Outlook

In the scope of this work, the energy consumption of a battery used in a commercially
available autonomous mobile robot MiR100 was analyzed. When considering lithium-based
batteries, most analyses are done in the scope of voltage as a function of capacity, where
the characteristic tends to be linear in most of the range. At first, the model characteristic
of mission energy consumption as a function of state of charge looked unexpected, with
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no linearity, but the pattern was consistent across all measurements of discharge cycle.
Because of this, a model characteristic of the battery discharge has been developed for
a specific mission planned for the robot. The developed model characteristic was curve-
fitted as a polynomial with the minimum of 0.9 R2, which resulted in a polynomial of 9th
degree, modelling the lithium NMC battery discharge similarly to model 17 presented by
Yu et al. [26].

This model characteristic has been implemented in a proposed predictive monitoring
system, where it is used to determine whether the missions conducted by the connected
autonomous mobile robots are executed correctly. Such information is used to inform the
maintenance department of any abnormalities and to determine whether any missions
need to be delegated to other robots in order to finish all of the planned missions. This
data could also be used in production planning, to make the entire production process
adaptable, and not only the in-house transportation.

The results of the experimental verification of the system conducted in Section 5 prove
that the system helps mitigate any potential changes of the mobile robot’s route, due to
early warning provided by the Yellow Alert functionality. The Red Alert functionality on
the other hand allows the system to compensate for the unavoided changes in the route
and the lost performance by detecting the future inability to execute some of the queued
missions and delegating them to other robots in the fleet in advance.

Current approach to modelling the battery discharge curve is not universal and needs
to be calibrated for every mission separately. Further investigation and experiments are
necessary to find the independent variables that could define the universal function of the
battery discharge, regardless of the selected mission. Potential parameters to consider as
independent variables could be the number of turns, estimated travel distance, payload or
battery temperature. Such a universal model would allow the robot to be truly adaptable
to any disturbances in the changing environment. It would also be beneficial to investigate
the discharge characteristic for batteries of different capacity, exploitation stage, or chemical
composition. Additionally, in the future research, the system is planned to be expanded
with wireless connection to sensors used in the stations and machines that the mobile robot
interacts with to further enhance the decision making and the optimization of the entire
production system.
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Nomenclature

AMR–Autonomous Mobile Robot
BMS–Battery Management System
IIoT–Industrial Internet of Things
OCV–Open Circuit Voltage
SoC–State of Charge
SoH–State of Health
Lithium NMC–Lithium-Nickel-Manganese-Cobalt-Oxide
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HMI–Human-Machine Interface
SCADA–Supervisory Control and Data Acquisition
LIDAR–Light Detection and Ranging
MQTT–Message Queuing Telemetry Transport
PLC–Programmable Logic Controller
IT–Information Technology
REST–Representational State Transfer
API–Application Programming Interface
HTTP–Hypertext Transfer Protocol
DB–Database
MES–Manufacturing Execution System
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