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Abstract: Palygorskite sample (Pal) underwent thermal treatment at 400 ◦C (T-Pal) to be used as
adsorbent for the removal of 200 mg NH4

+-N/L from artificial solution. After thermal treatment, the
sample was characterized via X-ray diffraction (XRD) and scanning electron microscopy (SEM). For
NH4

+-N removal, T-Pal was added as a bed matrix in fixed-bed reactor experiments and the effect
of flow rate was determined. It was indicated that with the flow rate increase from 10 mL/min to
50 mL/min, fewer liters of the solution were purified, rendering a longer residual time of interactions,
which is optimal for NH4

+-N removal from T-Pal. The maximum removed amount was calculated
at 978 mg NH4

+-N (qtotal), suggesting T-Pal is a promising ammonium adsorbent. The data of
kinetic experiments were applied to Clark, Yoon–Nelson, and Thomas kinetic models, with Clark
having the best fit, highlighting a heterogenous adsorption. At the end of kinetic experiments, T-Pal
applied in hydroponic cultivations and presented a sufficient release rate, which was found utilizable
for saturated T-Pal usage as N fertilizer that satisfactory results were deemed concerning lettuces
characteristics and growth.

Keywords: clay mineral; ammonium; adsorption; kinetic models; N-fertilizers

1. Introduction

Palygorskite (Pal) belongs to the fibrous clay minerals with a typical 2:1 ribbon-like
structure [1]. In parallel with these SiO4 ribbons, channels are extended at an approxi-
mate width of 7.3 Å [2] which are full of exchangeable cations, coordinated and zeolitic
water molecules that balance the layer charge [1]. The specific structural arrangement is
responsible for Pal porosity, high specific surface area (SSA > 200 m2/g), and sorption
capacity [3]. At temperatures above 300 ◦C, the zeolitic water is lost, whereas above 350 ◦C
part of coordinated water is lost as well, and dehydroxylation starts taking place. Water
molecules’ absence and dehydroxylation lead to emptying space of the channels, as well as
the reveal of more active sites (-OH groups), respectively, allowing the adsorption of more,
or even bigger size cations [2,4]. Based on these enhanced-adsorption properties, thermally
modified palygorskite (T-Pal) was previously used for a variety of contaminant removal
from water systems, such as dyes [5–7], heavy metals [8], or radioactive uranium [9].

Moreover, T-Pal was previously applied as a low-concentration ammonium adsorbent
in water systems, achieving removal efficiencies exceeding 75% [10,11]. Ammonium (NH4

+)
can be a common inorganic contaminant in groundwater, mostly derived from N-fertilizer
consumption and animals’ feedlots, but is also the most frequent nitrogenous pollutant
in wastewaters at varying concentrations (10–1000 mg L−1) [12]. Municipal wastewater,
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landfill leachates, livestock, poultry, and industrial wastewaters are the main sources of
water bodies contamination from NH4

+/NH3, which can finally lead to eutrophication and
toxicity to humans and other organisms [13]. A variety of methods has been examined
for the immense NH4

+ removal from the wastewaters, among them air stripping [14],
membranes [15], or adsorption [16,17], whereas from these techniques, the NH4

+ could be
recovered [13].

The recovery of NH4
+ can be essential since N is a crucial element for agriculture

and plant growth which can be provided by ammonium solely or in combination with
nitrate [18,19]. A great advantage of the adsorption method is the usage of low-cost,
environmentally friendly, and in many cases natural materials, such as Pal or zeolite as
adsorbents. Natural materials, saturated with NH4

+ or other nutrients can potentially be
further exploited without causing secondary pollution, such as fertilizers in cultivations,
even in hydroponics [16,20,21].

The present study highlights the potential application of thermally treated palygorskite (T-
Pal) as an adsorbent of high concentration NH4

+-N that could be representative of wastewaters.
T-Pal was applied as the support media on a lab-scale fixed-bed reactor, for the conduction of
continuous flow rate experiments till saturated. The N-saturated T-Pal was further used in
hydroponic cultivations for lettuce growth for N-supply, as an environmentally friendly and
cost-effective solution for N recovery. The kinetics of the fixed-bed reactor experiments were
fitted in Clark, Yoon–Nelson, and Thomas’s kinetic models, while the evaluation of lettuce
characteristics was analyzed via ANOVA statistical analysis.

2. Materials and Methods
2.1. Sample Preparation and Characterization

Pal sample was provided by Geohellas S.A. (Grevena, Greece) at specific grain size
of 1.4–2.36 mm, which was washed and dried at 50 ◦C. The dried sample was further
thermally treated at 400 ◦C in a controlled muffled oven for 2 h and then cooled at room
temperature in a desiccator. The temperature of 400 ◦C was selected since it is the minimum
where both zeolitic water loss and dehydroxylation may take place within the sample,
thus, ensuring structural changes and cost-effectiveness [5]. The X-ray fluorescence (XRF)
measurements of the major (SiO2, Al2O3, CaO, MgO, MnO, Fe2O3, K2O, Na2O, P2O5, TiO2)
elements were performed. An amount of 1.8 g of dried ground sample was mixed with
0.2 g of wax (acting as a binder) and pressed on a base of boric acid to a circular powder
pellet of 3.2 cm in diameter. Analyses were performed with a RIGAKU ZSX PRIMUS II
spectrometer, which was equipped with an Rh anode running at 4 kW, for major and trace
element analysis. The spectrometer was equipped with the diffracting crystals: LIF (200),
LIF (220), PET, Ge, RX-25, RX-61, RX-40, and RX-75. X-ray diffraction (XRD) patterns were
obtained for the samples in a 2θ range of 2◦ to 60◦ and at a scanning rate of 2 ◦/min, using
an XRD Bruker D8 advance diffractometer, with Ni-filtered CuKα radiation (λ = 1.5418
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Their typical morphological characteristics were verified with scanning electron microscopy
(SEM), using an SEM LEO SUPRA 35VP. Fourier transform infrared spectroscopy (FTIR)
spectra were obtained using FTIR spectrophotometer Spectrum (Patras, Greece) RXI (Perkin
Elmer) at room temperature. The samples were prepared by mixing 0.1 mg of Pal, T-Pal,
and T-Pal after NH4

+-N adsorption with KBr, and then were pressed till pellets were
formed. The wavenumbers range from 400 cm−1 to 4000 cm−1 and were analyzed using
Spectrum v5.3.1 software. The Cations Exchange Capacity (CEC) was determined using
sodium acetate, according to the US-EPA 9081 method.

2.2. Fixed-Bed Reactor Experiments

The adsorption experiments on fixed—bed reactors were conducted on Plexiglas tubes
(columns) of laboratory scale (Figure 1). The tube dimensions were 40.0 cm in height and
4.0 cm internal diameter, with 450 mL operational volume, equipped with four sampling
valves at various heights. The column was firstly filled with 288 g of T-Pal sample at
1.4–2.36 mm grain size and 0.67 gr cm−3 density. The removal of NH4

+-N was examined
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using NH4Cl standard solution of 200 mg/L initial concentration which was supplied
after the column was filled with the matrix. The specific concentration was selected to be
comparable to previous experiments with zeolite from Kotoulas et al. [16], which were
conducted at the same laboratory and equipment. The effect of continuous flow rate (15, 35,
and 50 mL/min) was considered. Various samples were selected at various time intervals
till the saturation of T-Pal was achieved and the breakthrough curve could be formed.
Each sample was centrifuged at 5.500 rpm for 3 min and filtrated through Whatman filters
(0.45 µm) to remove the finest suspended.
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Figure 1. The Plexiglas column used for the experimental setup.

The final concentration of each time interval was measured at UV–Vis spectropho-
tometer at 625 nm according to modified Salicylate method of Verdouw et al. [22]. From
the data obtained, the adsorption capacity (qe) and maximum removal efficiency (Y%) were
determined based on Equations (1)–(4).

qtotal =
Q

1000

∫ t=ttotal

t=0
Cadsdt (1)

qe(exp) =
qtotal

x
(2)

Wtotal =
C0Qttotal

1000
(3)

Y =
qtotal
Wtotal

× 100 (4)

where qtotal is the amount of adsorbed NH4
+-N (mg) and was calculated with the area

method [23], Q is the applied flow rate (mL/min), ttotal is the 90% of time needed for ad-
sorbent saturation (min), Cads the adsorbed NH4

+-N amount (mg/L) (Cads = C0 − C), x the
total mass of the adsorbent and Wtotal the total amount of NH4

+-N (mg) sent to the column.
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2.3. Kinetic Models

Some of the most representative models to express the breakthrough curve results
are the Thomas, Yoon–Nelson, and Clark kinetic models. These models can adequately
determine the maximum solid-phase concentration, which can be estimated at 50% of bed
saturation approximately [24].

Specifically, the Thomas model expresses the second-order reversible reaction kinetics,
while assuming that adsorption follows the Langmuir isotherm. The linearized Thomas
equation is described in Equation (5):

ln
C0

Ct
=

KThqmaxm
F

− KThC0t (5)

where C0 the initial pollutant concentration (mg/L), Ct is the pollutant concentration in the
effluent (mg/L), F the flow rate (ml/min), KTh is the Thomas adsorption rate constant (L/mg
min); m the adsorbent mass (g) and qmax is the maximum adsorption capacity (mg/g).

The Yoon–Nelson model is the simplest of the fixed-bed studies since it does not
include the bed parameters or detailed data about the adsorbent-adsorbate interactions [25].
It is a model based on the decrease in the adsorption probability, and the most concise to
predict the concentration change till the adsorbent breakthrough. The linearized Yoon–
Nelson model is expressed as presented in Equation (6):

ln
Ct

C0 − Ct
= KYNt− KYNt50 (6)

where C0 the initial pollutant concentration (mg/L), Ct is the pollutant concentration in the
effluent (mg/L), KYN the Yoon–Nelson constant (1/min), t time (min) and t50 the required
time for adsorbate breakthrough (min).

The Clark model is based on the adsorption equilibrium and mass transfer phe-
nomenon to predict the breakthrough curve, while also assumes that the Freundlich
isotherm expresses the adsorbent–adsorbate interactions [25]. The linearized Clark model
is expressed as in Equation (7).

ln[(Ct/C0)
n−1−1] = −r′t + lnA (7)

where C0 the initial pollutant concentration (mg/L), Ct is the pollutant concentration in the
effluent (mg/L), n the Freundlich constant derived from the batch tests, r and A the Clark
constants (1/min) and t time (min).

2.4. Determination of Error Functions and Coefficients

The parameters of each nonlinear kinetic model are the result of linearizing the non-
linear model expressions and least squares fit [26]. For comparison and quantification
of the deviation and to determine the uncertainty in error distribution, the coefficient of
determination (R2) and the sum of squares of errors (SSE) were determined for both linear
and nonlinear models as it is expressed in Equations (8)–(10), respectively.

R2 =
∑

p
i=1 (q

i
e,theor − qi

e,means)
2

∑
p
i=1[(q

i
e,theor − qi

e,means) + (qi
e,theor − qi

e,means)
2]

(8)

SSE =
p

∑
i=1

(qi
e,theor − qi

e,means)
2

(9)

RMSE =

√√√√ 1
n− 1

p

∑
i=1

(qi
e,theor − qi

e,means)
2 (10)
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where i is the experimental run, qe,theor is the theoretically evaluated equilibrium values
from the model (mg/g) and qe,means (mg/g) is the experimental equilibrium data (mg/g).

2.5. Hydroponic Cultivations

The impact of NH4
+-saturated samples on hydroponic lettuce (Lactuca sativa L.) cul-

tivations as nitrogen fertilizers in laboratory-scale, was estimated based on the study of
Urlić et al. [19], where various ammonium concentrations were examined as the sole N-
supply source. Tap water from University of Patras was used as the nutrient solution as
it contained 5 mg NO3

−-N/L, 0.02 mg NH4
+-N/L, and other nutrient minerals, mostly

Ca2+ and Mg2+ as can be seen in Table 1. There was no synthetic nutrient solution since the
study is focused on the interactions of T-Pal/NH4

+-N release and NH4
+-N/roots uptake.

The added mass of T-Pal was 15.8 ± 0.32 g/L in tap water in order to release 3 mmol/L
NH4

+ as N—fertilizer, according to the optimal conditions that were determined in the
study [19]. The exact mass was determined based on the T-Pal adsorption capacity from
the fixed-bed reactor experiments. Additionally, there was a control system where lettuce
cultivations were growing in tap water only. The cultivation consisted of seedlings of 5 cm
height in 51 mm diameter hydroponic pots, filled with inactive expanded clay for plant
support. The total volume capacity of the used hydroponic boxes was 1 L per seedling.
The NH4

+-N and NO3
−-N consumption was measured three times per week. pH was

not adjusted and remained neutral at 7.1 ± 0.3, while room temperature was stable at
20 ± 1 ◦C. On day 40 of the experiment, the final height, shoot, root lengths, and wet shoot
and root weights were measured after the lettuce plants harvest. The shoots and roots were
further dried at 45 ◦C for 48 h and then measured again for dry shoot and root weights.
Statistical analysis was performed between hydroponic systems using single-factor analysis
of variance (ANOVA). The statistical significance of p < 0.05 was set using the one-way
ANOVA program in Microsoft Excel 2010.

Table 1. Physicochemical characteristics of University of Patras tap water.

Physicochemical Characteristics Tap Water Sample

pH 7.3
Total Hardness (mg/L, CaCO3) 487

Ca+2 (mg/L) 159
Mg+2 (mg/L) 22
Na+ (mg/L) 26

3. Results and Discussion
3.1. Characterization of Pal before and after Thermal Treatment

The chemical composition information was provided with X-ray fluorescence (XRF).
It was indicated that Pal composition was 63.7% SiO2, 1.10% Al2O3, 19.8% MgO, 9.4%
Fe2O3, 0.3% CaO, 0.4% MnO, 0–0.06 of N2O, KOH, TiO2, and P2O5 and 10% LOI. Ad-
ditionally, the CEC of palygorskite was estimated at 30 meq/100 g. The mineralogical
composition of the palygorskite sample before and after thermal treatment was identified
via the X-ray diffraction (XRD) method, whereas T-Pal after NH4

+-N was also analyzed for
potential alterations after adsorption. As shown in Figure 2, palygorskite is the dominant
mineralogical phase of the sample, while saponite impurity was also detected, since these
two clay minerals co-exist in Ventzia Basin (Grevena, Greece) [27]. The typical palygorskite
reflections can be observed at 2θo values 8.3◦, 20◦, 27◦, and 34◦, while the reflection at 6◦ is
referred to as saponite. After thermal treatment, differences were shown in T-Pal reflections,
since the intensity of the first characteristic reflection at 8.3◦ was decreased, contrary to
the saponite reflection which showed sharper. In the study of Chen et al. [5], decreased
palygorskite reflections were recorded, while in the present study, new reflection at 30◦ was
formed, most likely by dehydration and structural rearrangement [28]. After the adsorption
of NH4

+-N on T-Pal at the fixed-bed reactor (T-Pal-N), there are no significant differences,
showing that the T-Pal structure was unaffected after the interaction with NH4

+ -N. More
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specifically, the most notable alteration at the spectra was a slight peak shifting at the basal
reflections of 20◦ (Figure 1), while the reflections were slightly decreased. The intensity
change in the reflections renders the surficial interaction between adsorbent–adsorbate
most probable [29], whereas the peak shifting can be attributed either to the ion exchange
that took place or to the surficial bonding that may affect the crystallinity. Concerning
the reflection of saponite, at T-Pal-N sample was steeper than palygorskite, displaying
potential surficial H-bonded interactions [30].
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Furthermore, the fibrous morphology was verified with scanning electron microscopy
(SEM). The typical fibers are depicted in Figure 3, showing fibers with lengths ranging
from 250 nm to 1 µm. The effect of thermal treatment at 400 ◦C was significant (Figure 3a).
Specifically, T-Pal fibers (Figure 3b) were strongly agglomerated (bundles) while their
length decreased as a result of the total loss of coordinated water molecules [31].
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Figure 3. Scanning electron microscopy (SEM) images from (a) Pal sample at 100 nm and (b) T-Pal
sample at 200 nm.

Concerning the FTIR analysis, the spectra of Pal, T-Pal, and T-Pal-N can be shown in
Figure 4. At 478 cm−1, 1030 cm−1, and 1120 cm−1, typical bands of Si-O stretching were
presented, whereas the bands at 985 cm−1, 1024 cm−1, and 1120 cm−1 are typical of the
palygorskite [28], and the band of 1200 cm−1 is characteristic of the ribbon structure [32].



Materials 2022, 15, 6541 7 of 14

After thermal treatment, the mineralogical phase was not influenced; however, most of the
bands presented decreased vibration, and a slight shifting at ~3400 cm−1 to ~3600 cm−1

that was followed and can be attributed to a partial loss of bound water after the ther-
mal treatment. Moreover, after NH4

+-N adsorption on Pal (T-Pal-N), an intense band at
1380 cm−1 can be attributed to the newly formed N-H bond, rendering the ammonium
removal on T-Pal takes place [33].
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3.2. Fixed-Bed Reactor Experiments
3.2.1. Effect of Flow Rate

The effect of the three different flow rates (10 mL/min, 35 mL/min, and 50 mL/min)
was examined via continuous flow rate experiments in a fixed-bed reactor. It was observed
that increased flow rates (35 mL/min and 50 mL/min) came with decreased time for the
breakthrough point, whereas at 10 mL/min more than the double time was necessary for the
T-Pal saturation (Figure 5). Specifically, 2.2 L of the solution was purified within 1500 min
that the breakthrough curve ended, for 10 mL/min influent. This removal corresponds
to 4.38 bed volumes instead of 3.48 and 2.98 for 35 mL/min and 50 mL/min, respectively.
The lower the flow rate is, the longer the residual time of ammonium to interact with T-Pal
active sites and interlayer space, resulting in higher removal efficiencies [24]. Moreover, the
breakthrough curves under all the examined flow rates presented similar shapes, as well as
the same NH4

+-N adsorption behavior, which can be characterized by the highest possible
removal at the beginning, continuing with the steep increased NH4

+-N concentration in
the effluent, and ending at the almost stable final concentration where almost there is no
adsorption. The first and final steps can be better depicted at a 10 mL/min flow rate, but
the steep concentration increase can be clearly shown at a 50 mL/min flow rate (Figure 5).

At the end of the kinetic experiments, the operational parameters were determined.
Table 2 shows the maximum NH4

+-N removal efficiency (Y%) and adsorption capacity
(qe) of T-Pal, as well as the liters of water that were treated during the 90% of saturation
that was calculated based on Equations (1)–(4). The same equations were applied for time
t, which represents the time needed to produce an effluent NH4

+-N concentration below
the permeable limits for wastewaters, according to Greek legislation [34]. According to
the calculations presented in Table 2, can be observed that the highest examined flow rate
10 mL/min achieved the highest removal efficiency and capacity, whereas more liters of
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water were treated till the breakthrough. Moreover, as shown in Table 3, more liters of the
solution were purified effluent at the flow rate of 10 mL/min, which can be characterized
as the most efficient for NH4

+-N treatment. Additionally, the highest adsorption capacity
(qe), and removal efficiency were obtained for 10 mL/min for time t. The decreased flow
rate values provided longer residence time for interactions between wastewater and bed
material, rendering that probably the intraparticle mass transfer is dominant [35].
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Table 2. The NH4
+-N removal efficiency (Y%), adsorption capacity (qe) of 287 g T-Pal, and liters of

treated water (Vw) till the end of breakthrough curve for 15, 35, and 50 mL/min flow rates.

Q (mL/min) Y% Vw (L) qe (mg/g)

10 48.4 10.10 3.40
35 39.2 8.75 2.39
50 33.7 3.00 1.88

Table 3. The NH4
+-N removal efficiency (Y%), adsorption capacity (qe) of 287 g T-Pal, and liters of

treated water (Vw) till the permeable nitrate limit for 15, 35, and 50 mL/min flow rates.

Q (mL/min) Y% Vw (L) qe (mg/g)

10 99.8 2.20 1.53
35 95.8 1.75 1.17
50 92.7 1.50 0.97

The results obtained were compared to the previous study of Kotoulas et al. [16], where
zeolite was used at the same dimension reactor (for the removal of 200 mg NH4

+-N/L
as well at 8 mL/min flow rate), aiming to the competitive analysis of T-Pal as adsorbent
for NH4

+-N. In general, zeolite is considered the most widespread aluminosilicate adsor-
bent for ammonium [16,17,36,37]; nevertheless, T-Pal achieved removal efficiencies were
quite promising and worth to be evaluated. It must be admitted that almost double the
zeolite dose (500 g) presented higher adsorption capacity under similar experimental condi-
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tions [16], which would still be higher if the same dosage of T-Pal was used. Nevertheless,
the values are quite comparable, rendering T-Pal a competitive adsorbent for NH4

+-N.

3.2.2. Application of Kinetic Models

The results obtained from the kinetic experiments for all the flow rate values were
evaluated with the application of each breakthrough curve on different kinetic models such
as Clark, Yoon–Nelson, and Thomas.

In all cases, quite high values of correlation coefficient were obtained (R2 > 0.92),
highlighting those models’ sufficiency to express the NH4

+-N interactions with T-Pal.
Table 4 displays the calculated parameters for the above-mentioned kinetic models for all
the examined flow rates, whereas Figure 6 presents the exact fit of each model. Based on
the R2 values, the Clark model noted the highest ones when 10 mL/min (0.942 > 0.929) and
35 mL/min (0.902 > 0.897) were the applied flow rates. Clark’s model associates the mass-
transfer concepts and Freundlich isotherm [38]. The expression of kinetics via the Clark
model indicates the heterogenous nature of adsorption, which also came in agreement with
the data obtained from batch experiments conducted in the previous study [11], where
Freundlich isotherm was most suitable to describe the removal of NH4

+-N from T-Pal.
However, with the flow rate increase at 50 mL/min, Thomas and Yoon–Nelson models
yield slightly better R2 values than the Clark model (0.989 > 0.987), which can be attributed
to the decreased mass transfer phenomena when the flow rate increases [38,39]. This can
be verifying from the Thomas or Yoon–Nelson model values, in specific the Kth or KYN,
which keep increasing with the flow rate increase as well, due to the lower mass transfer
resistance, as was also reported in the study by Futalan and Wan [39].

Table 4. Kinetic parameters of nonlinear Clark, Yoon–Nelson, and Thomas kinetic models for NH4
+-N

adsorption from T-Pal.

Q
(mL/min)

Clark Yoon—Nelson Thomas

A r R2 RMSE SSE KYN τ R2 RMSE SSE KTH qTH R2 RMSE SSE

10 0.931 0.005 0.942 0.093 0.295 0.078 413.59 0.929 0.109 0.407 3.94 × 10−6 2.88 0.929 0.109 0.407

35 3.472 0.017 0.902 0.101 0.195 0.193 114.69 0.897 0.108 0.225 9.65 × 10−5 2.79 0.897 0.108 0.225

50 7.824 0.212 0.987 0.162 0.023 0.299 53.58 0.989 0.045 0.018 1.50 × 10−3 1.86 0.989 0.045 0.018

The mass transfer phenomena found to have an impact on T-Pal and NH4
+-N interactions,

while as it was mentioned in Table 3, more liters of aqueous solution can be purified at lower
flow rates, as well as it was shown from the difference in the optimal kinetic model fitting.

3.3. Hydroponic Cultivations for Lettuce Growth Using T-Pal for NH4
+-N Supply

At the end of the kinetic experiments in the fixed-bed reactor, the used T-Pal was
saturated with 978 mg of NH4

+-N, as it was calculated based on Equation (1). As an N-
enriched material, it was considered to be exploited as nitrogenous fertilizer in hydroponic
cultivation of Lactuca sattiva L. The supply of 3 mmol of NH4

+-N was found sufficient as
lettuce nutrient [19], so it was selected to be examined in this case study as well, whereas
10% of NO3

−-N would be also provided due to the tap water composition.
The overall 40-day experiments indicated that the added NH4

+-N was not fully
consumed from the lettuce plants (Figure 7), whereas the NH4

+-N released amount from
the saturated samples was less than it was expected, concerning the qtotal. This could be
attributed to the strong interactions between NH4

+ and clay minerals that continuous
and intense agitation would be necessary to be broken. Despite that fact, the maximum
ammonium was noted during the first day of hydroponics, and then steady consumption
was observed (Figure 7). Moreover, it is important to mention that in the system with T-Pal,
the NO3

−-N consumption was higher compared to the control system, highlighting the
boost in NO3

−-N consumption under NH4
+-N presence (Figures 7 and 8).
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Finally, the effect of N consumption on the plants’ characteristics was significant.
Specifically, the produced lettuce plants provided with both NO3

−-N and NH4
+-N, gained

much more shoot or root weight and length compared to the control system (Table 5). The
enhanced N supply was further evaluated with the ANOVA statistical analysis, verifying
the synergistic effect of NO3

−-N/NH4
+-N on plant growth. In detail, Figure 8a,b depict

the quality characteristics of plants that presented statistical differences (p < 0.05). It can
be observed the lettuces derived from the system with T-Pal presented enhanced root
and shoot weight than the lettuces from the control system; however, the most crucial
notification was the statistical difference at NO3

−-N consumption. All the measurements
were evaluated via statistical analysis during the 40-day cultivation, suggesting that the
gradual consumption of nitrates was found to be optimal when ammonium co-exists,
despite the fact that the final consumed concentration had no significant difference.
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Table 5. Shoot and root characteristics at the end of hydroponic cultivation.

Samples Shoot Weight
(g)

Shoot Dry
Weight (g)

Shoot Height
(cm)

Root Weight
(g)

Root Dry
Weight

(g)

Root Height
(cm)

T-Pal 2.630 ± 0.564 0.307 ± 0.005 13.30 ± 0.75 0.8919 ± 0.108 0.113 ± 0.020 22.5 ± 0.9036
Control 1.791 ± 0.065 0.174 ± 0.032 11.75 ± 0.25 0.3215 ± 0.220 0.072 ± 0.025 16.0 ± 1.0282
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4. Conclusions

In the present study, experiments were conducted at fixed-bed reactors, using T-Pal of
1.4–2.3 mm as the support media for the removal of 200 mg NH4

+-N from artificial solution.
The effect of three different flow rates was examined, where in all cases, satisfactory removal
rates were achieved, ranging from 33% up to 50% with a flow rate decrease from 50 mL/L
to 10 mL/L. For the lower examined flow rate, more than 90% of the solution was purified,
rendering 10 mL/min the most sufficient one. The data were fitted on kinetic models of
Clark, Yoon–Nelson, and Thomas with increased distribution of A, KYN, and KTH for each
model, respectively, with the flow rate increase. The difference in these distribution yields
the ammonium removal was affected by the mass transfer phenomena impact. The Clark
model, which assumes that the Freundlich isotherm is dominant, was found to satisfactorily
express the procedure, highlighting the heterogeneity of the interactions. Saturated T-Pal
proved sufficient for N supply at the hydroponic cultivations, as the lettuces presented
normal growth and better characteristics than the control system. The statistical analysis
confirmed these results, especially about plant dry or wet weight. Further investigation for
pilot scale application concerning NH4

+ removal, or usage as fertilizers either in hydroponic
cultivations or soils is worthy to be examined.
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19. Urlić, B.; Špika, M.J.; Becker, C.; Kläring, H.-P.; Krumbein, A.; Ban, S.G.; Schwarz, D. Effect of NO3 and NH4 Concentrations in
Nutrient Solution on Yield and Nitrate Concentration in Seasonally Grown Leaf Lettuce. Acta Agric. Scand. Sect. B Soil Plant Sci.
2017, 67, 748–757. [CrossRef]

20. Lazaratou, C.V.; Triantaphyllidou, I.E.; Spyridonos, I.; Pantelidis, I.; Kakogiannis, G.; Vayenas, D.V.; Papoulis, D. NO3
−-N

Removal from Water Using Raw and Modified Fibrous Clay Minerals and Their Potential Application as Nitrogen Fertilizers in
Hydroponic Lettuce Cultivations. Environ. Technol. Innov. 2021, 24, 102021. [CrossRef]

21. Hong, S.-H.; Ndingwan, A.M.; Yoo, S.-C.; Lee, C.-G.; Park, S.-J. Use of Calcined Sepiolite in Removing Phosphate from Water and
Returning Phosphate to Soil as Phosphorus Fertilizer. J. Environ. Manag. 2020, 270, 110817. [CrossRef] [PubMed]

22. Verdouw, H.; Van Echteld, C.J.A.; Dekkers, E.M.J. Ammonia Determination Based on Indophenol Formation with Sodium
Salicylate. Water Res. 1978, 12, 399–402. [CrossRef]

23. Unuabonah, E.I.; El-Khaiary, M.I.; Olu-Owolabi, B.I.; Adebowale, K.O. Predicting the Dynamics and Performance of a Polymer–
Clay Based Composite in a Fixed Bed System for the Removal of Lead (II) Ion. Chem. Eng. Res. Des. 2012, 90, 1105–1115.
[CrossRef]

24. Khalfa, L.; Sdiri, A.; Bagane, M.; Cervera, M.L. A Calcined Clay Fixed Bed Adsorption Studies for the Removal of Heavy Metals
from Aqueous Solutions. J. Clean. Prod. 2021, 278, 123935. [CrossRef]

25. Xu, Z.; Cai, J.; Pan, B. Mathematically Modeling Fixed-Bed Adsorption in Aqueous Systems. J. Zhejiang Univ. Sci. A 2013, 14,
155–176. [CrossRef]

26. Karri, R.R.; Sahu, J.N.; Jayakumar, N.S. Optimal Isotherm Parameters for Phenol Adsorption from Aqueous Solutions onto
Coconut Shell Based Activated Carbon: Error Analysis of Linear and Non-Linear Methods. J. Taiwan Inst. Chem. Eng. 2017, 80,
472–487. [CrossRef]

27. Kastritis, I.D.; Kacandes, G.H.; Mposkos, E. The Palygorskite and Mg-Fe-Smectite Clay Deposits of the Ventzia Basin, Western
Macedonia, Greece. In Proceedings of the the 7th SGA Meeting—Mineral Exploration and Sustainable Development, Athens,
Greece, 24–28 August 2003.

28. Yan, W.; Liu, D.; Tan, D.; Yuan, P.; Chen, M. FTIR Spectroscopy Study of the Structure Changes of Palygorskite under Heating.
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 97, 1052–1057. [CrossRef]

29. Papoulis, D.; Somalakidi, K.; Todorova, N.; Trapalis, C.; Panagiotaras, D.; Sygkridou, D.; Stathatos, E.; Gianni, E.; Mavrikos,
A.; Komarneni, S. Sepiolite/TiO2 and Metal Ion Modified Sepiolite/TiO2 Nanocomposites: Synthesis, Characterization and
Photocatalytic Activity in Abatement of NOx Gases. Appl. Clay Sci. 2019, 179, 105156. [CrossRef]

30. Bisio, C.; Gatti, G.; Boccaleri, E.; Marchese, L.; Superti, G.B.; Pastore, H.O.; Thommes, M. Understanding Physico–Chemical
Properties of Saponite Synthetic Clays. Microporous Mesoporous Mater. 2008, 107, 90–101. [CrossRef]

31. Xavier, K.C.M.; Santos, M.S.F.; Osajima, J.A.; Luz, A.B.; Fonseca, M.G.; Silva Filho, E.C. Thermally Activated Palygorskites as
Agents to Clarify Soybean Oil. Appl. Clay Sci. 2016, 119, 338–347. [CrossRef]

32. Blanco, C.; González, F.; Pesquera, C.; Benito, I.; Mendioroz, S.; Pajares, J.A. Differences Between One Aluminic Palygorskite and
Another Magnesic by Infrared Spectroscopy. Spectrosc. Lett. 1989, 22, 659–673. [CrossRef]

http://doi.org/10.3390/geosciences8050157
http://doi.org/10.1007/s10967-018-6163-z
http://doi.org/10.1016/j.desal.2014.07.029
http://doi.org/10.1007/s11356-021-17107-z
http://www.ncbi.nlm.nih.gov/pubmed/34676475
http://doi.org/10.1016/j.jclepro.2020.124611
http://doi.org/10.1007/s11274-020-02921-3
http://www.ncbi.nlm.nih.gov/pubmed/32856187
http://doi.org/10.1007/s11356-020-10397-9
http://doi.org/10.1021/acs.est.8b02743
http://doi.org/10.3390/w11050928
http://doi.org/10.1016/j.jhazmat.2020.124679
http://doi.org/10.21273/HORTSCI.41.7.1667
http://doi.org/10.1080/09064710.2017.1347704
http://doi.org/10.1016/j.eti.2021.102021
http://doi.org/10.1016/j.jenvman.2020.110817
http://www.ncbi.nlm.nih.gov/pubmed/32721295
http://doi.org/10.1016/0043-1354(78)90107-0
http://doi.org/10.1016/j.cherd.2011.11.009
http://doi.org/10.1016/j.jclepro.2020.123935
http://doi.org/10.1631/jzus.A1300029
http://doi.org/10.1016/j.jtice.2017.08.004
http://doi.org/10.1016/j.saa.2012.07.085
http://doi.org/10.1016/j.clay.2019.105156
http://doi.org/10.1016/j.micromeso.2007.05.038
http://doi.org/10.1016/j.clay.2015.10.037
http://doi.org/10.1080/00387018908053926


Materials 2022, 15, 6541 14 of 14

33. He, Y. Simultaneous Removal of Ammonium and Phosphate by Alkaline-Activated and Lanthanum-Impregnated Zeolite.
Chemosphere 2016, 164, 387–395. [CrossRef] [PubMed]

34. Gazette of the Greek Government (GR) 2011/354B of 8 March 2011 on the “Establishment of Measures, Conditions and Procedures
for the Reuse of TreatedWastewater and other Provisions”. Available online: www.et.gr (accessed on 5 August 2022).

35. Sotelo, J.L.; Ovejero, G.; Rodríguez, A.; Álvarez, S.; García, J. Study of Natural Clay Adsorbent Sepiolite for the Removal of
Caffeine from Aqueous Solutions: Batch and Fixed-Bed Column Operation. Water Air Soil Pollut. 2013, 224, 1466. [CrossRef]

36. Fu, H.; Li, Y.; Yu, Z.; Shen, J.; Li, J.; Zhang, M.; Ding, T.; Xu, L.; Lee, S.S. Ammonium Removal Using a Calcined Natural Zeolite
Modified with Sodium Nitrate. J. Hazard. Mater. 2020, 393, 122481. [CrossRef] [PubMed]

37. Temel, F.A.; Kuleyin, A. Ammonium Removal from Landfill Leachate Using Natural Zeolite: Kinetic, Equilibrium, and Thermo-
dynamic Studies. Desalination Water Treat. 2016, 57, 23873–23892. [CrossRef]

38. Ngah, W.S.W.; Teong, L.C.; Toh, R.H.; Hanafiah, M.A.K.M. Utilization of Chitosan–Zeolite Composite in the Removal of Cu(II)
from Aqueous Solution: Adsorption, Desorption and Fixed Bed Column Studies. Chem. Eng. J. 2012, 209, 46–53. [CrossRef]

39. Futalan, C.M.; Wan, M.-W. Fixed-Bed Adsorption of Lead from Aqueous Solution Using Chitosan-Coated Bentonite. Int. J.
Environ. Res. Public Health 2022, 19, 2597. [CrossRef]

http://doi.org/10.1016/j.chemosphere.2016.08.110
http://www.ncbi.nlm.nih.gov/pubmed/27596826
www.et.gr
http://doi.org/10.1007/s11270-013-1466-8
http://doi.org/10.1016/j.jhazmat.2020.122481
http://www.ncbi.nlm.nih.gov/pubmed/32197199
http://doi.org/10.1080/19443994.2015.1136964
http://doi.org/10.1016/j.cej.2012.07.116
http://doi.org/10.3390/ijerph19052597

	Introduction 
	Materials and Methods 
	Sample Preparation and Characterization 
	Fixed-Bed Reactor Experiments 
	Kinetic Models 
	Determination of Error Functions and Coefficients 
	Hydroponic Cultivations 

	Results and Discussion 
	Characterization of Pal before and after Thermal Treatment 
	Fixed-Bed Reactor Experiments 
	Effect of Flow Rate 
	Application of Kinetic Models 

	Hydroponic Cultivations for Lettuce Growth Using T-Pal for NH4+-N Supply 

	Conclusions 
	References

