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Abstract: An innovational self-reduction molecular-level-mixing method was proposed as a sim-
plified manufacturing technique for the production of carbon nanotube copper matrix composites
(CNT/Cu). Copper matrix composites reinforced with varying amounts of (0.1, 0.3, 0.5 and 0.7 wt%)
carbon nanotubes were fabricated by using this method combined with hot-pressing sintering tech-
nology. The surface structure and elemental distribution during the preparation of CNT/Cu mixing
powder were investigated. The microstructure and comprehensive properties of the CNT/Cu com-
posites were examined by metallography, mechanical and electrical conductivity tests. The results
revealed that the CNT/Cu could be produced by a high temperature reaction at 900 degrees under
vacuum, during which the carbon atoms in the carbon nanotubes reduced the divalent copper on the
surface to zero-valent copper monomers. The decrease in the ratio of D and G peaks on the Raman
spectra indicated that the defective spots on the carbon nanotubes were wrapped and covered by
the copper atoms after a self-reduction reaction. The prepared CNT/Cu powders were uniformly
embedded in the grain boundaries of the copper matrix materials and effectively hindered the tensile
fracture. The overall characteristics of the CNT/Cu composites steadily increased with increasing
CNT until the maximum at 0.7 wt%. The performance was achieved with a hardness of 86.1 HV, an
electrical conductivity of 81.8% IACS, and tensile strength of 227.5 MPa.

Keywords: carbon nanotube; copper matrix composite; molecular-level mixing; self-reduction;
mechanical and electrical conductivity

1. Introduction

Copper plays an essential function in life because of its good electrical and thermal
properties and is extensively applied in electronics, electrical, construction, military and
other fields [1]. Accordingly, an increasing amount of research is being devoted to the
exploitation of copper-based composite [2,3] materials. A nanomaterial called a carbon
nanotube (CNT) [4,5] has remarkable mechanical, electrical and thermal properties [6,7]
due to its high strength and specific modulus. Therefore, it is an excellent reinforcing
phase for the fabrication of new copper-based composites, and it has great potential in its
application prospects [8]. Combining the features of these two materials, carbon nanotube
copper matrix composites (CNT/Cu) [9] present a series of advantages, such as good
mechanical hardness [10,11], electrical [12–14] and thermal conductivity [15,16], friction
and wear resistance [17,18], and compression and tensile resistance [19–21] properties. It
has been reported that the resulting microstructural arrays have an important role upon
the material’s distinctive properties [22]. Additionally, the distributed particles also have
positive effects on the resulting mechanical behavior of the composites [23].
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However, the poor interfacial wetting ability of CNT and the clustering effect in the
metal matrix limit the application of CNT in composites. The presence of defects such as
inclusions and pores in clusters can degrade the performance of the composites. Recently,
compared to the conventional preparation process, it has been well demonstrated that
the molecular level mixing (MLM) method [24–26] successfully improved the interfacial
bonding [27,28] and dispersion [29] of CNT with substrates at the molecular level by
using surface modification [30]. Unfortunately, the requirement of using hydrogen as a
reducing agent [31,32] in a variety of studies is accompanied by serious safety hazards and
a complicated preparation process. A more convenient and efficient restoration method
has not yet been studied.

In this paper, an innovative molecular-level-mixing self-reduction method was pro-
posed and validated. Utilizing the reducibility of carbon atoms, the copper oxide on
the surface of CNT was reduced to copper under high temperature and vacuum condi-
tions. The feasibility and regularity of the self-reduction process was investigated and
discussed through verification of characterizing CNT for different stages of the process by
X-ray diffraction (XRD), infrared spectroscopy, optical microscopy, scanning electron micro-
scope (SEM) and transmission electron microscope (TEM). The molecular-level-dispersed
CNT/Cu composites with different CNT contents were successfully prepared by ball-
milling [33,34] and hot-pressing processes [35,36]. The conductivity, mechanical properties
and tensile behavior [37] of the fabricated composites were tested and analyzed.

2. Experimental
2.1. Reagents and Raw Materials

Carboxylated multi-walled carbon nanotubes (diameter: 10–20 nm, length: 10–30 µm,
purity > 95%, density 2.1 g/cm3, from Nanjing Xianfeng Nanomaterials Technology, Nan-
jing, China), copper powder (particle size 300 nm, purity 99.9%, density 8.92 g/cm3, pro-
vided by Zhongzhi Xindun Alloy, Xingtai, China), Cupric acetate monohydrate
(C4H6CuO4·H2O, purity 99.0%, from Tianjin Damao Chemical Reagent Factory, Tianjin,
China), and alcohol (CH3CH2OH, ≥99.7%, density 0.789–0.791 g/mL, from TianDa Chemi-
cal Reagent Company, Tianjin, China) were obtained.

2.2. Preparation Procedure

The CNT/Cu powder was subsequently obtained by the specific experimental schematic
in Figure 1. Firstly, carboxylated multi-walled carbon nanotubes were mixed with saturated
copper acetate alcohol solution and sonicated for 2 h by an Ultrasonic Cleaner (model: YL-
060ST). Then, the suspension was filtered and dried at 80 ◦C (±2 ◦C) for 24 h. After grinding,
the powder was oxidized at 280 ◦C (±5 ◦C) for 5 h to obtain carbon nanotube/copper
oxide (CNT/CuO) powder. Finally, the CNT/CuO powder was subjected to self-reduction
reactions under vacuum conditions at 80, 280, 800, and 900 degrees with a holding time of
2 h. The equipment used was a vacuum melting furnace (model: HZCZ-240).

The CNT/Cu composites were produced by using the mechanical ball-milling method
and vacuum hot-pressing method. The prepared CNT/Cu powder and copper powder
were put into a planetary ball mill (model: QM-3SP4, from Nanjing University Instrument
Factory, Nanjing, China) with a ball-to-material ratio of 5:1. The rotating speed was
200 r/min. After 4 h of mechanical ball milling, a uniformly mixed composite powder
was obtained. After that, the powder was heated to a temperature of 700 ◦C (±10 ◦C) at a
heating rate of 10 ◦C/min and sintered at a pressure of 30 MPa. The holding period was
6 h. Finally, four groups of CNT/Cu composites were completed, containing CNT at 0.1,
0.3, 0.5, and 0.7 wt%.
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Figure 1. Principle of molecular-level-mixing method.

2.3. Characterization

A Fourier transform near-infrared spectrometer (model: MPA0304040) and Laser
confocal micro-Raman spectrometer (inVia Qontor 03040405) were used to examine the
molecular structure and the structural integrity of the surface of the composite powders
at different stages of treatment. CNTs/CuO and carbon nanotube powder samples were
analyzed for the physical phase of the samples using an X-ray diffractometer (model:
XRD-600003030502). The morphology of the CNTs/Cu composite samples were evaluated
by metallographic microscopy (Leica DMi8) and the hardness, compression and tensile
properties of the composites were tested by using a universal testing machine (CSS-44200).
Five data points for hardness and conductivity were taken and averaged. The length of
the tensile specimen was 40 mm, the width was 10 mm, and the thickness was 3 mm.
The tensile test was performed at a strain rate of 3.7 × 10−4 s−1. Molecular binding of
copper to carbon nanotubes at the microscopic level was observed by using field emission
transmission electron microscope (JEM-2100F, from JEOL, Tokyo, Japan) and field emission
scanning electron microscopy (SU5000, from HITAXHI, Tokyo, Japan).

3. Results and Analysis
3.1. Characterization of CNT/Cu Composite Powder

Figure 2 shows the comparison of the IR spectra of the powders in two states. One is
the carbon nanotube powder mixed with saturated copper acetate alcohol solution after
ultrasonic treatment (CNT + C4H8CuO5), and the other is the original carbon nanotube
powder (CNT). From the figure, it can be observed that CNT + C4H8CuO5 exhibited
an obvious peak segment of Cu2+ ions after sonication. This situation proves that the
combination of Cu2+ ions and functional groups on the surface of CNT could be achieved
by using ultrasonication.

The XRD patterns of the samples of CNT/Cu powder at different stages of the self-
reducing molecular-level-mixing process are shown in Figure 3. The corresponding peak
of CNT (002) at 2θ = 25.9◦ appeared in all four groups of samples. The structure of CNT
remained in a stable state and was not disrupted under the low to high temperature process
conditions. After oxidization at 280 ◦C, the diffraction peak of CuO appeared on the curve
in addition to the diffraction peak of CNT; the diffraction peak of CuO still existed in the
plot when the reduction temperature was 800 ◦C, but the diffraction peak of Cu2O also
existed, which means that the reduction process had already begun, and divalent copper
had been partially reduced to univalent copper; the XRD plot displayed the diffraction
peak of a copper monomer when the self-reduction reaction temperature was 900 ◦C. With
the increase in temperature, the metal structure attached to the surface of CNT reacted
from divalent Cu ions to Cu. It was apparent that the temperature strongly influenced
the formation of the powders. The self-reduction method was feasible fpr achieving the
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molecular-level mixing of carbon nanotubes and copper, but it needed to reach a sufficiently
high temperature because the reaction did not proceed sufficiently at temperatures below
900 ◦C. Therefore, the obvious self-reduction reaction appeared only when the temperature
reached at least 900 ◦C.
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Figure 3. XRD patterns of the composites at different reduction temperatures (80 ◦C, 280 ◦C, 800 ◦C,
900 ◦C). The PDF file numbers are as follows. Copper (Cu): PDF#89-2838; Copper Oxide (Cu2O):
PDF#77-0199; Cuprite, syn (CuO): PDF#78-0428;.

The four groups of sample powders with different treatments were analyzed by Raman
spectroscopy, and the results are shown in Figure 4. R is the ratio of ID/IG, which means
the intensity ratio between the D-peak and G-peak in the Raman spectra. This ratio can be
used to describe the intensity relationship between these two peaks. A larger ratio indicates
that the more defects there are in the CNT, the more unstable the structure. It can be seen
from the figure that the ratio of the peaks of carboxylated CNT was the lowest, and the
ratio increased gradually with the sonication and oxidation treatment. This is attributed to
the damage of the CNT surface by the shock in the sonication. Alternatively, Cu2+ binds to
functional groups at the molecular level resulting in defect problems due to the uneven
alignment of carbon atoms. However, the R value of the powders after self-reduction
reaction decreased instead. It can be inferred that the defective spots after the original
surface treatment were wrapped and uniformly covered by the copper. This is the primary
reason for the decrease in the intensity ratio of the D and G peaks.
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Figure 4. Raman spectra of sample powders processed after raw powder, ultrasonic mixing, oxidation,
and self-reduction.

Figures 5 and 6 illustrate the microscopic morphology of the CNT/Cu composite
powder obtained by reduction at a temperature of 900 ◦C. Spherical substances with
diameters of 200–400 nm were attached along the surface of CNT, which were analyzed by
energy spectroscopy (Figure 5c) as copper monomers. In addition, it was visible that the
deposited copper particles in Figure 6a,b gathered together to form spherical metal particles.
These particles were attached to the surface of CNT, forming a point-like distribution
structure. As previously judged, when the reduction reaction of carbon atoms with copper
oxide occured at high temperature, the surface functional groups gradually wetted the
surface. The produced copper partially wrapped the dotted sites of carbon atoms after the
reaction (Figure 6d). The interface between the copper and carbon was well bonded and
tightly connected (Figure 6f). Moreover, the lattice stripes with inconsistent orientation
directions of metallic Cu can be observed through Figure 6e. By analyzing and comparing
the SEM and TEM images, it was confirmed that the molecular-level self-reduction reaction
at 900 ◦C could be used to obtain CNT/Cu powders with good interfacial bonding.

Materials 2022, 15, x FOR PEER REVIEW 6 of 12 
 

 

 

 

Figure 5. SEM morphology image of CNT/Cu composite powder (a) 10,000× (b) 20,000× (c) The EDS 

layered energy spectrum image, where the main components are Cu (blue), O (green), and C (red). 

It can be observed that a large area was covered by carbon, accounting for 90%. The uniformly at-

tached spherical clusters are Cu elements, accounting for about 8%. The surface of the CNT was 

slightly oxidized, accounting for about 2%. 

 

Figure 5. SEM morphology image of CNT/Cu composite powder (a) 10,000× (b) 20,000× (c) The
EDS layered energy spectrum image, where the main components are Cu (blue), O (green), and C
(red). It can be observed that a large area was covered by carbon, accounting for 90%. The uniformly
attached spherical clusters are Cu elements, accounting for about 8%. The surface of the CNT was
slightly oxidized, accounting for about 2%.
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Figure 6. TEM images of CNT/Cu composite powder at (a,b) 900 ◦C (c) Copper atoms under
multiple carbon tubes. Neatly arranged and uniformly oriented carbon tube stripes against a white
background. (d) Black round copper on a bent carbon tube uniformly wrapped around the surface.
(e,f) The boundary junction between copper and carbon tube was tightly fitted, with large lattice
stripes of copper clearly visible.

3.2. Morphology and Mechanical Properties of CNT/Cu Composites

The microstructures of the CNT-reinforced copper matrix composites with different
contents of CNT by using a combination of the molecular-level-mixing self-reduction
method and hot-pressing process are shown in Figure 7. The well-defined grain boundaries
and complete coarse grains are obviously visible in Figure 7a. The black dot-like distribution
of the CNT particles is regularly and uniformly dispersed and embedded in the grain
boundaries. On the contrary, the grains were refined with the increase in CNT content
(Figure 7b,c). However, black-phase carbon aggregation appeared with increasing the
content of CNT (Figure 7d). Furthermore, pores, inclusions, and cracking defects tended to
appear at the locations where carbon nanotubes were aggregated. Therefore, the results
indicate that a limited amount of CNT could effectively refine the grains, while an excessive
increase in the content of CNT leads to aggregation. This problem can be alleviated by
adjusting the ball-milling process.
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According to the density formula of composite materials as shown in the equation,

ρc =
ρmρf

wmρf + (1 − wm)ρm

where ρc: density of the composite material; ρm: density of the substrate; ρf: density of the
enhanced system; and wm: Mass fraction of matrix in the composite material, theoretically,
it is known that the higher the CNT content, the lower the density of the material. When
the CNT content was 0.1 wt%, 0.3 wt% and 0.5 wt%, the CNT was distributed at the grain
boundaries, refining the metal grains and making the structure compact. As a result, the
density gradually increased. However, when the CNT content reached 0.7 wt%, the high
content of CNT was more likely to agglomerate, leading to some tiny pores in the middle
of the material, which made a slight decrease in density.

The results shown in Figure 8 visually represent that the hardness increased rapidly
with the increase in CNT content, reaching a maximum hardness of 86.1 HV at 0.7 wt%,
which was 58.9% higher than that at 0.1 wt%. The carbon nanotubes as reinforcing ma-
terials are equivalent to “fibers” firmly adhered to the inside of the matrix, hindering
the dislocation movement and enhancing the performance of the composite. Although
the conductivity continued to increase when the CNT content increased from 0.1 wt% to
0.3 wt%, the conductivity decreased slightly at 0.7 wt% due to the increased porosity of
the composites. Defects hinder electron migration, which largely affects the conductivity
of the copper matrix composites. It can be seen that there was a regular increase in yield
strength and tensile strength with increasing the CNT content. The performance surges
and elongation were the best at 0.7 wt%.
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However, the low elongation at 0.5 wt% of the carbon nanotube content in the stress–
strain curve (Figure 9) highlights the problem that the poor dispersion of CNT in the metal
matrix lead to increased agglomeration phenomena and defects in a small area. The sample
had difficulty in withstanding higher tensile forces and fractured prematurely, so that the
plasticity of the material decreased significantly. By optimizing the hot-pressing process, the
dispersion of CNT and the properties of CNT/Cu composites could be further improved.
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Figure 10 shows the morphological characteristics of the fracture of the tensile sample.
At a CNT content of only 0.1 wt%, the fracture level was a relatively flat plane interlocking
and no apparent presence of CNT can be observed (Figure 10a). When the content of CNT
increased to 0.3 wt%, the fracture morphology appeared to be an obvious microporous
aggregation type ductile fracture with unevenness (Figure 10b). The microscopic morphol-
ogy of the fracture was honeycomb-like, and the fracture surface consisted of a significant
amount of tiny tough nests, which were about 1µm black nest pits (Figure 10c). A large
number of CNT was found to be aggregated at the fracture site as the content increased
(Figure 10d), with some clustered together (Figure 10e). The agglomerated carbon nan-
otubes were defective weak parts in the material, which were easy to fracture. The fracture
surface had CNT agglomeration and entanglement phenomena. Plenty of CNT extended
inside the matrix to bear the load through the interior of the matrix (Figure 10e), which
effectively increased the tensile strength.
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Figure 10. Fracture morphology of CNT/Cu composites with different CNT content of (a) 0.1 wt%;
(b) 0.3 wt%; (c) 0.5 wt%; (d–f) 0.7 wt%.

4. Conclusions

(1) By performing the self-reduction reaction of CNT/CuO at different temperatures,
it was shown that the preparation of CNT/Cu could be achieved under vacuum at
900 ◦C. The copper bonding was tight on the surface of CNT without damage to the
overall structure.

(2) With the increase in CNT content (0.1 wt%, 0.3 wt%, and 0.5 wt%), the copper ma-
trix composites could progressively improve the density and electrical conductivity.
However, the electrical conductivity and density of the composite with 0.7 wt% CNT
content was reduced. The agglomeration defects were the most significant problem
leading to cracking, which is detrimental to the performance. This problem can be
alleviated by adjusting the ball-milling process.

(3) With the increase in CNT content (0.1 wt%, 0.3 wt%, 0.5 wt%, and 0.7 wt%), the
composites could effectively resist mechanical forces. The highest elongation at break
was achieved with a CNT content of 0.7 wt%. Both yield strength and ultimate
strength were enhanced with a rise in CNT content from 0.1 wt% to 0.7 wt%.

(4) In summary, the CNT/Cu composite with 0.7 wt% CNT content had the best overall
properties. The hardness reached 86.1 HV and the conductivity reached 87.8% IACS.
The yield strength reached 216 MPa and ultimate strength reached 227.5 MPa.
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