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Abstract: Carbide precipitation and coarsening are investigated for quenched Dievar steel during
tempering. Lath/lenticular martensite, retained austenite, lower bainite, auto-tempered, and larger
spherical carbides are all observed in the as-quenched condition. The carbide precipitation sequence
on tempering is ascertained to be: M8C7 + cementite→ M8C7 + M2C + M7C3 → M8C7 + M7C3 +
M23C6 →M8C7 + M7C3 + M23C6 + M6C; carbides become coarser on tempering, and the sizes for
inter-lath carbides increase noticeably with increasing tempering temperatures due to the faster grain
boundary diffusion, whereas the sizes for intra-lath carbides remain nearly constant. The rate of
coarsening for carbides by tempering at 650 ◦C is much higher than those by tempering at 550 ◦C
and 600 ◦C, due to the faster diffusion of alloying elements at higher temperatures.

Keywords: Dievar steel; carbide precipitation; coarsening; hardness; toughness

1. Introduction

Hot-working die steel is exploited for molds and dies at working temperatures higher
than the recrystallization temperature, to produce metal parts [1]. The failure for those
molds and dies is predominantly due to thermal fatigue cracks, which are mainly because
of inappropriate heat treatments or un-uniform distributions of primary carbides [2–5].
Composition optimizations and heat treatment modifications can help to prolong the
service life of hot-working molds and dies.

Dievar steel is a new type of hot-working die steel that was designed based on the
composition of H13 steel [6]. Compared to H13 steel, the remarkable differences in compo-
sition are in the decrease in Si content and the increase in Mo content. The reduction in Si
can improve the steel’s ductility and toughness, with the presence of finer carbides [7]. A
higher Mo content leads to higher hardenability, as well as the greater tempering resistance
of steel [8]. The main failure modes are from cracking and plastic deformation caused by
thermal fatigue [9,10]. The common heat treatment process for Dievar steel is spheroidiza-
tion annealing, austenitizing, quenching, and tempering. The austenitizing temperature
for Dievar should be in the temperature range of 1000–1070 ◦C [11,12]. Previous research
showed that steels tested after oil-quenching at 1030 ◦C had a high hardness level and good
wear resistance, but relatively lower impact toughness compared with samples quenched
at other temperatures [13–15]. The undissolved carbides after oil quenching are all V-rich
carbides with a face-centered cubic structure [16]. V-rich MC or M8C7-type carbides in
Dievar remain at temperatures as high as 1050 ◦C, which normally originates from either
the process of electroslag solidification or after remelting at 1030 ◦C [17]. Tempering in the
temperature range from 400 to 700 ◦C is utilized to reduce or eliminate internal stresses
for quenched hot-working dies. Rod-like cementite has been detected in an H13MOD
(Fe-0.38C-5.13Cr-1.84Mo-0.49V) steel after twice-tempering at 600 ◦C for 2 h; with an in-
crease in tempering temperature above 600 ◦C, the coarsening of cementite occurs, leading
to a considerable decrease in hardness [16,18]. Stable alloy carbides with substantially
higher enthalpies of formation are promoted with the strong carbide-forming elements
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(such as Mo, V, Cr, Ti) during tempering, contributing to the secondary hardening stage. In
H13 steel, M23C6 + M7C3 (Cr-rich), MC (V-rich), and M6C (Mo-rich) carbides with large
sizes have all been distinguished on tempering at relatively high tempering temperatures
(above 600 ◦C) [16,19,20]. However, in the H13MOD steel, Mo-rich M2C carbides have been
observed and remain at a very small size for tempering twice at 600 ◦C for 2 h, plus a further
tempering at 620 ◦C for 2 h, contributing to the secondary hardening stage [16]. Finally,
different precipitations of carbides on tempering at different temperatures directly result in
the variation of mechanical properties, such as hardness and impact toughness [21–28].

Several efforts had been already made regarding heat treatments and microstructure
evolutions for Dievar steel [6,14,29,30]; however, the detailed carbide precipitation and
coarsening behaviors have not yet been systematically and quantitatively studied. In this
research, various carbide phases, precipitate sizes, carbide chemical compositions, and the
carbide crystal structures in quenched Dievar steel under different tempering conditions
have been analyzed.

2. Materials and Experimental Procedures

After vacuum-smelting, electroslag, and ultra-fine treatment, Dievar steel was selected
for the present study, and its chemical composition is shown in Table 1. Specimens with
a size of 130 mm × 40 mm × 30 mm underwent isothermal spheroidizing annealing to
produce uniform structures with fine and spherical particles before further heat treatment.
The heat treatment processes are listed in detail in Table 2.

Table 1. The chemical composition of Dievar steel (wt %).

Material C Mn P S V Mo Cr Si Ni

Dievar 0.39 0.42 0.007 0.001 0.7 2.37 4.84 0.22 0.10

Table 2. The heat treatment processes.

Heat Treatment Detailed Process

Annealing 860 ◦C for 2 h→ furnace cooled to 740 ◦C and hold for 4 h→ furnace cooled to 500 ◦C
→ air cooled to room temperature

Quenching 900 ◦C for 1 h→ 1030 ◦C for 30 min→ oil-quenched.

Tempering
550 ◦C for 4 h, 8 h, 16 h, 24 h, respectively→ air cooled to room temperature
600 ◦C for 4 h, 8 h, 16 h, 24 h, respectively→ air cooled to room temperature
650 ◦C for 4 h, 8 h, 16 h, 24 h, respectively→ air cooled to room temperature

The microstructure and carbide composition were examined using a NovaNano
450 scanning electron microscope (SEM) (FEI Company, USA), Jeol 2100 transmission
electron microscope (TEM) (JEOL, Tokyo), and Talos F200S scanning transmission electron
microscopy (STEM) (Thermo Fisher Scientific, Waltham, MA, USA). SEM and bright-field
(BF) images were used to observe the morphology of various carbides, while selected area
diffraction patterns (SADP) were used to confirm the carbide types. High-angle annular
dark-field STEM (HAADF-STEM) imaging with energy-dispersive X-ray spectroscopy
(EDS) was utilized to ascertain the carbide compositions. SEM samples with a size of
10 mm × 10 mm × 5 mm were polished to a PO-S finish and etched in 4% natal (Macklin,
Shang Hai, China) for 30 s. Thin foil specimens for TEM and STEM observations were
cut from the center of the as-quenched and tempered samples, then they were ground
with mesh abrasive papers (grit no. 400-800-1000-2000) to 70–80 µm. Then, a Gatan
695 ion-beam thinner (Gantan company, USA) was used to produce a thin area by reducing
the thinning voltage from 7 keV to 3 keV. ImageJ analysis software (National Institutes
of Health, Bethesda, USA) was used to obtain the length, width, and distributions of
particles from SEM or TEM images. Approximately 1000 particles were measured for each
assessed condition.
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JMatPro software (Sente Software, UK) with a general steel database was employed to
calculate carbide dissolution temperatures and equilibrium carbide volume fractions, as
well as equilibrium carbide compositions.

3. Results
3.1. Microstructures of Quenched Dievar Steel

Figure 1 shows the microstructures of the Dievar steel after oil quenching at 1030 ◦C
with different magnifications, and Figure 2 shows the TEM images after quenching at
1030 ◦C in Dievar steel. Lath martensite, a small amount of lenticular martensite (4%
volume fraction), retained austenite, a small amount of lower bainite (3.5% volume fraction),
auto-tempered carbides, and larger spherical carbides have been all observed, as seen in
Figures 1 and 2. As shown in Figure 2a–d, these spherical carbides have been confirmed
as V-rich M8C7 carbides, with a diameter ranging from 100 to 300 nm, as the dissolution
temperature for V8C7 carbides has been predicted to be approximately 1050 ◦C, higher
than the quenching temperature. Fine auto-tempered needle-shaped carbides with a length
of ≤ 150 nm are located within martensite laths. The existence of these fine needle-shaped
carbides demonstrates the occurrence of auto-tempering in this oil-quenched Dievar steel,
which is most probably cementite [16]. Due to the high formation temperature of lath
martensite, carbon still has a certain diffusion ability to segregate on dislocations and
precipitated carbides after the formation of lath martensite during quenching [26,31].
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Figure 1. Microstructures of the Dievar steel after oil-quenching at 1030 ◦C, shown at different
magnifications: (a) 15,000×, (b) 35,000×.
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Figure 2. TEM images showing larger spherical carbides, lath martensite, and lenticular martensite
after quenching at 1030 ◦C in Dievar steel: (a,c) bright field images of a typical larger spherical carbide;
(b) SAD pattern for the particle in (a) consistent with the [3 −9 1] zone axis of M8C7; (d) EDS spectra
for the particle in (c), indicated by the white arrow; (e) lath martensite; (f) lenticular martensite.

3.2. Microstructure Evolutions during Tempering

As shown in Figure 3a–h, martensite is then recovered, and the lath structure is regen-
erated and recrystallized during tempering at different temperatures with the extension of
duration. As listed in Table 3, the coarsening of laths occurs more significantly at relatively
higher temperatures, as the width of the laths grows more obviously on tempering at
650 ◦C compared to those with tempering at 550 ◦C and 600 ◦C. Recrystallization occurs in
the tempered martensite at 650 ◦C for 24 h, since equiaxed ferrite grains have been observed
(see Figure 3i).

Carbides with three morphologies (larger spherical particles, elliptical particles, and
very tiny needle-shaped particles) are present in the matrix and along the boundaries
after tempering at different temperatures for various times, as shown in Figure 3. Larger
spherical carbides (indicated by the white arrows in Figure 3a,c) exist in the matrix and
along the boundaries of tempering, which should be consistent with those samples in the
as-quenched condition. Elliptical carbides (indicated by the black and white arrows in
Figure 3b–h) have been observed after tempering for longer periods (such as 16 h and 24 h),
due to the precipitation of larger alloy carbides and/or the coarsening and spheroidization
of pre-existing carbides. Very tiny needle-shaped carbides with an average length of around
20 ± 5 nm (indicated by the black arrows in Figure 3j) precipitate within the martensite
laths for tempering at 600 ◦C for 4 h.
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Figure 3. Morphology of Dievar steel after tempering at different temperatures for various time
periods: (a) 550 ◦C for 4 h; (b) 550 ◦C for 24 h; (c) 600 ◦C for 4 h; (d) 600 ◦C for 16 h; (e) 600 ◦C for
24 h; (f) 650 ◦C for 4 h; (g) 650 ◦C for 16 h; (h,i) 650 ◦C for 24 h; (j) 600 ◦C for 4 h (TEM).

Table 3. Lath size variation in different tempering conditions.

Tempering Conditions Lath Size/µm

550 ◦C + 4 h 0.8–1.9
550 ◦C + 24 h 1.1–2.0
600 ◦C + 4 h 0.9–2.5
650 ◦C + 4 h 1.6–3.4

Inter- and intra- lath carbides both coarsen and spheroidize during tempering; Figure 4
shows the inter- and intra-lath carbide size and number density variations for tempering
at different temperatures. The sizes for inter-lath carbides are obviously larger than those
for intra-lath carbides in Dievar steel, due to the faster solute lath/grain boundary diffu-
sion [32]. It has also been shown that the size of inter-lath carbides increases noticeably with
increasing tempering temperatures, e.g., from 600 ◦C and 650 ◦C (see Figure 4a). However,
the size for intra-lath carbide keeps constant with increasing tempering temperatures (see
Figure 4b), probably due to the newly precipitated alloy carbides replacing the previous
larger particles. The carbide number density decreases with tempering time, due to the
occurrence of carbide coarsening (see Figure 4c).

Different types of alloy carbides have been distinguished after tempering at 600 ◦C
(see Figures 5 and 6). Spherical carbides remain within laths and along boundaries on
quenching and tempering, which have been ascertained as V-rich M8C7 carbides (see
Figures 5a,b and 6a,b), being consistent with the literature reports on the carbide precip-
itation behavior for H13 steel [20]. Slightly smaller elliptical particles with a length of
100–200 nm start to be detected after tempering at 600 ºC for 4 h and have been confirmed
as Cr-rich M7C3 carbides, as shown in Figures 5c,d and 6c,d. Cr-rich M7C3 carbides precip-
itate not only along boundaries but also at the interface of pre-existing particles (such as
M8C7 or cementite) in the matrix (Figure 6c). This is due to the diffusion of substitutional
elements at this comparatively high temperature, such as Cr and Mo, contributing to
the transformation from metastable cementite to alloy carbides. Very tiny needle-shaped
particles have also been observed within laths after tempering at 600 ◦C for 4 h (Figure 3j)
and are expected to be Mo-rich M2C carbides, according to the reports of the precipitation
of Mo2C carbides in an H13MOD steel on tempering at 600 ◦C for 2 h twice, plus a fur-
ther tempering at 620 ◦C for 2 h, which finally contributes to the resistance to hardness
decrease and secondary hardening [16]. After tempering at 600 ◦C for 16 h and 24 h, most
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of the intra-lath carbides coarsen, as can be seen in Figures 5e and 6g, and tend to have a
larger elliptical shape with a diameter of around 150 ± 20 nm. These carbides have been
determined as Cr-rich M23C6 carbides, which are also calculated as one of the equilibrium
carbides in Dievar steel with a volume fraction of 6.4% on tempering at 600 ◦C. As listed in
Table 4, the enrichment of Cr in carbides promotes the transformation from M7C3 to M23C6
for a relatively longer tempering process. In addition, Mo-rich M6C carbides have been
found after a prolonged tempering time of 24 h in Dievar steel, except for M8C7, M7C3, and
M23C6 (Figure 5g,h). As shown in Figure 7, faceted and elliptical Cr- and Mo-rich particles
precipitate around the pre-existing spherical V-rich M8C7 particles, demonstrating that Cr-
and Mo-rich carbides tend to nucleate at the interface of pre-existing alloy carbides. The
precipitation sequence during tempering for the quenched steel can then be identified as
follows: M8C7 + cementite (quenching)→M8C7 + M2C + M7C3 →M8C7 + M7C3 + M23C6
→M8C7 + M7C3 + M23C6 + M6C, which is generally consistent with the thermodynamic
calculated equilibrium carbides, M6C, M23C6, and M8C7.
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Figure 5. TEM images showing the presence of different alloy carbides tempered at 600 ◦C: (a) the
morphology of M8C7 carbide (existing from 4 h to 24 h); (b) the corresponding SAD pattern for the
particle in (a) consistent with the [0 −3 9] zone axis of M8C7; (c) the morphology of M7C3 carbide
(existing from 4 h to 24 h); (d) the corresponding SAD pattern for the particle in (c) consistent with
the [−4 5 −1 0] zone axis of M7C3; (e) the morphology of M23C6 carbide (existing from 16 h to 24 h);
(f) the corresponding SAD pattern for the particle in (e) consistent with the [−1 −1 1] zone axis of
M23C6; (g) the morphology of M6C carbide (solely existing for 24 h); (h) the corresponding SAD
pattern for the particle in (g) consistent with the [−1 −2 9] zone axis of M6C.
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Table 4. The M to Fe ratio YM (M = Cr, Mo, and V) for the different carbides in Figure 7 from the EDS
measurements on tempering at 600 ◦C.

YCr YMo YV

The spherical carbide in (a) 0.16 ± 0.01 0.25 ± 0.01 0.86 ± 0.02
The smaller elliptical carbide in (c) 0.69 ± 0.02 0.16 ± 0.01 0.06 ± 0.01

The elliptical carbide in (e) 0.48 ± 0.01 0.06 ± 0.01 0.03 ± 0.01
The larger elliptical carbide in (g) 1.19 ± 0.04 0.31 ± 0.01 0.10 ± 0.01
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spectra for the elliptical carbide (indicated by the white arrows) in (g).
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24 h: (a) The bright field image showing the existence of spherical, faceted, and rod-shaped carbides;
(b–d) Elemental mapping.
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4. Discussion

The carbides in the as-received condition aligned in one direction, indicating the occur-
rence of elemental segregation. The segregation is weakened sharply after spheroidizing
annealing as the carbides distribute more uniformly, this being consistent with a similar
observation for H13 steel [33]. Cr- and Mo-rich carbides are detected after spheroidizing
annealing in Dievar steel, where more Cr enriches alloy carbides compared to Mo, illustrat-
ing that Cr-rich M23C7 and M7C3 are expected to be the predominating carbides, compared
with Mo-rich carbides. Mo-rich carbides probably form at the interface of M7C3 carbides
during the transition of Cr-rich M7C3 to stable M23C6 in H13 hot-work tool steel [34].

Lath martensite is mainly formed after quenching in the Dievar steel because of the
comparatively low carbon content (0.39 wt %). It has been found that the quenching speed
of oil should be higher than 10 ◦C/s to avoid entering into the bainitic transition phase zone,
based on the calculation of the CCT curve. Lower levels of bainite can still be still observed
in Figure 1a, probably due to the large sample size (130 × 40 × 30 mm) and the lower
cooling rate. The cooling rate is estimated to be lower than 8 ◦C/s [34] for the temperature
region of 300~350 ◦C with oil-quenching. A small amount of retained austenite has also
been observed. In addition, lenticular martensite has been observed in the quenched Dievar
steel as well (Figure 2d). Steels with a carbon content of 0.3~1.0 wt % usually contain
two kinds of martensite at the same time (lath martensite and lenticular martensite) and
the carbon content of this steel at a temperature of 1030 ◦C in the matrix is predicted to
be 0.368 wt %. The addition of the alloying elements Cr, Mo, and Mn also increases the
tendency to form lenticular martensite [35]. Two types of carbides are observed in Dievar
steel after quenching: spherical V-rich M8C7 carbides and needle-shaped cementite, formed
via auto-tempering during oil-cooling. The theoretically calculated formation temperature
of V-rich M8C7 is as high as 1050 ◦C, and the V8C7 that is detected experimentally is
probably formed during electroslag solidification. Auto-tempered cementite particles have
been observed within martensite laths (Figure 1b). Due to the high formation temperature
of lath martensite and its slow cooling rate, carbon still has a certain diffusion ability during
quenching and segregates into dislocations and precipitated particles [26,31].

The precipitation sequence for this steel after 1030 ◦C oil-quenching and 600 ◦C tem-
pering can be identified as M8C7 + cementite (oil-quenching) → M8C7 + M2C + M7C3
→ M8C7 + M7C3 + M23C6 → M8C7 + M7C3 + M23C6 + M6C. The V-rich M8C7 carbides
observed in tempered microstructures are expected to originate from electroslag solidifi-
cation [17] or quenching; for that reason, the dissolution temperature of M8C7 is higher
than the austenitization temperature for Dievar steel, based on the thermodynamic calcu-
lations. In addition, the coarsening of M8C7 occurs relatively sluggishly with tempering,
due to the slow diffusivity of V (e.g., DV-α(600 ◦C) = 1.4744 × 10−14 m2/s) [36]. Very
tiny needle-shaped carbides with an average length of around 20 ± 5 nm that are present
within the laths are expected to be Mo-rich M2C carbides with tempering at 600 ◦C for 4 h,
which keeps them coherent with the matrix, leading to resistance to hardness decrease.
M2C carbides are metastable carbides and are easily decomposed to stable M6C carbides
with prolonged tempering time (e.g., 24 h). Cr-rich M7C3 carbides have appeared with
tempering at 600 ◦C for 4~24 h, and it is expected that M7C3 carbides have been formed
via the transformation of cementite, due to the enrichment of Cr in cementite and the
nucleation on the cementite/ferrite interface [21]. In addition, it has been predicted via the
JMatPro thermodynamic calculation that Cr-rich M23C6 is one of the equilibrium carbides
at 600 ◦C in Dievar steel. The faceted Cr-rich M23C6 carbides have been observed on
tempering for 16 h and 24 h, where YCr in Table 4 has achieved an equilibrium value of
1.53 with prolonged tempering time. M23C6 carbides are distributed along the boundaries
and around the pre-existing V-rich M8C7 carbides in the matrix due to the segregation of
alloying elements. In high Cr-Mo-containing steels [21], the precipitation sequences for
Cr-rich carbides can be established as cementite→M7C3 →M23C6 or cementite→M23C6.
Therefore, it is expected that stable M23C6 carbides form via the in situ transformation of
M7C3 and/or cementite from a longer tempering time and/or higher tempering temper-
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atures in this steel. Besides, Mo-rich M6C has been found after tempering at 600 ºC for
24 h, which is believed to be transformed from M2C. The coarsening of carbides occurs
and tempered martensite recrystallizes on tempering from 4 h to 24 h, where the rate of
coarsening for carbides after tempering at 650 ◦C is much higher than those after tempering
at 550 ◦C and 600 ◦C, due to the faster diffusion of alloying elements at higher temperatures
(i.e., DMo-α(600 ◦C) = 1.2694 × 10–14 m2/s, DMo-α(650 ◦C) = 1.427 × 10−13 m2/s) [36].

5. Conclusions

Carbide precipitation and coarsening behaviors during tempering in quenched Dievar
steel have been quantified; the effect of the alloying elements, Cr, Mo, and V on the carbide
transformation for tempering has been considered. Based on the carbide characterization,
the main conclusions are:

(1) Microstructures after oil-quenching consist of lath martensite, lenticular martensite,
retained austenite, a small amount of lower bainite, auto-tempered needle-shaped carbides,
and larger spherical V-rich M8C7 carbides.

(2) The carbide precipitation sequence in quenched Dievar steel during tempering is
identified as follows: M8C7 + cementite→M8C7 + M2C + M7C3 →M8C7 + M7C3 + M23C6
→M8C7 + M7C3 + M23C6 + M6C. Mo-rich unstable M2C carbides can easily decompose to
equilibrium M6C. M23C6 carbides are expected to transform from M7C3 carbides and/or
cementite. Cr, Mo-rich carbides distribute around the pre-existing V-rich carbides in the
matrix and along grain/subgrain boundaries, which is probably due to the segregation of
alloying elements.

(3) Carbides coarsen on tempering, whereas the sizes for inter-lath carbides are obvi-
ously larger than those for intra-lath carbides, due to the faster solute lath/grain boundary
diffusion. The sizes for inter-lath carbides increase noticeably with increasing tempering
temperatures, e.g., from 600 ◦C to 650 ◦C, whereas the sizes for intra-lath carbides keep
nearly constant.
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