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Abstract: In this work, a simple two-parameters correlation based on the Rice and Gray, Lennard-

Jones, and Stockmayer theories was devised for the calculation of binary diffusion coefficients (���) 

of any type of solutes at infinite dilution in polar and non-polar solvents. This equation can be rele-

vant for systems with polar solvents, since most models in the literature fail when strong intermo-

lecular forces predominate in solution. The new correlation embodies the Stockmayer potential 

without requiring the dipole moments of any component, which significantly enlarges its applica-

tion. It was validated with the largest ��� database of polar and non-polar dense systems, with 8812 

data points (NDP) spanning 553 systems, of which 133 have water as solvent (NDP = 1266), 89 con-

tain polar solvents excluding water (NDP = 1405), 177 have supercritical carbon dioxide (SC-CO2) 

as solvent (NDP = 5028), and 154 have non-polar or weakly polar solvents excluding SC-CO2 (NDP 

= 1113). Overall, the model achieved an average deviation of only 3.43%, with accurate and unbiased 

behavior even for polar systems. 

Keywords: modeling; non-polar solvents; polar solvents; Rice and Gray; supercritical carbon  

dioxide; tracer diffusion coefficients; transport properties; water 

 

1. Introduction 

Diffusion coefficients, namely binary diffusivities (���), are of major importance for 

the chemical and related industries since it is a transport property required for the accu-

rate design and simulation of processes limited by mass transfer kinetics [1]. The experi-

mental measurement of ��� is expensive in terms of equipment, chemicals, time, and the 

necessary apparatuses are frequently limited by their intrinsic range of operation that can-

not encompass wide intervals of temperature and pressure. Hence, accurate models ap-

plicable over a wide range of temperature, pressure, and solvent and solute types (both 

in terms of size, molecular weight, chemical nature, and polarity) are of utmost im-

portance. 

For nonpolar and weekly polar solvent systems, which may or may not include polar 

solutes, there are already several published models providing good results. In 2021 Zêzere 

et al. [2] compared various models using a database containing 6180 data points of weakly 

and non-polar systems, and expressed their performances in terms of the well-known av-

erage absolute relative deviation (AARD):  

where NDP is the number of data points, and the superscripts calc and exp stand for cal-

culated and experimental, respectively. The hydrodynamic Wilke-Chang equation [3], 

one of the simplest ��� models, achieved good predictive results with AARD = 15.64%. 

Additionally, the predictive hybrid free-volume model of Tracer Liu-Silva-Macedo 
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(TLSM) [4,5] attained an equivalent AARD of 16.84%, while their derived 1-parameter 

TLSMd and TLSMen correlations achieved average deviations of 4.53% and 4.55%, respec-

tively, which represent a significant improvement over the seminal equation. Finally, the 

2-parameters free-volume model of Dymond–Hildebrand–Batschinski (DHB) [6,7] 

achieved AARD = 4.23%; it is the simplest equation in the literature, and can be linearized 

to obtain parameters from experimental data. 

On the other hand, in the case of polar solvents the situation is quite different with 

fewer models being applicable due to the increased complexity of the intermolecular in-

teractions, mainly hydrogen bonding [8,9]. For instance, the predictive Wilke-Chang and 

Tyn-Calus equations [10] reached high deviations (AARD = 30.05% and 28.96%, respec-

tively) when tested with 1994 data points from polar systems [11]. Concerning correla-

tions, the DHB model (2 parameters, AARD = 6.02%) and the Rice and Gray approach of 

Magalhães et al. [11] (2 parameters, AARD = 4.27%) obtained good results for the same 

database [11]. Nonetheless, the last correlation requires the knowledge of the dipole mo-

ments of both solute and solvent which are frequently non-available or very complex to 

estimate and, unlike this essay, has been validated with a much smaller database (3463 

data points/211 binary systems, from which 1994 data points/141 systems are for polar 

solvents). Finally, a machine learning approach based on the gradient boost model was 

developed by Aniceto et al. [12] achieving reliable results (AARD = 5.07%) especially in 

comparison with the previously mentioned equations. 

Various empirical equations are available and can be applied to polar and non-polar 

solvent systems, namely those proposed by Magalhães et al. [13] and others sparsely 

tested in the literature [14–18]. Notwithstanding their suitability for ��� correlation and 

the good results achieved (e.g., Magalhães et al. [13] obtained AARD = 2.8% for 8219 data 

points/539 systems), their scope of application is difficult to assess and they are generally 

tested with few data points (with exception for the work of Magalhães et al.). 

In this work an upgraded Rice and Gray-based correlation for the calculation of bi-

nary diffusivities is presented and, with the objective to extend its applicability to polar 

solvent systems, a combined Stockmayer and Lennard-Jones (LJ) potential term is embod-

ied. Unlike a previous approach in the field [11], the proposed model does not require the 

solvent molar volume at normal boiling point and the dipole moments of both solute and 

solvent which expands its applicability to any type of solutes in supercritical fluids, liq-

uids, and dense gases involving nonpolar, weakly polar, and polar solvents. The model is 

tested with the largest database compiled until now comprehending 8812 data points 

(NDP) from 553 systems, from which 2671 points are from systems with a polar solvent, 

including water, and the remaining 6141 points are from nonpolar or weakly polar solvent 

systems where supercritical carbon dioxide (SC-CO2) is included. In relation to the previ-

ous work on polar systems [11] this essay includes a much larger database for validation, 

namely, 5349 (=8812–3463) points of which 677 (=2671–1994) are specific for polar solvents.  

2. Model Development and Database 

2.1. Rice and Gray ��� Correlation 

The ��� model is based on the general Einstein equation [19,20], which relates diffu-

sivity (�) with absolute temperature (�) and a non-null friction coefficient (�): 

=
���

�
=

���

�� + ��
=

���

�� + ��,� + ��,�
  (2)

where �� is the Boltzmann constant (1.380658 × 10-16 g cm2 s-2 K), � is the sum of a hard 

core (��) and an attractive (��) contribution, and �� embodies a Lennard-Jones (LJ) (��,�) 

and a polar (��,�) term. The �� coefficient is expressed by modifying the Enskog equation 

[21,22] with a correction term � [1]: 

�� =
8

3
 �� � 

� �2π��� � 
�(� )

� 

  (3)
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where  �� is the number density, � is the molecule diameter, � is its mass, �(� ) is the 

radial distribution function at contact, and � is the hard sphere correction factor. The ��,� 

is given by the recipe employed by Ruckenstein and Liu [23], and ��,� is proposed em-

bodying the method of Brokaw [24]: 

��,� =
8

3
 �� � 

� �2π � �� � 
0.4

� 
∗�.�  (4)

��,� =
8

3
 �� � 

� �2π � �� � 
� 

�

� 
∗�.�  (5)

where � 
∗ is the reduced temperature and � the Stockmayer parameter [24]. The sum of 

��,� and ��,� is now expressed in terms of a fitting coefficient � = 0.4 + ��: 

��,� + ��,� =
8

3
 �� � 

� �2π � �� � 
�

� 
∗�.�

 (6)

In this way, the Stockmayer parameter is eliminated from Equation (6) and the dipole 

moments are no longer required for the � calculation, in opposition to the original work 

of Magalhães et al. [11]. This approach expands the model applicability, since dipole mo-

ments are not frequently available and their accurate estimation is not easy. This is espe-

cially true in systems with complex molecules, such as, for instance, astaxanthin and quer-

cetin [25,26] that, in the case of the latter, exhibits 48 possible stable conformers with di-

pole moments varying from 0.35 to 9.87 Debye under vacuum [27]. 

The unary quantities of the previous expressions should be now replaced by the cor-

responding binary ones, giving rise to the core equation: 

���
 =

�� �

8
3

 ��,� ����,��
� �2π ��� �� � �

������,���
���

 +
���

���
∗ �.� �

  
(7)

where subscripts 1 and 2 denote solvent and solute, respectively,  ��,� is the number den-

sity of the solvent, ���,��� is the binary effective hard sphere diameter (where the Ben–

Amotz–Herschbach expression [28] adopted for the effective calculation), ��� is the re-

duced mass of the system, ������,��� is the pair radial distribution function at contact [29], 

��� is the hard sphere correction factor for ���
  [30] and ���

∗  is the binary reduced tem-

perature. For the calculation of the above-mentioned properties it is further required to 

know the critical volume (��), the critical temperature (��), and the mass (�) of both solute 

and solvent, and the mass density of the solvent (��) at the desired temperature and pres-

sure. Knowing the properties of the pure compounds one can estimate the previously 

mentioned properties by recurring to Equations (8)–(19), 

���,�(Å) = 0.7889 × 10�� ��,�(cm� mol��)�/�,   � = 1 or 2 (8)

���,�

��

=
��,�(K)

1.2593
 ,   � = 1 or 2 (9)

���,�� = (1 − ���)
���,� + ���,�

2
 (10)

���,��

��

= �
���,�

��

���,�

��

 (11)

��
∗ =

�

���,� ��⁄
,   � = 1, 2 or 12 (12)
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����,� = 1.1532 ���,� �1 + �1.8975 ��
∗�

��/�

,   � =  1, 2 or 12 (13)

��,�
∗ = ��,� ����,�

� (14)

� =
π

6
��,�

∗  (15)

������,��� =
1

(1 − �)�
�1 − � +

2�

1 + ����,� ����,�⁄
� �1 − � +

�

1 + ����,� ����,�⁄
�  (16)

��� = 1 + 0.94605��,�
∗ �.� + 1.4022��,�

∗ � − 5.6898��,�
∗ � + 2.6626��,�

∗ � (17)

��� =
������,�

∗ �.�
�� �������,� ����,�⁄ ��� �������,� ����,�⁄ �

�
�� ��(�� ��⁄ )�

����,�
∗ �

�� �������,� ����,�⁄ ��
�  with: 

⎩
⎪
⎨

⎪
⎧� = −1.676382 ��,�

∗ + 1.638561 

� = −8.516830 ��,�
∗ + 8.631536 

� = −1.320347 ��,�
∗ + 1.351067 

� = −5.062546 ��,�
∗ + 5.409662 

 

(18)

��� =
����

�� + ��

 (19)

where ���,� is the LJ diameter of component j [23], ���,� ��⁄  is the LJ energy parameter of j 

[23], ���,�� and ���,�� ��⁄  are the binary LJ parameters, ��
∗ is the reduced temperature of 

j, ����,� is the effective hard sphere diameter of component j calculated by the Ben–Amotz–

Herschbach expression [28], ��,�
∗  is the reduced number density of the solvent, � is the 

packing fraction of the solvent and ��� is the correction factor for the self-diffusion coef-

ficient of the solvent [23]. 

Besides the parameter ��� explicit in Equation (7), a second fitting constant is now 

introduced in the model, namely, the binary interaction parameter ��� embodied in the 

Lennard-Jones diameter combining rule (Equation (10)). 

2.2. Parameters Optimization and Model Assessment  

The optimization of the ���  parameters (���  and ��� ) was performed using the 

Nelder-Mead simplex algorithm described in Lagarias et al. [31] and codified in the 

fminsearch function of Matlab R2017b [32], adopting AARD (Equation (1)) as objective 

function. The model performance was assessed in terms of AARD (%) and average rela-

tive deviation (ARD, %, Equation (20)). A flowchart of the optimization procedure can be 

observed in Figure 1. 

ARD =
100

NDP
�

���,�
���� − ���,�

���

���,�
���

���

���

  (20)

 

Figure 1. Schematic representation of the optimization process. The objective function is in this work 

the AARD (Equation (1)).  
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2.3. Database and Compounds Properties 

The database utilized in this work consists of a total of 8812 data points from 553 systems 

which were divided into four subsets: (i) 177 systems with supercritical carbon dioxide SC-

CO2 as solvent (NDP = 5028); (ii) 154 systems with nonpolar or weakly polar solvents exclud-

ing SC-CO2 (NDP = 1113); (iii) 88 systems with polar solvents excluding water (NDP = 1405); 

and (iv) 133 systems with water as solvent (NDP = 1266). All the diffusion data were taken 

from [15–18,25,26,33–238]. 

The properties required for modeling, whenever not reported in the original articles, 

were calculated or retrieved from the literature. In general, densities and viscosities were taken 

from the NIST database [239] or calculated by appropriate equations from Yaws [240], Cibulka 

and Ziková [241], Cibulka et al. [242,243], Cibulka and Takagi [244], Przezdziecki and Sridhar 

[8], Viswanath et al. [245], Lucas [245,246], Assael et al. [247], Cano-Gómez et al. [248], and 

Pádua et al. [249]. For the particular case of SC-CO2 densities and viscosities were estimated 

by the correlations of Pitzer and Schreiber [250] and Altunin and Sakhabetdinov [251], respec-

tively, and for water they were obtained from IAPWS-IF97 [252]. The properties of the pure 

compounds (i.e., molecular weight (��), critical temperature (��,�), and critical volume (��,�)) 

are provided in Supplementary Material (Table S1). 

In general, the fitting results achieved were good. However, some systems/data points 

were excluded from the database because the data were outside the domain of application of 

the equations used to estimate ��� and/or ��� delivering negative values without physical 

meaning. This was the case for carbon disulfide [161], methanol [161] and 1-alkyl-3-methylim-

idazolium ionic liquids (i.e., [Bmim][bti], [Emim][bti], [Hmim][bti] and [Omim][bti]) [160] in 

acetonitrile, and for 9,10-dimethylanthracene in n-hexane at 298.15 K and 3500 bar [149]. Nev-

ertheless, the exclusion of these points corresponds to only 0.52% of the eligible compiled data. 

3. Results and Discussion 

The model performance was evaluated in terms of AARD and ARD. The global results 

achieved by the model and the results for each subset of systems are presented in Table 1. The 

individual deviations obtained for each system are provided in Supplementary Material 

(Tables S2–S5). 

Table 1. Performance of the ��� model for each subset of systems and for the global database. 

Solvent Polar Water Non-Polar SC-CO2 Global 

Nsys 89 133 154 177 553 

NDP 1405 1266 1113 5028 8812 

AARD (%) 3.77 3.96 3.29 3.23 3.43 

ARD (%) −0.36 0.16 −0.31 0.35 0.13 

Nsys—number of systems; NDP—number of data points. 

Overall, the ��� model offers excellent results with very low AARD and ARD values as 

evidenced in Table 1 and shown graphically in Figure 2. Altogether, for the 553 studied sys-

tems the global AARD is 3.43% and the global ARD is 0.13%. For the four subsets analyzed 

the AARD values are within 3.23% and 3.96%. As for the individual systems, the top three 

with the highest deviations correspond to carbon tetrabromide (CBr4) in n-hexane [149], py-

rene (C16H10) in n-hexane [149], and potassium chloride (KCl) in water [97,100,117], with 

AARD values of 22.48%, 21.89% and 15.26%, respectively. 

Generally, no bias was observed in any subset of systems as demonstrated by the ARD 

values of −0.36%, −0.31%, 0.16%, and 0.35%  for the polar, non-polar, water, and SC-CO2 sys-

tems, respectively. These observations are further highlighted in Figure 1 where one confirms 

that only three systems exhibit ARD values above 10% or below −10%. Interestingly, these 

systems are the same as those mentioned above (in the AARD analysis) and present ARD 

values of −16.94%, −18.07% and −11.15%. 
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Figure 2. ARD histograms with bin sizes of 2.5% for systems with: (a) polar solvents, excluding 

water; (b) water as solvent; (c) non-polar and weakly polar solvents, excluding SC-CO2; and (d) SC-

CO2 as solvent. 

The calculated vs. experimental ��� results illustrated in Figure 3 corroborate the 

previous AARD and ARD analysis, evidencing the very good performance of the ��� 

model. The higher deviations observed for the SC-CO2 subset are further analyzed in Fig-

ure 4, where the relative deviations (RD) against the reduced number density of sol-

vent, ��,�
∗ , are plotted. As illustrated, the higher deviations tend to be found closer and 

below the critical density where accurate ��� measurements are frequently difficult to 

carry out as well as their modeling; hence, such deviations may be expected in advance. 
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Figure 3. Calculated (���
����) vs. experimental (���

���
) binary diffusion coefficients for systems with: 

(a) polar solvents, excluding water; (b) water as solvent; (c) non-polar and weakly polar solvents, 

excluding SC-CO2; and (d) SC-CO2 as solvent. 

 

Figure 4. Relative deviation (RD) vs. reduced number density (��,�
∗ ) of the SC-CO2 diffusivity subset. 

The vertical dashed line identifies the reduced number density of CO2 (��,�,�
∗ ). 
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The experimental and calculated ��� vs. ��,�
∗  is presented in Figure 5 for various so-

lutes and solvents at fixed temperature and pressure. In general, the results are accurately 

described by the new ��� model. For the polar systems shown in Figure 4a (i.e., etha-

nol/propane (A) at 298.15 K, 323.15 K, and 348.15 K [217], ethyl acetate/quercetin (B) at 1 

bar [25], and ethanol/palladium(II) acetylacetonate (C) at 1 bar [121]) an excellent repre-

sentation can be observed especially for systems B and C. Regarding the subset of water 

as solvent (see Figure 4b), the comparison of the experimental and calculated diffusivities 

of methane (D) [53,54], ionic liquid [Bmim][PF6] (E) [45], alanine (F) [49], and α-cyclodex-

trin (G) [95], all at � = 1 bar, clearly emphasizes the wide range of applicability of the 

model. For the subset of non-polar and weakly polar solvents excluding SC-CO2 (see Fig-

ure 4c), it is observed that the model predicts ��� for diverse systems and conditions, 

including n-octane/xenon (H) at 1 bar [125], n-hexane/ferrocene (I) at 313.15 K [122], and 

cyclohexane/acetone (J) at 1 bar and 160 bar [118]. Finally, Figure 4d illustrates the results 

for SC-CO2 as solvent, namely for ethanol (L) at 313.21 K [190] and eicosapentaenoic acid 

(K) at 313.15 K and 333.15 K [227], respectively. Notwithstanding the good results 

achieved for most systems, higher deviations are observed for ethanol at low CO2 density 

which correspond to ���  measurements close to the critical point (see previous com-

ment). Ultimately, it may be concluded that the ��� model has a wide range of applica-

bility enabling the calculation of diffusion coefficients of simple (e.g., monoatomic species 

such as xenon) and complex (e.g., α-cyclodextrin and ionic liquids such as [Bmim][PF6]) 

solutes in polar or non-polar dense solvents, under isothermal or isobaric conditions. 

 

Figure 5. Representation of experimental (mark) and predicted (line) ��� values vs. reduced num-

ber density of the solvent (��,�
∗ ), at fixed � or �, for systems with: (a) polar solvents excluding wa-

ter; (b) water as solvent; (c) non-polar and weakly polar solvents, excluding SC-CO2; and (d) SC-

CO2 as solvent. The letters identify the following systems: A—ethanol/propane at 348.15 K (I), 323.15 

K (II), and 298.15 K (III); B—ethyl acetate/quercetin at 1 bar; C—ethanol/palladium(II) acety-

lacetonate at 1 bar; D—water/methane at 1 bar; E—water/[Bmim][PF6] at 1 bar; F—water/alanine at 

1 bar; G—water/α-cyclodextrin at 1 bar; H—n-octane/xenon at 1 bar; I—n-hexane/ferrocene at 313.15 

K; J—cyclohexane/acetone at 160 bar; K—SC-CO2/eicosapentaenoic acid at 333.15 K (I) and 313.15 K 

(II); L—SC-CO2/ethanol at 313.21 K. 
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A program that allows the estimation of diffusivities using the present model can be 

found in the Supplementary Material along with instructions on its use. 

4. Conclusions 

In this work, an upgraded Rice and Gray-based correlation is proposed for the calcula-

tion of binary diffusivities of solutes in polar and non-polar solvents. The model embodies a 

combined and simplified Stockmeyer and Lennard-Jones potential contribution in ��� but 

does not require the dipole moments of either solute or solvent. Moreover, the solvent normal 

boiling point and solvent molar volume at normal boiling point are also not necessary. Hence, 

the applicability of the new correlation is significantly extended in terms of chemical species.  

The model validation was accomplished using the literature data for 553 polar and non-

polar systems (8812 data points) involving diverse solvents and solutes. Overall, the model 

achieves very low deviations, with AARD = 3.43% and ARD = 0.13%, suggesting a consistent 

unbiased behavior. The database was divided into four subsets according to the nature of the 

solvent, namely polar solvents (excluding water), water, and non-polar and weakly polar sol-

vents (excluding SC-CO2), and SC-CO2. Excellent results were obtained for all subsets with the 

exception of the low-density SC-CO2 region, i.e., near the critical point. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/ma15186416/s1: Software; Table S1. Pure component data, com-

pound name, chemical formula, CAS number, molecular weight, �, critical temperature, ��, and vol-

ume, ��; Table S2. Polar solvents systems studied, number of data point (NDP), reduced number density 

range (��,�
∗  range), absolute temperature range (� range), binary interaction parameters (��� and ���), 

average absolute relative deviations (AARD), and source of the diffusion data; Table S3. Water solvent 

systems studied, number of data point (NDP), reduced number density range (��,�
∗  range), absolute tem-

perature range (� range), binary interaction parameters (��� and ���), average absolute relative devia-

tions (AARD), and source of the diffusion data; Table S4. Non-polar solvent systems studied, number of 

data point (NDP), reduced number density range (��,�
∗  range), absolute temperature range (� range), 

binary interaction parameters (��� and ���), average absolute relative deviations (AARD), and source 

of the diffusion data; Table S5. SC-CO2 solvent systems studied, number of data point (NDP), reduced 

number density range (��,�
∗  range), absolute temperature range (� range), binary interaction parameters 

(��� and ���), average absolute relative deviations (AARD), and source of the diffusion data. 
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