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Abstract: For extensive radiation exposure, inventing a novel radiation shielding material is a burning
issue at present for the purpose of life saving. Considering this thought, in this study, by adding
sundry amounts of Bi2O3 into pure high-density polyethylene (HDPE), six HDPE systems were
prepared to evaluate the radiation shielding efficiency. These HDPE systems were HDPEBi-0 (pure
HDPE), HDPEBi-10 (10 wt% Bi2O3), HDPEBi-20 (20 wt% Bi2O3−), HDPEBi-30 (30 wt% Bi2O3),
HDPEBi-40 (40 wt% Bi2O3), and HDPEBi-50 (50 wt% Bi2O3). The values of the linear attenuation
coefficients of the experimental results (calculated in the lab using HPGe) were compared with the
theoretical results (obtained using Phy-X software) at 0.060, 0.662, 1.173, and 1.333 MeV energies. To
ensure the accurateness of the experimental results, this comparison was made. It was crystal clear
that for energy values from 0.06 MeV to 1.333 MeV, all the experimental values were in line with
Phy-X software data, which demonstrated the research setup’s reliability. Here, the linear attenuation
coefficient (LAC), and mean free path (MFP) shielding parameters were assessed. At the energy of
1.333 MeV, sample HDPEBi-0 showed an HVL value 1.7 times greater than that of HDPEBi-50, yet it
was 23 times greater at 0.0595 MeV. That means that for proper radiation protection, very-low-energy
HDPE systems containing 10–50% Bi2O3 could be used; however, the thickness of the HDPE system
must be increased according to the energy of incident radiation.

Keywords: HDPE; Bi2O3; effective atomic number; novel radiation shielding material

1. Introduction

Natural ionizing radiation enduringly eclipses earth [1]. In our modern life, uses
of radiation are mandatory in different sectors, such as the use of ionizing radiation in
scientific disciplines, X-rays in medical and security checkpoints at airports, and computed
tomography scans and radio-therapy in oncology departments [2,3]. To ensure careful
control of the radiation received and protect people from unexpected exposure to radiation,
shielding is one of the supreme priorities [4,5]. Usually, inorganic glasses [6], metal [7],
ceramics [8,9], and organic polymers [10,11] are used for protection against hazardous
radiation. Polymers such as polyethylene, polystyrene, polyvinyl chloride, polyacrylates,
and polysiloxanes have been taken into account as organic protective materials for the
prevention of radiation hazards [12]. The flexibility, durability, and featherweight features
of polymer compounds have driven researchers to choose polymers as radiation shielding
materials [11]. Bismuth borate glasses have shown healthier radiation protection ability
than lead glass and steel–magnetite concrete [13].

The addition of high-density oxides such as PbO, Bi2O3, and WO3 to the matrix mate-
rial enhances the shielding ability of this material due to the large atomic number of Pb, Bi,
and W elements [14]. Although the Bi+3 ion has a large density and effective atomic number,
it is not yet possible to synthesize glass using individual Bi+3 ions. However, glass with
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added Bi2O3 is considered one of the most important radiation protective materials [15].
Onuoha et al. researched the mechanical properties of recycled polypropylene composites
filled with periwinkle powder. It was found that periwinkle shell powder enhanced the
tensile strength, Young’s modulus, and hardness of polypropylene composites [16]. In
2022, Abdolahzadeh et al. investigated the shielding and mechanical properties of HDPE
containing nano-tungsten oxide, bismuth oxide, and barium sulfate. The results confirmed
that the value of LAC increased with the increase in the amount of filler used [17]. Very
recently, in 2020, Lun et al. investigated the tensile properties of polyethylene composites
containing geological kaolin as fillers. The obtained results specified that 8% kaolin filler
provided the highest tensile properties [18].

Moreover, due to the low rates of crystallization, non-toxicity, high radioactive resis-
tance, large optical basicity, high third-order nonlinear optical susceptibility, high polariz-
ability, long infrared cut-off wavelengths, and moisture resistance, Bi2O3-containing glass
(as a replacement of PbO) are utilized for radiation shielding purposes [19–23]. In fabrics,
adding bismuth oxide as the replacement of lead boosts the shielding ability to counter
X-rays [3]. That is why the purpose of this research study was to develop the shielding
ability of HDPE by accumulating Bi2O3 into it by taking into account the measuring values
of the LAC, HVL, MFP, and Zeff shielding parameters in the energy range from 0.015 MeV
to 15 MeV. Additionally, for validating the experimental setup, the values of the linear
attenuation coefficients of the prepared high-density polyethylene measured using an
HPGe detector were coordinated with the theoretical results obtained using Phy-X software.
To the best of the authors’ knowledge, these compositional HDPE systems have not been
previously assessed.

2. Materials and Methods
2.1. Sample Preparation

A quantity of high-density polyethylene was obtained from Sidi Kerir Petrochemicals
Company, weighed with a 0.0001 g sensitive scale, and placed in a thermal mill at an
effective temperature of 140 ◦C, where the melting point of polyethylene is 130 ◦C. The
mill was operated at a rotation speed of 40 revolutions per minute (rpm) for a period
of one-third of an hour. Powdered bismuth oxide was purchased from Al-Gomhoria
Chemicals Company in Egypt with a purity of 98.7% and was filtered using a sieve having
a diameter of 50 µm. After making sure that high-density polyethylene was completely
melted, powdered bismuth oxide was gradually added to the specific amounts presented
in Table 1, and to ensure that the mixture had become completely homogeneous, rotation
was performed for a quarter of an hour. Then, the mixture was placed in a mold with
dimensions of 125 × 125 × 30 mm, and the samples were pressed with a hydraulic heat
press at a pressure of 10 MPa and a temperature of 200 ◦C for a quarter of an hour; the
pressure was gradually increased to 20 MPa for another quarter of an hour. It remained
under pressure to gradually cool using water at 20 ◦C, and at the end, the prepared sample
was taken and cut into suitable discs to measure its shielding efficiency [24–26]. Figure 1
shows a picture of the prepared bismuth oxide containing high-density polyethylene. All
experimental works were performed at Plastic Technology Center in Victoria, Egypt.

Table 1. Codes, chemical compositions, and densities of HDPE-Bi2O3 composites.

Code
Composition (wt%) Density

(g/cm3)HDPE Bi2O3

HDPEBi-0 100 - 0.959 ± 0.005
HDPEBi-10 90 10 1.053 ± 0.004
HDPEBi-20 80 20 1.167 ± 0.009
HDPEBi-30 70 30 1.310 ± 0.006
HDPEBi-40 60 40 1.491 ± 0.003
HDPEBi-50 50 50 1.731 ± 0.008
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Figure 1. Picture of prepared bismuth oxide containing high-density polyethylene. 

 

Figure 1. Picture of prepared bismuth oxide containing high-density polyethylene.

2.2. Morphological Test

Scanning electron microscopy (SEM) was used to analyze the microstructure of
bismuth-injected high-density polyethylene samples to obtain the characterization of the
samples. A JSM-5300 JEOL microscope was used [27].

2.3. Gamma Attenuation Test

An HPGe detector and three radioactive point sources were used to test the shielding
parameters of the HDPE-Bi2O3 samples (see Figure 2). The details for the experimental
measurement are given in References [28,29].

Materials 2022, 14, x FOR PEER REVIEW 3 of 11 
 

 

HDPEBi-50 50 50 1.731 ± 0.008 

2.2. Morphological Test 
Scanning electron microscopy (SEM) was used to analyze the microstructure of bis-

muth-injected high-density polyethylene samples to obtain the characterization of the 
samples. A JSM-5300 JEOL microscope was used [27]. 

2.3. Gamma Attenuation Test 
An HPGe detector and three radioactive point sources were used to test the shielding 

parameters of the HDPE-Bi2O3 samples (see Figure 1). The details for the experimental 
measurement are given in References [28,29].  

 
Figure 1. Illustration of setup of the experimental work. 

The experimental linear attenuation coefficient (LAC) was determined using the fol-
lowing equation [30,31]: LAC 	1 	  (1)

The experimental results of the LACs of the HDPE-Bi2O3 samples were compared 
with the results obtained using Phy-X software [27]. The MFP and HVL were calculated 
based on LAC calculations [32–37]. 

Figure 2. Illustration of setup of the experimental work.



Materials 2022, 15, 6410 4 of 11

The experimental linear attenuation coefficient (LAC) was determined using the
following equation [30,31]:

LAC =
1
t

ln
N0

N
(1)

The experimental results of the LACs of the HDPE-Bi2O3 samples were compared
with the results obtained using Phy-X software [27]. The MFP and HVL were calculated
based on LAC calculations [32–37].

3. Results and Discussion
3.1. Morphological Results

Scanning was performed to know the distribution of bismuth oxide particles within
HDPE using the electron microscope, and it was clear that the particles uniformly dis-
tributed and that the amount of Bi2O3 increased in the matrix with the increase in the
proportion of particles, as shown in Figure 3. The higher the percentage of filler particles
(Bi2O3) was, the more uniformed the distribution of particles inside the polymer was;
therefore, the rate of photon collision with the material was higher due to the gaps being
filled by Bi2O3 particles, and consequently, the attenuation of the incident photons was
higher. We could conclude that the addition of bismuth particles improved the shielding
properties of HDPE.
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3.2. Gamma Attenuation Results

In this study, HDPEBi-10 (10 wt% Bi2O3), HDPEBi-20 (20 wt% Bi2O3−), HDPEBi-30
(30 wt% Bi2O3), HDPEBi-40 (40 wt% Bi2O3), and HDPEBi-50 (50 wt% Bi2O3) HDPE systems
were prepared by adding Bi2O3 to HDPEBi-0 (pure HDPE). To compare the experimental
results (obtained using HPGe) with the theoretical results (obtained using Phy-X software),
the linear attenuation coefficients were measured in the lab at four different energies; their
graphical representation is presented in Figure 4. The aim of this comparison was to
validate the setup in this study, i.e., to check the accuracy of the experimental results. It is
very clear from Figure 4 that from 0.06 MeV to 1.333 MeV, all the experimental values were
in line with Phy-X software data, which validated the research setup.
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Figure 4. Linear attenuation coefficients of all prepared samples at different energies according to
experimental and Phy-X results.

We calculated the LACs in a wide energy range to examine the behavior of the LACs
at higher energies (see Figure 5). For all studied energies, the LAC values of the HDPE
systems (containing Bi2O3) followed the following declining trend: HDPEBi-50 > HDPEBi-
40 > HDPEBi-30 > HDPEBi-20 > HDPEBi-10. At all energy values E < 0.3 MeV, the
HDPE systems supplemented with Bi2O3 showed higher LAC values. At the energy of
0.015 MeV, the values of the LACs of all studied HDPE systems were as follows: HDPEBi-0,
0.71 cm−1; HDPEBi-10, 11.7 cm−1; HDPEBi-20, 25 cm−1; HDPEBi-30, 41.6 cm−1; HDPEBi-
40, 62.8 cm−1; and HDPEBi-40, 90.8 cm−1. HDPE system HDPEBi-50 (50 wt% Bi2O3)
showed the highest LAC value compared with the other HDPE systems, which indicated
that a higher amount of Bi2O3 in pure HDPE boosted the radiation shielding ability.
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HDPEBi-0, HDPEBi-10, HDPEBi-20, HDPEBi-30, HDPEBi-40, and HDPEBi-50 were
HDPE series with diverse concentrations of Bi2O3, and the discrepancies among the as-
sessed Zeff values are presented as functions of the photon energy in Figure 6a. The values
of Zeff lay in the ranges of 4–3, 42–3, 57–3, 65–4, 70–4, and 74–5, respectively. The maximum
values of the effective atomic number (Zeff) originated at the low energy of 0.015 MeV
and were 4, 40, 55, 63, 69, and 73 for the studied HDPE series (HDPEBi-0, HDPEBi-10,
HDPEBi-20, HDPEBi-30, HDPEBi-40, and HDPEBi-50, respectively). Yet, the Zeff values of
all studied HDPE systems followed a similar trend after Bi2O3 contamination, and HDPEBi-
50 showed the highest Zeff value, whereas HDPEBi-10 showed the lowest Zeff value. Here,
HDPEBi-10, HDPEBi-20, HDPEBi-30, HDPEBi-40, and HDPEBi-50 showed values 9, 13,
15, 16, and 17 times greater than that of HDPEBi-0 at the energy of 0.015 MeV thanks
to the addition of Bi2O3 at 10, 20, 30, 40 and 50 wt% to HDPE. For energy values in the
range of 0.02–0.08 MeV, Zeff decreased and rapidly came down. It was clear that a higher
amount of Bi2O3 increased the Zeff value of HDPE. An exponential decrease was found
for the energy range of 0.1–0.6 MeV; however, in the 1–15 MeV energy range, the effective
atomic number (Zeff) sharply increased. In the energy range of 2–15 MeV, HDPEBi-10,
HDPEBi-20, HDPEBi-30, HDPEBi-40, and HDPEBi-50 showed values 1.2, 1.5, 1.9, 2.4, and
3.0 times greater than that of HDPEBi-0. Here, the minimum values were seen at an energy
of 1.5 MeV, and the values were 2.7, 2.9, 3.2, 3.6, 4.1, and 4.8 for the studied HDPE series,
respectively (see Figure 6b).
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In Figure 7, the HVL values are plotted for the pure HDPE means without Bi2O3
(HDPEBi-0) and HDPE containing 10–50% Bi2O3 (HDPEBi-10, HDPEBi-20, HDPEBi-30,
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HDPEBi-40, and HDPEBi-50). The figure shows that the HVL of the studied samples
increased with the increase in energy (this was correct for all compositions). From Figure 7,
it is very clear that sample HDPEBi-0 showed an HVL value 1.7 times greater than that of
HDPEBi-50 at the energy of 1.333 MeV, but at 0.0595 MeV, it was 23 times greater. That
means that at very low energy values, HDPE containing 10–50% Bi2O3 could be used
for protection from hazardous radiation, but with the increase in energy, the thickness of
HDPE must be increased in order to obtain suitable protection from the high energy of
radiation. It was revealed that at any fixed energy, the HVL decreased with the addition of
Bi2O3 in HDPE. Pure HDPE showed a higher HVL than the other studied HDPE samples
containing Bi2O3. Moreover, HDPEBi-50, with the highest content (50 wt%) of Bi2O3,
showed the lowest HVL value. Thus, all studied HDPE samples containing Bi2O3 showed
better radiation shielding competence than pure HDPE. Hence, it was clear that Bi2O3
addition was the cause of the reduction in the thickness of the HDPE samples that could
attenuate the photon incidence.
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To validate the efficacies of pure HDPE (without Bi2O3) and of the HDPE (with 10–50%
Bi2O3) systems, the mean free path (MFP) values were examined herein for identifying
the radiation shielding ability and the gained MFP fallouts for the pure and contaminated
HDPE systems against photon energy, as demonstrated in Figure 8. This figure shows
that Bi2O3-containing HDPE systems (HDPEBi-10, HDPEBi-20, HDPEBi-30, HDPEBi-40,
and HDPEBi-50) showed lower MFP values than pure HDPE at the low energy levels of
0.0595 MeV and 0.0810 MeV. This provided the suggestion that these HDPE systems with
the apt addition of Bi2O3 showed proficiency as radiation shielding materials. It is eminent
that lower MFP values designate a healthier radiation shielding ability in any absorbing
material. The MFP values of the HDPE systems ranked as follows: HDPEBi-50 < HDPEBi-40
< HDPEBi-30 < HDPEBi-20 < HDPEBi-10 < HDPEBi-0. The MFP values of HDPE systems
HDPEBi-0, HDPEBi-10, HDPEBi-20, HDPEBi-30, and HDPEBi-40 were found to be 1.7, 1.6,
1.4, 1.3, and 1.2 times higher than that of HDPEBi-50 against Co-60 gamma irradiation.
HDPE system HDPEBi-50 (50 wt% Bi2O3) had the lowermost MFP value among the other
HDPE systems; hence, we could conclude that the radiation shielding features of the HDPE
systems improved with the addition of Bi2O3.
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4. Conclusions

Very few data on HDPE exist in terms of radiation shielding purposes, even though
HDPE is extensively used worldwide. Hence, various amounts of Bi2O3 in HDPE were
studied to identify its radiation shielding capability. The values of the linear attenuation
coefficients obtained using Phy-X software and an HPGe detector were compared to ensure
the sample preparation was consistent. The Zeff maximum values originated at the low
energy of 0.015 MeV and were 4, 40, 55, 63, 69, and 73 for the studied HDPE series, i.e.,
HDPEBi-0, HDPEBi-10, HDPEBi-20, HDPEBi-30, HDPEBi-40, and HDPEBi-50, respectively.
HDPEBi-50 showed the highest Zeff value, whereas HDPEBi-10 showed the lowest Zeff
value. Here, HDPEBi-10, HDPEBi-20, HDPEBi-30, HDPEBi-40, and HDPEBi-50 showed
values 9, 13, 15, 16, and 17 times greater than that of HDPEBi-0 at the energy of 0.015
MeV. The MFP values of the HDPE systems ranked in the following order: HDPEBi-50
< HDPEBi-40 < HDPEBi-30 < HDPEBi-20 < HDPEBi-10 < HDPEBi-0. The MFP values
of HDPE systems HDPEBi-0, HDPEBi-10, HDPEBi-20, HDPEBi-30, and HDPEBi-40 were
found to be 1.7, 1.6, 1.4, 1.3, and 1.2-times higher than of HDPEBi-50 against Co-60 gamma
irradiation. In the energy range of 0.015 MeV to 15 MeV, HDPE systems showed greater
shielding ability according to their higher contents of Bi2O3.

Author Contributions: Conceptualization, M.E.; Data curation, A.H.A.; Funding acquisition, A.H.A.
and S.Y.; Investigation, M.I.S.; Methodology, M.E.; Project administration, A.H.A.; Resources, S.Y.;
Software, M.I.S.; Supervision, M.I.S.; Validation, M.I.S.; Writing—original draft, S.Y.; Writing—review
and editing, M.E. All authors have read and agreed to the published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2022R2), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant data are within this paper.



Materials 2022, 15, 6410 10 of 11

Acknowledgments: The authors express their gratitude to Princess Nourah bint Abdulrahman
University Researchers Supporting Project number (PNURSP2022R2), Princess Nourah bint Abdul-
rahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grupen, G. Introduction to Radiation Protection: Practical Knowledge for Handling Radioactive Sources; Springer: New York, NY, USA,

2010.
2. Almurayshid, M.; Helo, Y.; Kacperek, A.; Griffiths, J.; Hebden, J.; Gibson, A. Quality assurance in proton beam therapy using a

plastic scintillator and a commercially available digital camera. J. Appl. Clin. Med. Phys. 2017, 18, 210–219. [CrossRef] [PubMed]
3. Maghrabi, H.A.; Vijayan, A.; Deb, P.; Wang, L. Bismuth oxide-coated fabrics for X-ray shielding, Text. Res. J. 2016, 86, 649–658.
4. Priyanka, C.; Mekkanti, M.R.; Mathappan, R. A review on biological effects of radiation on human health and its preventive

measures. Int. J. Health Care Biol. Sci. 2020, 1, 34–38.
5. Dong, M.; Zhou, S.; Xue, X.; Feng, X.; Sayyed, M.I.; Khandaker, M.U.; Bradley, D.A. The potential use of boron containing

resources for protection against nuclear radiation. Radiat. Phys. Chem. 2021, 188, 109601. [CrossRef]
6. Saleh, E.E.; Algradee, M.A.; Al-Fakeh, M.S. Nuclear radiation shielding behavior for prepared LNZP glasses with (Cd+Te). Radiat.

Phys. Chem. 2021, 189, 109743. [CrossRef]
7. El-Khatib, A.M.; Elsafi, M.; Almutiri, M.N.; Mahmoud, R.M.M.; Alzahrani, J.S.; Sayyed, M.I.; Abbas, M.I. Enhancement of

Bentonite Materials with Cement for Gamma-Ray Shielding Capability. Materials 2021, 14, 4697. [CrossRef]
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