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Abstract: The article presents the results of the synthesis of lead-free piezoceramic materials
(Ba0.9Ca0.1)(Ti0.9Zr0.1)O3 (BCZT system) in spherical powder form and their subsequent application
in the binder jetting additive manufacturing process. Green models were manufactured using this
powder material with binder jetting, different sintering modes were investigated, and the func-
tional piezoelectric properties were measured. Lattice structures with triply periodic minimum
surface topologies, such as Gyroid and Schwarz, were designed and manufactured. It is shown
that the functional properties of lattice structures depend on the parameters of the cells and the
chosen topology.

Keywords: piezoceramic; binder jetting; additive manufacturing; triply periodic minimum
surface; spheroidization; BCZT; piezoelectric properties; lead-free piezoceramic; piezomaterial;
barium titanate

1. Introduction

Two important directions in additive manufacturing (AM) development are the broad-
ening of the list of materials available for fabrication and the study of the functional
characteristics of structures with complex geometric shapes (lattice structures, functionally
graded materials, etc.).

Binder jetting (BJ) is one of the most flexible AM processes for operations with dif-
ferent classes of materials. This process is used with polymers [1–3], metal alloys [4–9],
ceramics [10–15], and composite materials [16–20].

As with most AM processes, a sufficiently large number of parameters and variables
affect the final quality of the products manufactured using the BJ process. The most impor-
tant ones can be grouped as follows: characteristics of the initial powder material (such
as particle shape and morphology, average size and particles size distribution, flowability,
apparent density, wettability); characteristics of the binder (spray ability and wetting be-
havior, and the viscosity and volatility of binder components); printing parameters (layer
thickness, binder saturation, nozzle cleaning frequency, curing time, and temperature); and
product geometry features (such as small holes, wall thickness, print resolution, location
relative to the movement of the printhead with nozzles, etc.) [21].

Piezoceramic materials generate an electric charge during deforming or, conversely,
deform at an applied electric potential. Piezoceramic is used to manufacture elements of
ultrasonic vibration sources, sensor devices, energy storage devices and actuators [22–24],
and pressure and temperature sensors in high-frequency media [25,26]. Like most ceramic
materials, piezoceramic is difficult to process mechanically [27]. Therefore, the production
of non-standard complex geometries from ceramic materials may be practically impossible
using traditional manufacturing methods.
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Producing elements with complex shapes from piezoceramic using AM is a promising
direction of investigation [28]. AM has advantages such as the absence of expensive
tools, easy scalability, the possibility of implementing parts with complex shapes, a high
degree of material utilization, and lower production time [29]. The use of AM for the
manufacture of piezoelectric materials will expand the scope of their application and
expand the possibilities of forming multi-layer structures and structures with complex
geometric shapes. An increased level of freedom in the geometry of piezoelectric elements
will allow for significant improvements in the characteristics of many devices based on
piezoelectric and ferroelectric materials [30,31].

There are publications in the literature that demonstrate reasonably successful experi-
ences as regards manufacturing piezoceramic elements using AM processes [13,15,32,33].

Li et al. [34] investigated manufactured barium titanate micro-spheres for the DLP
3D printing of polymer matrix piezocomposites with high dielectric permittivity. Barium
titanate micro-spheres were obtained using plasma spheroidization technology. The authors
showed that the obtained particles of barium titanate had a spherical shape, a smooth
surface, a particle size of about 38 µm, improved mechanical strength, and high purity,
which allow for the possibility of UV-curing-based 3D printing. First of all, the use of
spherical powder significantly improves the fluidity and UV-curing performance of the
composite material, with the elevated UV-curing depth increasing by a maximum of 542%.
The authors demonstrated the results of an experiment involving 3D printing a polymer
matrix piezocomposite (0–3) with enhanced dielectric properties.

Xu et al. [35] used the computer modeling method and found that using complex
geometric structures with a topology of a triply periodic minimal surface (TPMS), such
as Schwartz, Gyroid, and Neovius, can significantly increase the output characteristics of
composite piezoelectric elements (the output voltage increases 2-to-8-fold).

There are no publications focused on the results of studies of BCZT lead-free piezoce-
ramics spherical powder synthesis, the use of this material in the binder jetting additive
manufacturing process, or experimental studies of the functional piezoelectric properties
of samples with complex lattice structures. In this work, we demonstrate the possibility
of spherical lead-free piezoceramic powder synthesis (Ba0.9Ca0.1)(Ti0.9Zr0.1)O3 for the BJ
process and the functional properties achieved in 3D-printed piezoelectric elements with
complex TPMS lattice structures.

2. Materials and Methods

The particle size distribution of the powders was determined by laser diffraction, i.e.,
Analysette 22 NanoTec plus (Fritsch, Idar-Oberstein, Germany), with a total measurement
range of 0.01–2000 µm.

The Tescan Mira 3 LMU (TESCAN, Brno, Czech Republic) scanning electron micro-
scope (SEM) operating at magnifications from 4× to 106× with an accelerating voltage
from 200 V to 30 kV was used for powder characterization.

The phase composition was analyzed using a Bruker D8 Advance X-ray (Bruker corp.,
Billerica, MA, USA) diffractometer (XRD) using CuKα radiation (l = 1.5418 Å).

The basic technological process for the received lead-free piezoceramic material
(Ba0.9Ca0.1)(Ti0.9Zr0.1)O3 was solid-state synthesis. Powders of barium carbonate, titanium
dioxide, calcium carbonate, and zirconium dioxide were used as starting materials.

Table 1 shows the results of the particle size distributions and phase composition
measurements of the starting materials.

The spheroidization was carried out by induction plasma treatment in the Tek-15
device (Tekna Plasma Systems Inc., Sherbrooke, QC, Canada).

The density of the sintered samples was measured using the Archimedes method, and
relative density was calculated while taking into account the theoretical density of BCZT,
i.e., 5.86 g/cm3.

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were
performed using a SETSYS Evolution 16 (Setaram, Caluire-et-Cuire, France).
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Table 1. Characteristics of the starting powder materials for BCZT synthesis.

Material D10 D50 D90 Phase Composition

CaCO3 26.0 µm 50.9 µm 89.6 µm Calcite
BaCO3 0.8 µm 5.0 µm 16.1 µm Witherite
TiO2 204 nm 447 nm 813 nm Rutile + Anatase
ZrO2 214 nm 295 nm 407 nm Baddeleyite

The piezoceramic samples were manufactured on the ExOne Innovent system (The
ExOne Company, North Huntingdon, PA, USA). This system relates to the BJ additive manu-
facturing process. The original ExOne BS004 solvent binder (ethylene glycol monobutylether-
based solution) and CL001 cleaner (2-butoxyethanol-based solution) were used for the
printing of the functional ceramic components.

After the 3D printing, the platform (together with the green models in the surrounding
powder) was placed in the thermal furnace (Yamato DX412C, Yamato Scientific, Santa
Clara, CA, USA) at 180 ◦C for 3 h for curing.

Solid-state synthesis and sintering were achieved in a high-temperature furnace (KJ-
1700X, Zhengzhou Kejia Furnace Co., Ltd., Zhengzhou, China).

Discs from the powder after spheroidization were manufactured by traditional uniaxial
pressing and sintering for a comparison of the functional properties with samples produced
by BJ.

All samples were poled in air at 150 ◦C. An electric field of 0.6 kV/mm was applied
to samples during heating, maintained for 3 min, and then samples were cooled to room
temperature.

The capacity of the sample and the loss tangent were measured with an E7-28 immit-
tance analyzer at a frequency of 1 kHz and an effective voltage of 0.5 V. The piezoelectric
coefficient d33 was determined on polarized samples using the APC YE2730A setup using
a quasi-static method.

3. Results and Discussion
3.1. Synthesis and Spherical Powder Production

For solid-state synthesis, all components of the starting materials were weighed
according to the molar fractions of the final composition. Wet mixing was carried out using
an attritor with the addition of isopropyl alcohol in a mass ratio of 1:1 to the total mass of
the starting powders; ZrO2 balls were used in a mass ratio of 10:1 to the total mass. Mixing
was carried out for 3 h with stops for 15 min after each hour. At the end of mixing, the
material was unloaded, and drying (evaporation of isopropyl alcohol) was carried out at a
temperature of 100 ◦C for at least 12 h.

A thermogravimetric analysis in conjunction with differential scanning calorimetry
was conducted to determine the synthesis temperature. The results are presented in
Figure 1.

According to the DSC results, it can be seen that complete synthesis occurred at a
temperature no lower than 1000 ◦C; therefore, solid-phase synthesis was carried out at a
temperature of 1000 ◦C, with a dwell time of 2 h. After solid-state synthesis, the phase
composition of the material was studied (Figure 2).

There are no peaks corresponding to the initial components (BaCO3, CaCO3, SiO2,
and ZrO2) or BaO and CaO in the XRD results, which indicates the full completion of
the synthesis. The phase composition of the final material was a compound of tetragonal
structure based on barium titanate.

The BCZT powder obtained after solid-state synthesis had a particle size from 100 to
500 nm. However, a powder with such a particle size is usually not used in the BJ process.
The BJ technology generally requires the use of a comparably larger powder, preferably
spherical or rounded, with particle sizes from 3 to 150 microns. Further agglomeration by
partial sintering of the powder and subsequent plasma spheroidization were carried out.
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After plasma spheroidization, the powder material was investigated. Figure 3 shows
the result of the XRD analysis. The phase composition did not change and represents a
compound of tetragonal structure based on barium titanate.
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The SEM investigation (Figure 4a) indicates that powder particles predominantly
possessed a spherical shape. The study of the particle micro-section showed that the
internal micro-structure had a dendritic morphology (Figure 4b).
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Figure 4. SEM images of BCZT powder after plasma spheroidization: (a) general view; (b) micro-section.

The measurement of the particle size distribution established numerical values of the
main parameters: D10—10.3 µm, D50—31.8 µm, and D90—100.4 µm. Flowability was also
measured by flowing the sample through a Hall funnel. It was 50 s/50 g with an apparent
density of 2.49 g/cm3.

3.2. Binder Jetting and Post-Treatment

Based on the results of the preliminary tests, the following modes were used as
printing parameters: layer thickness: 100 µm; saturation: 80%; roller speed: 6 mm/s; roller
rotation speed: 200 rpm; vibration frequency of powder material feeder: 2000 rpm; speed
of powder material feeder during the formation of a layer: 42 mm/s; drying temperature:
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55 ◦C; and drying time: 30 s. Figure 5 shows the schema of the additive manufacturing of
piezoceramic samples based on the BJ process.
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Figure 5. Schema of AM of piezoceramic samples based on BJ process.

In the first stage, using an oscillator, the powder is fed from the feeder into the working
area, and a thin layer of powder material is formed on the platform using a roller. Next, the
binder is jetted from the printhead to areas of the powder layer determined by a computer
model. The powder layer is heated by an infrared lamp to fix the binder. Then, the platform
is lowered to a specified layer thickness and the processes described earlier are repeated.
After 3D printing, the platform is placed in a thermal furnace for the complete curing of
the binder. After curing, the workpieces have sufficient strength to be removed from the
surrounding powder and any excess removed. A brush or air purging is used for cleaning.

The sintering process was carried out in two stages: first, debinding was carried
out at a temperature of 600 ◦C, and then, the temperature was increased for sintering (a
temperature from 1400 to 1500 ◦C; a dwell time of 2, 4, 8 and 10 h). Generalized profiles
of thermal post-treatments are shown in Figure 6. A study of material densification after
sintering in different modes was carried out (Figure 7).
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Figure 7. Changes in the relative density of samples after sintering at different modes.

As a result of sintering, the highest density was obtained at temperatures of 1500 ◦C
and 1450 ◦C, with a dwell time of 8 and 10 h. Due to there being no significant changes in
the density of the material between a dwell time of 8 and 10 h, all further experiments were
conducted with samples sintered at 1500 ◦C and a dwell time of 8 h.

To determine the functional properties of the material manufactured by BJ and subse-
quent sintering, cylindrical samples were manufactured, the final size of which was 10 mm
in diameter and 1 mm in height (Figure 8a); sintering occurred at 1500 ◦C, with a dwell
time of 8 h. Top and bottom surfaces were coated by silver electrodes (Figure 8b). The
samples were polarized in the air at a temperature of 20 ◦C above the Curie temperature
using an electric field of 1.6 kV/mm for 2 min.
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Figure 8. Images of BCZT samples manufactured by BJ for the functional property measurements:
(a) samples after sintering; (b) samples after silver electrode coating.

The piezoelectric properties were measured a day after polarization. The dielectric per-
mittivity ε33/ε0 at 1 kHz was 1909, dielectric loss tanδ was 1.9, the value of the piezoelectric
coefficient d33 was 152 pC/N, and the electromechanical coupling coefficient Kp was 0.151.
The piezoelectric properties of samples obtained using traditional piezoceramic technology
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using BCZT powder after plasma spheroidization were as follows: the dielectric permit-
tivity ε33/ε0 at 1 kHz was 2229, dielectric loss tanδ was 0.9, the value of the piezoelectric
coefficient d3 was 165 pC/N, and the electromechanical coupling coefficient Kp was 0.212.
However, properties of samples obtained using AM were inferior to samples obtained
using traditional piezoceramic technology. This may be explained by the non-optimal mode
of binder removal and sintering, the presence of pores and, as a consequence, a decreased
volume of active piezoceramic phase in the sample.

3.3. Additive Manufacturing of Triply Periodic Minimum Surface Lattice Structures

To investigate the possibility of manufacture and the properties of objects with a
complex geometry, lattice structures with the topology of TPMS Schwarz, Neovius, and
Gyroid types were designed. The cell size was chosen to be 4 mm. The experiments
with varying wall thicknesses showed that the printhead resolution was limited by a
wall thickness of 0.25 mm. Furthermore, Neovius-type structures were not successfully
manufactured in the investigated wall-thickness ranges (up to 1 mm). Destruction of
samples with thin wall thicknesses mainly occurred in the depowdering stage, with the
strength of the green models not being sufficient for extracting and cleaning.

The geometric parameters of the TPMS samples successfully manufactured by 3D
printing are presented in Table 2, and Figure 9 presents images of their computer models.

Table 2. The geometric parameters of TPMS samples.

Lattice Type Wall Thickness Cell Size Label

Schwarz 0.5 mm 4 mm S1
Schwarz 0.25 mm 4 mm S2
Gyroid 1 mm 4 mm G1
Gyroid 0.5 mm 4 mm G2
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Sintering and polarization of TPMS samples were achieved under the same conditions
as those previously described for the cylindrical samples. Figure 10 shows images of
samples at different stages of manufacturing.
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Piezoelectric properties TPMS samples manufactured by BJ from BCZT spheroidized
powder are presented in Table 3.

Table 3. Piezoelectric properties of TPMS samples.

Label ε33/ε0 tanδ d33, pC/N Kp

S1 404 2.8 110 0.170
S2 165 3.1 91 0.297
G1 528 3.2 113 0.564
G2 222 3.2 105 0.312

Samples with thicker walls exhibited higher functional property values (only Kp was
exceptional as regards this general trend), dielectric permittivity increased in proportion to
the change in wall thickness, and the piezoelectric coefficient values became 10–20% higher
with a 100% increase in the wall thickness.

The decrease in the piezoelectric coefficient d33 of TPMS samples, in comparison with
the cylinder samples, was probably caused by a decrease in the total volume fraction of the
piezoceramic material and the features of the complex ceramic architectural structure. In
general, such a comparison is not completely accurate, since in the case of the cylindrical
samples, the material and manufacturing technology were evaluated, and when measured
on the TPMS samples, the influence of geometric features on the functional properties was
additionally evaluated.

Moreover, attention should be paid to the values of the electromechanical coupling
coefficient Kp measured for the TPMS samples. This parameter characterizes the efficiency
of converting mechanical energy into electrical energy (and vice versa) and may be a
quality criterion for such complex structures when measuring their functional properties.
For cylindrical samples, the electromechanical coupling coefficient Kp was 0.151, whereas
for all TPMS samples, Kp exceeded this value, e.g., in the case of the Gyroid-type topology,
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this twofold or more. This indicates a greater sensitivity and efficiency when converting
mechanical action into electrical energy, which can have a positive impact on a number of
potential applications of piezoelectric elements with complex lattice structures.

When comparing the results of the functional properties of the cellular structures of
different topologies, it should be noted that all the values of the main characteristics were
higher for structures with a Gyroid-type topology.

4. Conclusions

In the research presented herein, we demonstrate the possibility of applying solid-
phase synthesis and subsequent plasma spheroidization for the production of promising
lead-free piezoelectric (Ba0.9Ca0.1)(Ti0.9Zr0.1)O3 material spherical powders. Using this
powder material and the binder jetting additive manufacturing process, samples were
produced in order to measure the functional characteristics, i.e., the dielectric permittivity
at 1 kHz was 1909, the piezoelectric coefficient was 152 pC/N, and electromechanical
coupling coefficient was 0.151.

BJ technology makes it possible to produce objects with complex geometries, which
was demonstrated by manufacturing lattice structures with TPMS topologies, such as
Schwarz and Gyroid types. The piezoelectric properties were also measured for these
structures, a distinctive feature of which was the high values of electromechanical coupling
coefficient, e.g., two or more times those of the values measured for the cylindrical samples.
This feature may be positive for a number of potential applications using piezoelectric
elements, such as medical devices, sonar, pressure sensors, etc. The greatest effect associated
with the increasing electromechanical coupling coefficient was achieved in Gyroid-type
lattice structures.
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