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Supplementary Information 

PTFE Crystal Growth in Composites: A Phase-Field Model 
Simulation Study 

1. Supplementary Methods 
In the phase-field model, the non-conserved crystal order parameter, Ψ(r, t) (position 

r, time t), is Ψ = 0 in the liquid phase and Ψ = 1 in the complete crystalline phase. Accord-
ing to Ginzburg–Landau theory [1,2], the evolution of Ψ(r, t), with time, is controlled by 
Equation (S1). 
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where Γ is the interfacial mobility, T is the temperature, and F(Ψ, T) is the total free energy 
functional of the system. 

The total free energy of the system, F(Ψ, T), consists of local free energy density, flocal., 
and gradient free energy density, fgrad, as shown in Equation (S2). 
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where V is the region occupied by the system. According to the work of Kyu [3] and his 
colleagues, Ψ is defined as the ratio of the thin layer thickness, l, of the crystal to the opti-
mal layer thickness, lopt. 

According to the Landau expression [4], the local free energy density, flocal(Ψ, T), is, 
usually, an asymmetric double potential well function of Ψ and reaches two local minima 
in two stable states (Ψ = 0 and Ψ = 1). However, the crystal of the polymer is significantly 
different from other crystalline materials. Due to its complex long chain structure, the melt 
is difficult to crystallize completely and contains considerable defects or amorphous parts 
[5]. Therefore, when the polymer is in a stable solidification state, the order parameter, Ψ, 
should be less than 1. To describe the metastability of polymer crystals, Harrowel and 
Oxtoby [6] introduced the instability barrier, ξ(T). The local free energy density, flocal(Ψ, 
T), reaches a local maximum when Ψ = ξ(T) between the local minima, Ψ = 0 and Ψ = ξ0 < 
1, where ξ0 is the Ψ value in the stable solidification state depending on the degree of 
supercooling. Using these assumptions, a new local free energy density is shown in Equa-
tion (S3). 
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where W is the dimensionless coefficient describing the height of the barrier on the sur-
face. The ξ0 value can be estimated as ξ0 = Tm / T0

 
m [7], since the degree of defect in polymer 

crystallization usually depends on the supercooling temperature, with Tm and T0
 
m being 

the experimental melting temperature and the equilibrium melting temperature, respec-
tively. In practice, the crystallinity, crystal morphology, and crystal defects of polymer 
solidification are closely related to supercooling. Thus, Tm may depend on supercooling. 
However, for each crystallization temperature, its value is often not determined experi-
mentally. In this work, Tm is estimated with Tc and T0

 
m according to the Hoffman–Week 

theory [8,9]. Due to the local free energy density, flocal(ξ0, T) < 0 and flocal(ξ(T), T) > 0, there 
exists an Ψ̂  such that flocal( Ψ̂ , T) is 0, and Equation (S4) can be obtained: 
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According to the Hoffman–Week theory, Ψ̂  has the form shown in Equation (S5). 
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In addition, the gradient of the crystal order parameter constitutes the gradient free 
energy density, fgrad(Ψ), which is usually used to describe the symmetric or asymmetric 
growth process of crystal interfaces. Its form is as shown in Equation (S6): 
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where κ0 is the interface gradient coefficient and β(θ) is the interface anisotropic growth 
rate. In a 2D simulation, β(θ) = 1 + εcos(jθ), where ε is the anisotropic strength, j is the 
number of modes, and θ is the angle between the interface normal and the reference axis. 

Substituting Equations (S2) to (S6) into Equation (S1), Equation (S7) is obtained as 
follows: 
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Model parameters W and κ0 are calculated from experimentally measurable quanti-
ties [10] in Equations (S8) and (S9).  
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where ΔH is the melting heat, R is the gas constant, σ is the surface free energy per unit 
area, and n is the amount of substance per unit volume of the polymer monomer. 

The crystallization of the polymer is affected by a temperature field produced by la-
tent heat release. At the same time, latent heat has an obvious influence on the growth of 
the crystal interface [11]. To determine the temperature of the growing crystal front, the 
heat conduction equation can be derived from the enthalpy conservation law in Equation 
(S10). 
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where α = κT / (ρCP); Κ = ΔH / CP; and ρ, CP, and κT represent density, specific heat capacity, 
and thermal conductivity, respectively. 

For the convenience of application, a dimensionless phase-field model is used in the 
simulation. For this reason, the characteristic length, d, of the parametric single crystal and 
the mass diffusion coefficient, D, are introduced [12]. Assume that the time and space 
variables are rearranged to 2ˆ /t Dt d=  and ˆ / d=r r , and the temperature variable is 

rearranged to ˆ ( ) / ( )c m cT T T T T−= − . From d and D, the interfacial mobility, Γ, is esti-
mated as Γ = D / d2 [13]. The dimensionless time step and space step are fixed as 

-52.5ˆ 10t∆ = ×  and 
-21.5 1ˆ ˆ 0x y∆ = ∆ = × , respectively. Thus, the phase-field model can 

be expressed in the following dimensionless form, as shown in Equations (S11) and (S12): 
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where 
2 2 2
0 0ˆ / dκ κ= ; ˆ / Dα α= ; and )ˆ / ( m cT TΚ −= Κ  and the barrier of instability 

energy, ξ, is as follows [10] in Equation (S13).  
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2. Supplementary Results 

 
Figure S1. Morphology of PTFE crystal evolution under various supercooling degrees, Ts (aniso-
tropic mode j = 4). (a–d) Ts = 20 K, τ = 40, 120, 200, 280; (e–h) Ts = 25 K, τ = 40, 120, 200, 280; (i–l) Ts = 
30 K, τ = 40, 120, 200, 280; (m–p) Ts = 35 K, τ = 40, 120, 200, 280. 
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Figure S2. Morphology of PTFE crystal evolution under various supercooling degrees, Ts (aniso-
tropic mode j = 6). (a–d) Ts = 20 K, τ = 40, 120, 200, 280; (e–h) Ts = 25 K, τ = 40, 120, 200, 280; (i–l) Ts = 
30 K, τ = 40, 120, 200, 280; (m–p) Ts = 35 K, τ = 40, 120, 200, 280. 

 
Figure S3. Morphology of PTFE crystal evolution under various supercooling degrees, Ts (aniso-
tropic mode j = 36). (a–d) Ts = 25 K, τ = 40, 80, 120, 160; (e–h) Ts = 30 K, τ = 40, 80, 120, 160; (i–l) Ts = 
35 K, τ = 40, 80, 120, 160; (m–p) Ts = 40 K, τ = 40, 80, 120, 160. 
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Figure S4. Morphology of PTFE crystal evolution with different dimensionless latent heat, Κ̂ . (a–d)

2, 40, 80, 120, 160ˆ τΚ = = ; (e–h) 3, 40, 80, 120, 160ˆ τΚ = = ; (i–l) 4, 40, 80, 120, 160ˆ τΚ = = ; (m–p) 
5, 40, 80, 120, 160ˆ τΚ = = ; (q) dimensionless temperature distribution of Figure S4d; (r) local detail 

of Figure S4q. 

 
Figure S5. Morphology of PTFE crystal evolution with different anisotropic strengths, ε. (a–d) ε = 
0.01, τ = 40, 120, 200, 280; (e–h) ε = 0.02, τ = 40, 120, 200, 280; (i–l) ε = 0.031, τ = 40, 120, 200, 280; (m–
p) ε = 0.04, τ = 40, 120, 200, 280. 
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Figure S6. Morphology of PTFE crystal evolution with different interface thickness related 
parameters, 0κ̂ . (a–d) 0 0.4, τ 40, 80, 120, 160κ̂ = = ; (e–h) 0 0.8, τ 40, 80, 120, 160κ̂ = = ; (i–
l) 0 1.2, τ 40, 80, 120, 160κ̂ = = ; (m–p) 0 1.6, τ 40, 80, 120, 160κ̂ = = . 
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