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Abstract: In situ X-ray crystallography powder diffraction studies on beta silicon carbide (3C-SiC)
in the temperature range 25–800 ◦C at the maximum peak (111) are reported. At 25 ◦C, it was
found that the lattice parameter is 4.596 Å, and coefficient thermal expansion (CTE) is 2.4 ×10−6/◦C.
The coefficient of thermal expansion along a-direction was established to follow a second order
polynomial relationship with temperature (α11 = −1.423× 10−12T2 + 4.973× 10−9T + 2.269× 10−6).
CASTEP codes were utilized to calculate the phonon frequency of 3C-SiC at various pressures using
density function theory. Using the Gruneisen formalism, the computational coefficient of thermal
expansion was found to be 2.2 ×10−6/◦C. The novelty of this work lies in the adoption of two-step
thermal expansion determination for 3C-SiC using both experimental and computational techniques.

Keywords: thermal expansion isotropy; X-ray diffraction; DFT calculation; CASTEP; SiC

1. Introduction

Silicon carbide is presently being investigated as a promising material for the third
generation of semiconductor materials after the first and second-generation relative ma-
terial, due to fact that SiC possesses excellent physical and electronic properties, which
has attracted the attention of the researchers [1,2]. In fact, SiC has wide band gap, high
thermal conductivity, high critical electric field, excellent mechanical strength, low thermal
expansion, which allowed to design an innovative semiconductor device with respect to
silicon ones, in terms of high breakdown voltage, restricted on-resistance and extreme
operating temperature [3–6], such as space exploration, geothermal wells, and nuclear
power instrumentation. Due to its electrical, mechanical, and thermal qualities, SiC is an
excellent material for high-temperature pressure sensor devices [7–9]. It is well-known
for its many polytypic forms that emerge under ambient conditions, SiC material has
more than 250 poly-types, including 3C-SiC, 4H-SiC, 6H-SiC depending on the stacking
sequence [10]. The zinc-blende (B3) polytype, also known as the 3C polytype, and the
hexagonal wurtzite structured 6H polytype are the most widely studied and/or naturally
occurring structures. The cubic structure is often referred to as beta (β) SiC, whilst the
hexagonal and rhombohedral structures are also classified as alpha (α) SiC [11].

The coefficient of thermal expansion (CTE, α) of a material defines how its length
changes in response to temperature. Matching the CTE of components enhances the robust-
ness, dependability, and lifetime of devices in electrical and mechanical devices by reducing
the chance of internal residual stresses forming due to temperature cycling [12–16]. In con-
trast, component mismatch CTE can jeopardies the device’s strength and integrity [17–19],
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causing temperature variations to render devices unusable, especially in electronics and
high-precision applications [20–22]. As a result, strategies for designing materials with
customized CTE are especially suitable for applications in electrical systems. Several
works in [23–27] have investigated cubic (3C) or beta polytype SiC coefficient thermal
expansion for approximation range extrapolation from ambient temperature to 1400 ◦C.
Table 1 highlights prior research on the thermal expansion characteristics of SiC using X-ray
diffraction [23,25–27] and dilatometry [24]. The thermal expansion coefficient values of
4.3–6.2 × 10−6 K−1 have been observed on average. For more details, refer to the work
of [27], which is the most often cited in the study of the thermal expansion of 3C-SiC.

Table 1. Average coefficients of thermal expansion of 3C–SiC (adapted from [26]).

Author Technique Temperature Range (◦C) α (10−6/K◦ )

Li, Bradt [27] XRD RT-1000 4.45
Taylor, Jones [23] XRD RT-1200 4.4

Popper, Mohyuddin [24] Dilatometer RT-1400 4.4
Suzuki et al. [25] XRD RT-800 4.3

Ngoepe, de Villiers [26] XRD RT-1200 -

First-principles phonon calculation using quasi-harmonic approximation has found an
excellent method to estimate thermal expansion at higher temperature for a several number
of materials [28,29]. The lattice vibration of β-Si1-xC has studied at higher temperature
without Gruneisen parameters [30]. Thermal expansion using phenomenological lattice
dynamical theory in the quasi-harmonic approximation [31]. Another studied showed that,
3C-SiC at higher temperature and pressure up to 70 GPa predicted to phase transform to
rock-salt phase (B1) due to the volume collapsed of around 18.1% [32].

This study aims to investigate coefficient thermal expansion based in situ X-ray crys-
tallography at high temperature range from 25–800 ◦C at maximum peak (111) of 3C-SiC
using both the experimental and computational approaches. We aim to compare the result
obtained from our approach with the available data in the literature of coefficient thermal
expansion of 3C-SiC. To the best of our knowledge, the study is the first to use both ex-
perimental at high temperature and the Gruneisen formalism theory along with density
functional theory to calculate the thermal expansion of 3C-SiC.Morever, Mechanical and
thermodynamics of 3C-SiC also investigated under at variance of pressure 0, 1 and 2 GPa.

2. Materials and Methodology

The 3C-SiC (99.9%) was purchased from Hong Wu International Group Ltd., Guangzhou,
China. At room temperature, 3C-SiC has a face centered cubic structure (FCC). Its space group
is F43m, as shown in Figure 1. Field Emission Scanning electron microscope (FESEM) used to
characterize the powder of 3C-SiC. Image of FESEM test of 3C-SiC was conducted at Universiti
Teknologi Petronas. The sample zoom magnification began with rang from ×1 k to ×100 K
(High contrast mode) for optimized imaging and particle size of the sample morphology
as illustrated in Figure 2. The determination of the chemical composition of 3C-SiC nano-
powder was used Energy-Dispersive X-ray Spectroscopy (EDX) (SUPRA 55VP from Carl
Zeiss AG Oberkochen, Germany). In-situ X-ray diffraction used to compute the expansion
of maximum 2θ (θ = 20–80◦) at peak (111) with varying the temperature. An X-ray CuKα

incident beam with a wavelength of 0.154 nm was used for the XRD experiments. The
device has been meticulously calibrated through the observation of standard (SRM660c)
and by visual diffraction analysis of samples undergoing solid-sates structural transition.
A Pt10Rh-Pt (10% rhodium) type S thermocouple (± 0.0025 ◦C tolerance) controlled oven
chamber ensures a steady and homogeneous temperature distribution in the sample. The
experiment was carried out in consecutive stages of 25 ◦C up to 800 ◦C, for a total of
9 steps. Before beginning the temperature dependent XRD measurement, the chamber was
vacuumed under (10−4 mbar inert gas/argon).
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2.1. Model

The following equation was used to compute the face-centered cubic crystalline struc-
ture dimension of (a) of the unit cell, the volume of the cell, and the atomic radius:

2ksinθ = nλ (1)

Here, k indicates to the d-spacing (m), θ for scattering angle (◦), n represents the
positive integer, and λ is the wavelength (m).

1
d2

hkl
=

h2 + k2 + l2

a2 (2)

where (a) is the lattice parameter of face-centered cubic crystalline structure dimension,
and (k, h, and l) are the Miller indices (m). There are 4 atoms per unit cell in a face closed
centered cubic, and the relation to compute the atomic packing factor as given in [33] is:

APF =
π

3√2
(3)

The atomic volume is obtained using:

APF =
volume of atomic
unit cell volume

(4)
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Since the lattice parameters obtained from the Equation (2) has polynomial curve as
function of the temperature, we fit the curve with third order polynomial to determine the
lattice parameter as function of temperature that can be expressed as:

a = −2.048× 10−12T3 + 1.834× 10−8T2 + 9.892−6T + 4.359 (5)

R2 = 0.9965

The coefficient thermal expansion of 3C-SiC calculated using the derivatives of Equation (5)
according and fitted to Equation (6) below, assuming one-dimensional of lattice parameter
change with temperature and divided by lattice parameter.

αa =
d(Ina)

dT
≈ 1

a0
× da

dT
(6)

where is a and a0 is 3C-SiC lattice parameter values of the temperature and room tempera-
ture, respectively.

The Scherrer’s equation used to estimate the crystallite size (D) is given as [34]:

D =
Kλ

βcosθ
(7)

where, k is the shape factor and its value is 0.9, λ is the wavelength, β is full width at half
maximum (FWHM), and θ is the diffraction angle. The strain induced (ε) in particles due
to crystal imperfection and distortion can be calculated using the formula [34]:

ε =
β

4 tan (θ)
(8)

Assuming that the particles size and strain to line boarding are not dependent to each
other, the observed line breath is simply the sum of Equations (7) and (8).

β =
kλ

D cosθ
+ 4ε tanθ (9)

By rearranging Equation (9)

βcosθ =
kλ

D
+ 4ε sinθ (10)

The Equation (10), is Williamson-Hall equation and a plot is drawn with 4sinθ along
x-axis and βcosθ along y-axis for each temperatures of 3C-SiC. The data was linearly fitted,
and the particle size estimated from the y-intercept and the strain indued value (ε) from
the slop.

2.2. Computational Details

The phonon modes of 3C-SiC were calculated via first principles using the density
function theory at frequency of 0 GPa, 1 GPa and 2 GPa. Materials Studio Version 6.0
(Accelrys) software was used in this research work [35]. Furthermore, DFT computations
also incorporate structural optimization and enthalpy, including exchange–correlation
functions using the Perdew–Burke–Ernzerho method [36]. Projection augmented plane
wave (PAW) has been used to compute the interconnection between the actual electron
and the valence electron of the ion [37]. Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
was utilized for the structural relaxation [38]. The energy cutoff of 500 eV was employed
with plane wave basis set and Monkhorst pack technique of a 4 × 4 × 4 k point grid [39].
During the structural relaxation, the total energy of the model was reduced to a value less
than 1.0 × 10−6 eV, the atom displacement to a value less than 0.001, the residual forces to
a value less than 0.02 eV/Å, the residual bulk stress to less than 0.02 GPa.
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3. Results and Discussion
3.1. In Situ X-ray Diffraction Result

Figure 2 shows the image of the particle shapes of 3C-SiC powder at room temperature
and the identifying the elementals composition of 3C-SiC. Figure 2a, the image confirms
that the particles sizes are in nanoscale with agglomeration and Figure 2b, shows 3C-SiC
has lowest impurities of O2 at weight of 2.6%. However, from EDX analysis is confirmed
that highest proportion is carbon and silicon with percentage of 43.21% and 54.19%, re-
spectively. fit2d software has been used to analyze the XRD diffraction pattern [40]. The
highest temperature of the experiment is 800 ◦C. The diffraction patterns of 3C-SiC at room
temperature and different temperature were represented in Figures 3 and 4. Throughout
the heating cycle, XRD patterns of 3C-SiC were obtained within the temperature range
from 25 ◦C to 800 ◦C at 25 ◦C and from 100 ◦C at equal 100 ◦C steps. As seen in Figure 4,
when the temperature increased, the patterns revealed a typical transition of maximum
peaks (111) to lower 2θ angles, denotes to an increase of the inter-distance planner caused
by thermal expansion. Table 2 presents the lattice parameters (a), 2θ, and volume.
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Table 2. The lattice parameters and volume, of 3C-SiC as variant of temperature.

Temperature (◦C) a (Å) 2θ◦ Volume (Å)3

25 4.35962 35.64 82.86
100 4.36098 35.63 82.94
200 4.36191 35.62 82.99
300 4.36336 35.61 83.07
400 4.36482 35.60 83.15
500 4.36717 35.58 83.29
600 4.36917 35.56 83.41
700 4.37085 35.55 83.56
800 4.37341 35.53 83.65

At the 3C-SiC peak (111), the 2θ value decreases slightly with increasing temperature
as presented in Figure 5. This is due to the thermal expansion that occurred in crystal
lattice. The incident X-ray beam strikes a deeper depth of the crystalline thickness and
the intensity in the Bragg positions diminishes. This is because of the thermal expansion
diffuse scattering (i.e., electron-phonon). Lattice constant and cell volume were calculated
based on the face-centered cubic closed packed structure of 3C-SiC model as presented in
Table 2. Thermal expansion causes a nearly linear rise in the unit cell volume of beta silicon
carbide over the whole temperature range investigated, as shown in Figure 6. The error bar
indicated there is statistically significant change between the lattice parameter and volume
as function of temperature. This trends which agree with previous works [23–27].
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The scattered data of The Williamson-Hall (W-H) method are analysed in Figure 7.
The (W-H) provided the macrostrain and inverse of the plot intercept estimate the particle
size. The average particle size estimated from (W-H) at 25 ◦C is 0.00698 and increase as
the temperature increased due to dilation of the crystal lattice as confirmed in Figure 6a,b.
However, this trend is agreed with literature [41]. The lattice strain of 25 ◦C, 100 ◦C and
300 ◦C is fluctuation from 2.96× 10−5, 7.33× 10−4 and 1.01× 10−3, respectively. However,
from the temperature range of 400–800 ◦C, the lattice strain observed stable due to the
crystalline structure stability.
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3.2. Hybridization and Crystallization of 3C-SiC

As it shown in Figure 8, XPS the spectrum contains of Si p2 which is denoted of by a
solid line. Si p2 peaks has a high binding energy and asymmetric shape that indicative of
the SiO2 found on 3C-SiC surface [42]. A peak of 101.5 eV refers to the binding energy of
the Si-C bond corresponding to the recorded SiC crystal values in [43]. Gaussian dash line
in the spectrum which on Si 2p spectrum is indicative to clean (not oxidized) of SiC surface
which is representing of contribution of the 2p3/2-2p1/2 doublet components of Si bound
to C in SiC lattice [44]. Figure 9 shows the C 1s spectrum recorded is slightly asymmetric to
the peak because of different coordination patterns of carbon in 3C-SiC. The C 1s XPS peak
can be Gaussian fitted into three peaks with the aid of Origin software. The initial peak
at 283.3 eV in 3C-SiC represents C-Si bond in well crystallized SiC [45]. The carbon with
activity in crystal lattice caused the formation of C-C peak bond at 283.9 eV and another
peak at 285.6 eV, it is indicative of C-O bond in adsorptive CO2 impurities [46].
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3.3. Experimental Technique of Thermal Expansion

Temperature variation of the coefficient thermal expansion of 3C-SiC as computed
in the present study and available data from the literature illustrated in Figure 10. It
also compares the findings of this study with result of previous studies of [23–27]. The
coefficient thermal expansion at room temperature was found 2.4 × 10−6/◦C which nearly
identical to room temperature of the value of 2.5 × 10−6/◦C that reported by [26], and
slightly closed to value of 2.9 × 10−6/◦C of that reported by [24] and deviated to the
values of 3.26 × 10−6/◦C, 3.21 × 10−6/◦C, 3.24 × 10−6/◦C that reported by [23,25,27],
respectively. The chemical structure of the molecule, the packing structure in the crystal
lattice, and the chain arrangement all affects the coefficient of linear thermal expansion
and its anisotropy [47]. The coefficient thermal expansion continuously increases to about
5.1 × 10−6/◦C at 800 ◦C which is also compatible with the results of [24,25,27], expect
for [26], which deviated increased to 5.48 × 10−6/◦C and decreased of 4.5 × 10−6/◦C
in [23]. However, Ref. [23] have reported that the coefficient thermal expansion of 3C-
SiC has a specific temperature dependence. Their findings indicate that the coefficient of
thermal expansion of 3C-SiC rapidly increases below a certain threshold of 200 ◦C, but
then remnant steady at about 4.5 × 10−6/◦C over a wide temperature range from about
300–800 ◦C. The linear thermal expansion that has reported by [27], Refs. [24,25] mostly
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identical about 100 ◦C to 800 ◦C. However, this study reports a lower coefficient of the
thermal expansion which has average 3.82×10−6/◦C. The reason of this lower maybe
due to technique for the synthesis of 3C-SiC because which [24,25,27] has not mentioned
what technique that has been synthesize of 3C-SiC. For [26], the authors have investigated
the thermal expansion under tri structural isotropic TRISO and as their XRD showed a
different material not only3C-SiC, so maybe their result obtained measured with a high
deviation of thermal expansion. Moreover, during the synthesize of beta silicon carbide at
higher temperature, it has been observed a small amount of other polymorphism of silicon
carbide such hexagonal (6H) [48]. However, hexagonal silicon carbide which exhibits
anisotropic behavior in thermal expansion between the a-axis and c-axis [27,49] in where
3C-SiC exhibited an isotopically thermal expansion along a-axis and linear coefficient
thermal expansion strictly followed a linear behavior.
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3.4. Computational Technique of Thermal Expansion

To measure the thermal expansion from the first principal calculation, the volume
of thermal expansion must be calculated. The volume of thermal expansion (αv) =

γCv
3BV ,

where Cv is a constant volume of specific heat, γ Gruneisan parameter, B is bulk modulus
and Vm molar volume of 3C-SiC at specific temperature. The formula for calculating the
sum of specific heat at constant volume can be Cv = 1

4 ∑ piCi, where Ci is the specific
heat contribution from a single mode of frequency ωi and pi is degeneracy, i.e., number
of phonons or branches of frequency ωi in the phonon dispersion curves. Since the 3C-
SiC is face centered cubic which have four formula units that represent by factor 1

4 in
above equation. Ci = R

[
x2

i exp(xi)
]
/[exp(xi)− 1]2, where Xi =
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ħ 

Abstract: In situ X-ray crystallography powder diffraction studies on beta silicon carbide (3C-SiC) 

in the temperature range 25–800 °C at the maximum peak (111) are reported. At 25 °C, it was found 

that the lattice parameter is 4.596 Å , and coefficient thermal expansion (CTE) is 2.4 ×10−6/°C. The 

coefficient of thermal expansion along a-direction was established to follow a second order polyno-

mial relationship with temperature (𝛼11 = −1.423 × 10−12𝑇2 + 4.973 × 10−9𝑇 + 2.269 × 10−6 ). 

CASTEP codes were utilized to calculate the phonon frequency of 3C-SiC at various pressures using 

density function theory. Using the Gruneisen formalism, the computational coefficient of thermal 

expansion was found to be 2.2 ×10−6/°C. The novelty of this work lies in the adoption of two-step 

thermal expansion determination for 3C-SiC using both experimental and computational tech-

niques. 

Keywords: thermal expansion isotropy; X-ray diffraction; DFT calculation; CASTEP; SiC 

 

1. Introduction 

Silicon carbide is presently being investigated as a promising material for the third 

generation of semiconductor materials after the first and second-generation relative ma-

terial, due to fact that SiC possesses excellent physical and electronic properties, which 

has attracted the attention of the researchers [1,2]. In fact, SiC has wide band gap, high 

thermal conductivity, high critical electric field, excellent mechanical strength, low ther-

mal expansion, which allowed to design an innovative semiconductor device with respect 

to silicon ones, in terms of high breakdown voltage, restricted on-resistance and extreme 

operating temperature [3–6], such as space exploration, geothermal wells, and nuclear 

power instrumentation. Due to its electrical, mechanical, and thermal qualities, SiC is an 

excellent material for high-temperature pressure sensor devices [7–9]. It is well-known for 

its many polytypic forms that emerge under ambient conditions, SiC material has more 

than 250 poly-types, including 3C-SiC, 4H-SiC, 6H-SiC depending on the stacking se-

quence [10]. The zinc-blende (B3) polytype, also known as the 3C polytype, and the hex-
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ωi/kBT, where kB is the
Boltzmann constant and R is the gas constant. We have calculated the phonon frequencies
of geometry optimized of 3C-SiC using CASTEP Module. The Cv calculated of optic mode
of 3C-SiC is 107 J/mol K.

To compute αV , first we need to evaluate γav defined as γav =
1
4 ∑ pic1γi

Cv
. Gruneisen

parameter mode is defined [50,51] as γi = − ∂ ln ωi
∂ ln V = B

ωi

∂ωγ

∂P , where ωi is the frequency
of the ith mode, B is the bulk modulus, P is the pressure, and V is the volume. Bulk
modulus the of 3C-SiC is 212 Gpa which agree to previously calculated [52]. CASTEP code
were used to calculate phonon frequencies at 0, 1, and 2 Gpa. dωj/dP has been used to
calculate the mode Gruneisen parameters of all optic mode that obtained from the phonon
frequencies. The calculated Gruneisen parameter average is 1.0483. The volume coefficient
of thermal expansion is 0.33 of the lattice coefficients of thermal expansion (αL) [53] and
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computed using Gruneisen formalism approximately 2.2 × 10−6/◦C which nearly closed
to the experimental coefficient of thermal expansion that was calculated using a high
temperature X-ray diffraction (reported in this study). Computation coefficient of thermal
expansion of 3C-SiC were compared with other works in the literature as illustrated in
Table 3. All computed values slightly closed to the computed value on this work.

Table 3. Experimentally and computationally coefficients of thermal expansion of 3C-SiC.

Symbol αl Experimental RT
(×10−6/◦C)

αv Computational RT
(×10−6/◦C)

3C-SiC (This work) 2.4 2.2
3C-SiC [52] - 2.47
3C-SiC [31] - 2.5

4. Mechanical and Thermodynamic Properties of 3C-SiC

As an important structural component employed in high-temperature applications
such as the nuclear industry, the mechanical properties, and thermodynamics of 3C-SiC are
very important. Table 4 shows the mechanical properties of 3C-SiC calculations, the result
of our calculations is in good agreement with result of others theoretical calculation and
experimental data.

Table 4. The elastic constants (GPa), Bulk modulus B (GPa), Young’s modulus E (GPa) and shear
modulus G (GPa).

3C-SiC C11 C12 C44 B E G

Our Cal 383.4 126.1 241.6 212 450.19 196.42
Other Cal. [54] 383.3 125.2 239.6 211.3 432.9 186.9
Other Cal. [55] 384.5 121.5 243.3 209 437.6 190.1

Exp. [56] 380 142 256 225 448 192

Figure 11 shows the mechanical properties of 3C-SiC with different pressure 0 Gpa,
1 Gpa and 2 Gpa. Overall, the values of the Bulk modulus, Shear modulus, Young’s
modulus and Poisson’s ratio increase as the pressure increase. However, this trend has
been found in [31] when 3C-SiC studied under high pressures. To our knowledge, the
material is ductile if the value of G/B is smaller than 0.57, and the ductility of a material
increases when the value of G/B decreases. The material is brittle if the value of G/B is
larger than 0.57, the larger the value, the greater the brittleness of the material. 3C-SiC is
brittle since that the value of G/B is greater than 0.57. Poisson’s ration is a parameter to
characterize the brittleness and ductility of materials. When the Poisson’s ration > 0.33, the
materials is ductile and when Poisson’s ration < 0.33 is brittle [57]. The computed Poisson’s
ration shows that the brittleness of 3C-SiC under 0 Gpa, 1 Gpa and 2 Gpa as confirmed by
the ratio of G/B.

Thermodynamic properties were carried out to investigate the variation of thermal
properties with different pressures, such as Debye temperature, enthalpy, free energy,
entropy, and heat capacity. Debye temperature represents highest mode of vibration of the
crystal, during phonon vibrations [58]. Figure 12 shows the Debye temperatures of 3C-SiC
with variation of the pressure 0 GPa, 1 GPa and 2 GPa. The result concludes that, the Debye
temperature enhances with the enhancement of pressure and the slope of this increase as
pressure increase. Similar behavior found in theoretical and experiment data [58].

Based on Debye quasi-harmonic approximation, we calculated the enthalpy, free
energy, entropy, and heat capacity of 3C-SiC with different pressure 0 GPa, 1 GPa and
2 GPa. Figure 12 shows the enthalpy, free energy, entropy, and heat capacity of 3C-SiC,
respectively. As the pressure and temperature increase, the free energy slowly increases
below 200K and increase rapidly after 300K for 0 GPa, 1 GPa and 2 GPa, respectively. The
value of the free energy decreases as the pressure increases which mean that reducing
the internal energy converts less work outside which have different manner as the defect
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increased in 3C-SiC [30]. T*Entropy of 3C-SiC increase as the pressure increase due to
increase the internal energy as shown in Figure 13c. The heat capacity of 3C-SiC < 1200 K,
the heat capacity is related to temperature, because of the anharmonic approximation of
the Debye model. The anharmonic effect on the heat capacity is repressed at a higher
temperature and is near to the Dulong–Pettit limit, which applies to all solids at high
temperatures [54]. In overall, as the pressure increased, enthalpy, entropy, and heat capacity
will be increased.
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5. Conclusions

The coefficient thermal expansion of 3C-SiC was calculated utilising density function
theory calculations of phonon frequencies as a function of pressure based on Gruneisen
formalism and in-situ XRD powder diffraction measurement at the temperature range of
25–800 ◦C. The coefficient thermal expansion was established to follow a second order
polynomial relationship as temperature increase (α11 = −1.423 × 10−12T2 + 4.973 ×
10−9T + 2.269× 10−6). At 25 ◦C, the coefficient thermal expansion is found 2.4 × 10−6/◦C
which is identical with computed from the first principal calculations of phonon frequencies
that closed to 2.2 × 10−6/◦C. However, the quasi-harmonic approximation based on the
density function theory is still a valid methodology for predicting the physical properties
of material.
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