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Abstract: The safe disposal of an enormous amount of waste glass (WG) in several countries has
become a severe environmental issue. In contrast, concrete production consumes a large amount of
natural resources and contributes to environmental greenhouse gas emissions. It is widely known
that many kinds of waste may be utilized rather than raw materials in the field of construction
materials. However, for the wide use of waste in building construction, it is necessary to ensure that
the characteristics of the resulting building materials are appropriate. Recycled glass waste is one
of the most attractive waste materials that can be used to create sustainable concrete compounds.
Therefore, researchers focus on the production of concrete and cement mortar by utilizing waste glass
as an aggregate or as a pozzolanic material. In this article, the literature discussing the use of recycled
glass waste in concrete as a partial or complete replacement for aggregates has been reviewed by
focusing on the effect of recycled glass waste on the fresh and mechanical properties of concrete.

Keywords: waste glass; recycling; construction materials; sustainable concrete; mechanical properties

1. Introduction

Glass is one of the world’s most diverse substances because of its substantial prop-
erties, such as chemical inertness, optical clarity, low permeability, and high authentic
strength [1–3]. The usage of glass items has greatly increased, leading to enormous quan-
tities of WG. Globally, it is estimated that 209 million tons of glass are produced annu-
ally [4–6]. In the U.S., according to the Environmental Protection Agency (EPA) [7–9],
12.27 million tons of glass were created in 2018 in municipal solid waste (MSW), as shown
in Figure 1, most of which were containers for drinking and food. Furthermore, in 2018, the
EU generated 14.5 million tons of glass package wastes [10–12]. The quantity of generated
WG will increase due to the increasing demand for glass components [13–16].

Recycling and reducing waste are key parts of a waste-management system since
they contribute to conserving natural resources, reducing requests for waste landfill space,
and reducing pollution of water and air [17,18]. According to Meyer [19], by 2030, the EU
zero-waste initiative estimates that improvements in resource efficiency throughout the
chain could decrease material input requirements by 17% to 24%, satisfying the demand
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for raw materials between 10% to 40%, and could contribute to reducing emissions by
40% [20–22].
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In fact, innovative options for recycling WG must be developed. One significant option
is to use WG for construction materials [23]. The recycling of WG not only decreases the
demand for landfill sites in the building sector but also significantly helps in decreasing the
carbon footprint and saving resources [24–26]. In 1963, Schmidt and Saia [27] performed
the first research on the use of WG for building materials. The authors recycled WG into
useful glass particles for wall-panel production. Subsequently, a significant study was
conducted in order to use recycled glass for fine or coarse aggregate in mortar and concrete,
because of the good hardness of the glass [14,28,29]. This study aims at reviewing the
possibilities of utilizing WG in concrete as a partial or full replacement for fine or coarse
aggregates in order to give practical and brief guidance on recycling and using WG [30–33].

2. Research Significance

Besides the above-mentioned dangers of WG and the need to recycle it economically
and environmentally, this research explores the source of WG as well as its physical and
chemical characteristics. In addition, this study aims to review the literature that discusses
the use of recycled WG in concrete as a partial or complete alternative to aggregates by
focusing on the effect of this waste on the fresh and mechanical properties of concrete in
order to demonstrate the possibilities of using recycled WG in concrete and to provide
practical and brief guidance. Furthermore, we are establishing a foundation for future study
on this material and describing research insights, existing gaps, and future research goals.

3. Properties of Glass
3.1. Chemical Properties of Glass

Glass exists in various colors and types, with various chemical components. Tables 1 and 2
show the chemical compositions of different colors and types of typical glass, respectively.
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Table 1. Chemical components of glass for various colors.

Color
Chemical Compositions

Refs.
SiO2 CaO Na2O Al2O3 MgO Fe2O3 K2O SO3 TiO2 Cr2O3 Others

White 70.39 6.43 16.66 2.41 2.59 0.32 0.23 0.19 0.08 - 0.04 (MnO),
0.02 (Cl) [34]

Clear 72.42 11.50 13.64 1.44 0.32 0.07 0.35 0.21 0.035 0.002 - [35]
Flint 70.65 10.70 13.25 1.75 2.45 0.45 0.55 0.45 - - - [36]

Amber 70.01 10.00 15.35 3.20 1.46 - 0.82 0.06 0.11 - 0.04 (MnO) [34]
Brown 71.19 10.38 13.16 2.38 1.70 0.29 0.70 0.04 0.15 - - [37]
Green 72.05 10.26 14.31 2.81 0.90 - 0.52 0.07 0.11 - 0.04 (MnO) [34]

Table 2. Chemical components of glass for various types. Adapted from [38,39].

Type Uses
Chemical Compositions

SiO2 K2O Na2O Al2O3 MgO PbO BaO CaO B2O3 Others

Barium
glasses

Optical-dense
barium crown 36 4 41 10 9% ZnO

Color TV panel 65 9 7 2 2 2 2 2 10% SrO

Soda-Lime
Glasses

Containers 66–75 0.1–3 12–16 0.7–7 0.1–5 6–12
Light bulbs 71–73
Float sheet 73–74

Tempered ovenware 0.5–1.5 13.5–15

Lead glasses

Color TV funnel 54 9 4 2 23
Electronic parts 56 9 4 2 29

Neon tubing 63 6 8 1 22
Optical dense flint 32 2 1 65

Aluminosilicate
glasses

Combustion tubes 62 1 17 7 8 5
Resistor substrates 57 16 7 6 10 4

Fiberglass 64.5 0.5 24.5 10.5

Borosilicate
Chemical apparatus 81 4 2 13

Tungsten sealing 74 4 1 15
Pharmaceutical 72 1 7 6 11

3.2. Physical and Mechanical Properties of Glass

The physical and mechanical properties of crushed WG are listed in Tables 3 and 4, respectively.

Table 3. Physical properties of crushed WG.

Property Refs.

Specific gravity 2.4–2.8
2.51 (Green), 2.52 (Brown) [40]

Fineness Modulus 4.25
0.44–3.29 [41,42]

Bulk Density 1360 kg/m3
[43,44]

Shape Index (%) 30.5
Flakiness Index 84.3–94.7 [45]

Table 4. Mechanical properties of crushed WG.

Property Refs.

CBR (California bearing ratio) (%) Approx. 50–75. [46]

Los Angeles Value (%)
38.4 [43,45]

24.8–27.8 [44]
27.7 [47]

Friction Angle critical = 38 (Loose recycled glass)
[46]critical = 51–61 (Dense recycled glass)

4. Fresh Concrete Properties
4.1. Workability

There are two parallel points of view on the workability of WG-containing concrete.
A review of past studies on the impact of WG aggregates on the mixes of workability
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is summarized in Table 5. It can be noticed that various research investigations have
shown that the mixing of WG increases workability. They connected this beneficial impact
of WG on the workability to the weaker cohesive between the cement mortar and the
smooth surfaces of waste glass [48–52]. The smooth surface and low absorption capacity
of WG are also important factors in increasing workability [53,54]. For example, Ali and
Al-Tersawy [55] substitute fine aggregate in self-compacting concrete (SCC) mixes with
recycled WG at levels of 10% to 50% by volume. Constant content of water–cement ratio
and various superplasticizer doses have been used. They stated that slump flow increased
by 2%, 5%, 8%, 11%, and 85%, with the incorporating of 10%, 20%, 30%, 40% and 50% of
WG, respectively. In addition, Liu, Wei, Zou, Zhou and Jian [56] substitute fine aggregate in
ultra-high-performance concrete (UHPC) mixes with recycled liquid crystal display (CRT)
glass at levels of 25% to 100% by volume. Constant content of water–cement ratio and
various superplasticizer (SP) doses have been used. Moreover, they stated that flowability
increased by 11, 14, 16, and 12 mm, compared to the control sample, incorporating 25%,
50%, 75%, and 100% WG, respectively. Enhancing the workability by including WG is
a benefit of utilizing this recycled material [57–60]. There is potential to utilize glass to
create HPC in which high workability is necessary. In addition, WG can be used to boost
workability rather than employing admixtures such as HRWR or superplasticizers [61–64].

Contrastingly, some studies have stated that including waste glass into the mixes
lowered workability. Nevertheless, such a decrease has been associated with sharp edges,
higher glass particle aspect ratio, and angular form, with obstruction of the movement of
particles and cement mortar [65–71]. For example, Wang [72] substitutes fine aggregate in
liquid crystal display glass concrete (LCDGC) mixes with recycled LCD at levels of 20%
to 80% by volume. Various contents of w/c ratio (0.38–0.55) and various superplasticizer
doses have been used. The author stated that slump flow decreased by 4%, 7%, 19%,
and 26%, incorporating 20%, 40%, 60%, and 80% of WG, respectively, for w/c of 0.44. In
addition, Arabi, Meftah, Amara, Kebaïli and Berredjem [73] substitute coarse aggregate
in SCC mixes with recycled windshield glass at levels of 25% to 10% by volume. Various
contents of w/c ratio (0.60–0.69) and various superplasticizer doses have been used. They
stated that slump flow decreased by 3%, 8%, 9%, and 11%, incorporating 20%, 40%, 60%,
and 80% of WG, respectively. According to Rashad [61], the optimal content of glass waste
to achieve good workability is 20%.

Table 5. Summary of the results of past studies on the workability of waste-glass concrete.

Refs. Type of
Composite Source Type of

Sub.
WG Sub.
Ratio%

WG Size
(mm) w/c or w/b Addit. or

Admix. Outcomes

[74] SCGC LCD F.A 10, 20, &
30 (vol.%) 11.8 0.28 SP Slump flow increased by 11%,

17%, and 21%, respectively.

[75] HPGC LCD F.A 10, 20, &
30 (vol.%) 0.149–4.75 0.25, 0.32,

& 0.34 SP Slump flow increased, ranged
between 7–9%.

[76] Steel slag
concrete WG C.A 16.5 &

17.5 (vol.%)
4.9–10 &
4.9–16 0.4 & 0.55 WR

Slump increased by 167%, for
substitution 16.5% (w/c of 0.55,

and size of 4.9–10 mm).
Slump increased by 8%, for

substitution 17.5% (w/c of 0.40,
and size of 4.9–16 mm).

[77] Cement
concrete WG & PVC F.A 5, 10, 15, 20, 25,

& 30 (wt.%) 0.15–0.6 0.44, 0.5,
& 0.55 -

Slump value changed by −7%,
+33%, +47%, +31, +36, and +40%,

respectively, for w/c of 0.5.

[78] Waste glass
concrete WG F.A

18, 19, 20, 21,
22, 23, &

24 (vol.%)
0.15–0.6 0.4 SP Workability decreased by

increasing the WG ratio.

[79] Waste glass
concrete CRT F.A 50 &

100 (vol.%) ≤5 0.35, 0.45,
& 0.55 WR & AE

Slump increased by 55%, and
115%, respectively, for w/c

of 0.45.

[80] Waste glass
concrete WG C.A 10, 20, &

30 (wt.%) ≤20 0.55 - Slump decreased by 3%, 5%, and
9%, respectively.

[73] SCC Windshield C.A 25, 50, 75, &
100 (vol.%)

9.5 &
12.7 (mixed) 0.6–0.69 Marble filler

& SP
Slump flow decreased by 3%, 8%,

9%, and 11%, respectively.

[81] UHPC WG F.A 25, 50, 75, &
100 (wt.%) ≤0.6 0.19 Steel fiber

& HRWRA
Slump increased by 25%, 111%,
321%, and 532%, respectively.

[56] UHPC CRT F.A 25, 50, 75, &
100 (vol.%) 0.6–1.18 0.19 Steel fiber, SF,

& SP

Flowability increased by 11, 14,
16, and 12 mm, respectively,

compared to control (200 mm).
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Table 5. Cont.

Refs. Type of
Composite Source Type of

Sub.
WG Sub.
Ratio%

WG Size
(mm) w/c or w/b Addit. or

Admix. Outcomes

[82] Waste glass
concrete WG F.A 15 & 30 (vol.%) ≤4.75 0.5 - Slump decreased by 9%, and

39%, respectively.

[83] Waste-based
concrete WG F.A 100 (vol.%) ≤1.9 0.47 SP & GBFS

Glass sand showed lower
workability compared to Lead

smelter slag (LSS).

[84] Waste glass
concrete WG F.A 5, 15, &

20 (vol.%) 0.15–4.75 0.55 - Slump decreased by 19%, 29%,
and 35%, respectively.

[55] SCC WG F.A 10, 20, 30, 40,
& 50 (vol.%) 0.075–5 0.4 SF & SP Slump flow increased by 2%, 5%,

8%, 11%, and 85%, respectively.

[85] Cement
concrete WG F.A 5, 10, 15, &

20 (vol.%) 0.15–9.5 0.56 - Slump decreased by 1%, 3%, 4%,
and 5%, respectively.

[86] Waste glass
concrete

Waste
E-glass F.A 10, 20, 30, 40,

& 50 (wt.%) ≤4.75 0.68 SF & F.A. Slump decreased by 2%, 1%, 50%,
55, and 54%, respectively.

[87] Waste glass
concrete WG F.A 10, 15, &

20 (vol.%) 0.15–4.75 0.52 - Slump decreased by 24%, 23%,
and 33%, respectively.

[88] Waste glass
concrete WG F.A 15, 20, 30, &

50 (wt.%) ≤5 0.52, 0.57,
& 0.67 -

Slump decreased by 0%, 0%, 13%,
and 13%, respectively, for w/c

of 0.57.

[89] Waste glass
concrete

Green waste
glass F.A 30, 50, &

70 (wt.%) ≤5 0.5 AE Workability decreased, ranged
between 19–44%.

[65] Waste glass
concrete

Soda-lime
glass F.A 50 &

100 (vol.%) ≤5 0.38 MK Slump decreased by 0%, and 38%,
respectively.

[48] Waste glass
concrete WG F.A &

C.A
10, 25, 50,

& 100 (vol.%) N.M 0.48 -
Slump value changed by −6%,

+6%, +18%, and +6%,
respectively.

[72] LCDGC LCD F.A 20, 40, 60, &
80 (vol.%) ≤4.75 0.38, 0.44,

& 0.55 - Slump flow decreased by 4%, 7%,
19%, and 26%, respectively.

[90] Cement
concrete LCD F.A 20, 40, 60, &

80 (vol.%) ≤4.75 0.48 -
Slump value changed by 0%,

−5%, −5%, and
+20%, respectively.

[91]
Alkali-

activated
mortar

Cullet F.A 25, 50, 75, &
100 (vol.%) ≤2.36 0.6 F.A., GBFS, SH,

& SS
Flowability increased, ranged

between 4–15%.

[92] Waste glass
concrete WG F.A 25, 50, 75, &

100 (wt.%) ≤5 0.5 - Slump decreased by 9%, 7%, 15%,
and 27%, respectively.

Where: SCGC is self-compacting glass concrete; SCC is self-compacting concrete; HPGC is high performance
recycled liquid crystal glasses concrete; UHPC is ultra-high performance concrete; LCDGC is liquid crystal display
glass concrete; LCD is liquid crystal display; CRT is cathode ray tube; WG is waste glass; PVC is polyvinyl
chloride; SP is superplasticizer; HRWRA is a high-range water-reducing agent; WR is water-reducing; AE is
air-entraining; SF is silica fume; F.A. is fly ash; GBFS is granulated blast furnace slag; MK is metakaolin; SH is
sodium hydroxide solution; SS is sodium silicate solution; F.A is fine aggregate; C.A is coarse aggregate; vol. is
replacing by volume; wt. is replacing by weight.

4.2. Bulk Density

Past studies on the impact of WG aggregates on the bulk density, which are sum-
marized in Figure 2, revealed that the majority of studies showed that incorporating
glass waste into mixtures reduces density. This decrease can be ascribed to the lesser
density of WG compared to natural aggregate [42,65,93,94], as well as the lower specific
gravity [43,66,87,93,95]. For example, Taha and Nounu [65] substitute fine aggregate in
waste-glass concrete (WGC) mixes with recycled soda-lime glass at levels of 50% to 100%
by volume. They stated that the fresh density of WG concrete mixes reduced by 1% and 2%
incorporating 50% and 100% of WG, respectively. This density drop might be realized as
one benefit of using this material in concrete for engineering purposes [96–99].

On the other hand, Liu, Wei, Zou, Zhou and Jian [56] stated that concrete of 10 to
50% WG had a fresh density greater than reference. The authors substitute F.A in UHPC
mixes with recycling CRT glass at levels of 25% to 100% by volume. They stated that
the fresh density of waste-glass concrete mixtures increased by 1% 2.5%, 3.5%, and 6%,
incorporating 25%, 50%, 75%, and 100% of WG, respectively. The authors attributed the
reason to the fact that the density of CRT glass (2916 kg/m3) was larger than that of fine
aggregate (2574 kg/m3) [100–104].
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5. Mechanical Properties
5.1. Compressive Strength

By reviewing past studies on the impact of WG aggregates on the compressive strength
of waste-glass concrete, summarized in Table 6, it can be noticed that most studies shown
that incorporating glass waste into concrete reduces compressive strength. The researchers
ascribed this behavior to (i) the sharp edges and smooth particle surfaces, leading to a
poorer bond between cement mortar and glass particles at the interfacial transition zone
(ITZ) [14,40,42,43,55,66,87,90,108,109]; (ii) increased water content of the glass aggregate
mixes due to the weak ability of WG to absorb water [43,110]; and (iii) the cracks caused by
expanding stress formed by the alkali-silica reaction produced from the silica in WG [40].
For example, Park, Lee and Kim [89] substitute fine aggregate in WGC with recycled
green WG at levels of 30% to 70% by weight. They stated that the compressive strength
of concrete decreased by 3%, 13%, and 18%, incorporating 30%, 50%, and 70% of WG,
respectively. In addition, Terro [48] noted that concrete, which contains up to 25% of WG,
showed compressive strength values greater than the reference, whereas concrete with a
substitution level of over 25% declined in compressive strength.

In order to better understand the impact of glass waste on the properties of the waste-
glass concrete [111–114]. Omoding, Cunningham and Lane-Serff [115] investigated the
concrete microstructure via SEM by replacing between 12.5–100% of the coarse aggregate
with green waste glass with a size of 10–20 mm. The authors stated (i) that there is a weak
connection between the waste glass and the cement matrix. This is because of a reduction
in bonding strength between the waste glass and the cement paste because of the high
smoothness of waste glass, consequently resulting in cracks and poor adherence between
waste glass and cement paste; and (ii) as the content of waste glass increases, the proportion
of cracks and voids increases in the concrete’s matrix.

However, some studies have stated that waste glass increases mechanical strength.
This increase is primarily realized because of the surface texture and strength of the waste
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glass particles compared to natural sand [116–118] and the pozzolanic reaction of waste
glass aggregate [119–121]. For example, Jiao, Zhang, Guo, Zhang, Ning and Liu [81]
substitute fine aggregate in UHPC with recovered WG at levels of 25% to 100% by weight.
They stated that the compressive strength of concrete increased by 2%, 17%, 34%, and 20%,
incorporating 25%, 50%, 75%, and 100% WG, respectively.

Regarding the influence of WG color on properties, some studies have stated that the
color of WG did not produce any noticeable variation in strength [89,122]. On the contrary,
Tan and Du [66] claimed that clear waste glass showed less strength.

Table 6. Summary of the results of past studies on the compressive strength of waste-glass concrete.

Refs. Type of
Composite Source Type of

Subs.
WG Subs.

Ratio
WG Size

(mm) w/c or w/b Addit. or
Admix.

Com. Str. of
Control (MPa) Outcomes

[74] SCGC LCD F.A 10, 20, &
30 (vol.%) 11.8 0.28 SP 65 Decreased by 2%, 5%, and

3%, respectively.

[75] HPGC LCD F.A 10, 20, &
30 (vol.%) 0.149–4.75 0.25, 0.32,

& 0.34 SP 56
Decreased by 25%, 32%, and

29%, respectively, for w/c
of 0.32.

[123]
Autoclaved

aerated
concrete

CRT F.A 5 &
10 (vol.%) 2.16–3.3 N.M - 29 Decreased by 2%, and

0%, respectively.

[77] Cement
concrete

WG &
PVC F.A

5, 10, 15, 20,
25, &

30 (wt.%)
0.15–0.6 0.44, 0.5, &

0.55 - 34
Decreased by 1%, 4%, 4%,

6%, 7%, and 9%, respectively,
for w/c of 0.50.

[78] Waste glass
concrete WG F.A

18, 19, 20, 21,
22, 23, &

24 (vol.%)
0.15–0.6 0.4 SP 33

Changed by +6%, +9%,
+12%, +9%, +3%, −6% and
−9%, respectively.

[79] Waste glass
concrete CRT F.A 50 &

100 (vol.%) ≤5 0.35, 0.45,
& 0.55 WR & AE 28 Decreased by 21%, and 32%,

respectively, for w/c of 0.45.

[80] Waste glass
concrete WG C.A 10, 20, &

30 (wt.%) ≤20 0.55 - 24 Decreased by 13%, 15%, and
23%, respectively.

[105] Waste glass
concrete WG F.A 25, 75, &

100 (wt.%) 0.15–5 0.48–0.66 - 38 Changed by +5%, +8%, +3%,
and −8%, respectively.

[124] Waste glass
concrete Cullet C.A 25, 50, &

75 (wt.%) 2.36–5 0.29 SF 32 Decreased by 6%, 3%, 22%,
and 25%, respectively.

[73] SCC Windshield C.A 25, 50, 75, &
100 (vol.%) 9.5 & 12.7 0.6–0.69 Marble

filler & SP 33 Decreased by 15%, 24%, 24%,
and 30%, respectively.

[125] HSPC WG C.A 25, 50, 75, &
100 (vol.%) 2.36–5 0.14 SF & SP 50 Decreased by 4%, 20%, 30%,

and 36%, respectively.

[81] UHPC WG F.A 25, 50, 75, &
100 (wt.%) ≤0.6 0.19

Steel fiber
&

HRWRA
108 Increased by 2%, 17%, 34%,

and 20%, respectively.

[56] UHPC CRT F.A 25, 50, 75, &
100 (vol.%) 0.6–1.18 0.19 Steel fiber,

SF, & SP 180 Decreased by 7%, 11%, 16%,
and 18%, respectively.

[115]
Glass

aggregate
concretes

WG C.A 12.5, 25, 50,
& 100 (vol.%) 10–20 0.52 SP 45 Decreased by 4%, 16%, 20%,

and 27%, respectively.

[82] Waste glass
concrete WG F.A 15 &

30 (vol.%) ≤4.75 0.5 - 48 Decreased by 6%, and
0%, respectively.

[84] Waste glass
concrete WG F.A 5, 15, &

20 (vol.%) 0.15–4.75 0.55 - 33 Decreased by 6%, 3%, and
0%, respectively.

[55] SCC WG F.A 10, 20, 30, 40,
& 50 (vol.%) 0.075–5 0.4 SF & SP 62 Decreased by 5%, 15%, 18%,

23%, and 24%, respectively.

[85] Cement
concrete WG F.A 5, 10, 15, &

20 (vol.%) 0.15–9.5 0.56 - 32 Increased by 9%, 44%, 25%,
and 38%, respectively.

[87] Waste glass
concrete WG F.A 10, 15, &

20 (vol.%) 0.15–4.75 0.52 - 44 Changed by −9%, −9%, and
+5%, respectively.

[88] Waste glass
concrete WG F.A 15, 20, 30, &

50 (wt.%) ≤5 0.52, 0.57,
& 0.67 - 48

Decreased by 2%, 4%, 13%,
and 19%, respectively, for

w/c of 0.57.

[89] Waste glass
concrete

Green
waste
glass

F.A 30, 50, &
70 (wt.%) ≤5 0.5 AE 38 Decreased by 3%, 13%, and

18%, respectively.

[48] Waste glass
concrete WG F.A &

C.A
10, 25, 50, &
100 (vol.%) N.M 0.48 - 40

Changed by +38%, +3%,
−5%, and

−50%, respectively.

[72] LCDGC LCD F.A 20, 40, 60, &
80 (vol.%) ≤4.75 0.38, 0.44,

& 0.55 - 39
Decreased by 3%, 10%, 13%,

and 15%, respectively, for
w/c of 0.44.

[90] Cement
concrete LCD F.A 20, 40, 60, &

80 (vol.%) ≤4.75 0.48 - 36 Decreased by 6%, 11%, 22%,
and 25%, respectively.

[107] Waste glass
concrete CRT F.A 20, 40, 60, 80,

& 100 (vol.%) 4.75 0.45 F.A. 38 Decreased by 5%, 8%, 8%,
11%, and 13%, respectively.

[126] Resin concretes WG F.A 0–100 (wt.%) ≤2 N.M Epoxy
resin 95 Decreased by 33%, for

substitution of 100%.

[127] Concrete
blocks WG F.A 100 (vol.%) 4.75, 2.36,

1.18, & 0.6 0.23 - 34 Decreased by 18%.
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Table 6. Cont.

Refs. Type of
Composite Source Type of

Subs.
WG Subs.

Ratio
WG Size

(mm) w/c or w/b Addit. or
Admix.

Com. Str. of
Control (MPa) Outcomes

[91]
Alkali-

activated
mortar

Cullet F.A 25, 50, 75, &
100 (vol.%) ≤2.36 0.6

F.A.,
GBFS, SH,

& SS
70 Decreased by 3%, 6%, 7%,

and 10%, respectively.

[128] Waste glass
concrete WG F.A 25, 50., 75, &

100 (wt.%) ≤5 0.5 - 20
Changed by +20%, +15%,

−10%, and
−35%, respectively.

Where: SCGC is self-compacting glass concrete; SCC is self-compacting concrete; HPGC is high performance
recycled liquid crystal glasses concrete; HSPC is high-strength pervious concrete; UHPC is ultra-high performance
concrete; LCDGC is liquid crystal display glass concrete; LCD is liquid crystal display; CRT is cathode ray tube;
WG is waste glass; PVC is polyvinyl chloride; SP is superplasticizer; HRWRA is a high-range water-reducing
agent; WR is water-reducing; AE is air-entraining; SF is silica fume; F.A. is fly ash; GBFS is granulated blast furnace
slag; MK is metakaolin; SH is sodium hydroxide solution; SS is sodium silicate solution; F.A is fine aggregate; C.A
is coarse aggregate; vol. is replacing by volume; wt. is replacing by weight.

5.2. Splitting Tensile Strength

Past studies on the impact of WG aggregates on the splitting tensile strength of waste-
glass concrete, which are summarized in Table 7, revealed that incorporating glass waste
into concrete reduces tensile strength. Similarly, as in compressive strength, studies have
attributed the main reason for this behavior to the poor bond between cement paste and
glass particles at the ITZ. For example, Wang [72] substitutes fine aggregate in liquid crystal
display glass concrete (LCDGC) with recycled LCD glass at levels of 20% to 80% by volume.
The author stated that splitting tensile strength of concrete decreased by 1%, 7%, 8%, and
9%, incorporating 20%, 40%, 60%, and 80% of WG, respectively, for w/c of 0.44. Moreover,
Ali and Al-Tersawy [55] substitute fine aggregate in self-compacting concrete (SCC) with
recycled WG at levels of 10% to 50% by volume. They stated that tensile strength of waste-
glass concrete decreased by 9%, 15%, 16%, 24%, and 28% incorporating 10%, 20%, 30%,
40%, and 50% of WG, respectively [129–132].

In contrast, Jiao, Zhang, Guo, Zhang, Ning and Liu [81] indicated that concrete of
25% to 100% WG had a tensile strength greater than reference. The authors substitute fine
aggregate in ultra-high-performance concrete (UHPC) with recycled WG at levels of 25%
to 100% by weight. They stated that the splitting tensile strength of concrete increased by
1%, 3%, 11%, and 7%, incorporating 25%, 50%, 75%, and 100% of WG, respectively. The
author attributed the reason to the effect of using steel fibers.

Table 7. Summary of the results of past studies on the splitting tensile strength of waste-glass concrete.

Refs. Type of
Composite Source Type of

Sub.
WG Sub.
Ratio%

WG Size
(mm)

w/c or
w/b

Addit. or
Admix.

Split ten. str. of
Control (MPa) Outcomes

[81] UHPC WG F.A 25, 50, 75, &
100 (wt.%) ≤0.6 0.19 Steel fiber

& HRWRA 11.7
Increased by 1%, 3%,

11%, and
7%, respectively.

[82] Waste glass
concrete WG F.A 15 & 30

(vol.%) ≤4.75 0.5 - 4.5 Changed by +4%, and
−1%, respectively.

[84] Waste glass
concrete WG F.A 5, 15, & 20

(vol.%) 0.15–4.75 0.55 - 2.5 Increased by 4%, 12%,
and 24%, respectively.

[55] SCC WG F.A
10, 20, 30,
40, & 50
(vol.%)

0.075–5 0.4 SF & SP 6.8
Decreased by 9%,

15%, 16%, 24%, and
28%, respectively.

[85] Cement
concrete WG F.A 5, 10, 15, &

20 (vol.%) 0.15–9.5 0.56 - 3.9
Decreased by 0%, 8%,

15%, and
23%, respectively.

[133] Waste glass
concrete WG F.A 10, 20, 30,

& 40 (wt.%) ≤4.75 0.45 - 2.5
Decreased by 2%, 8%,

10%, and
12%, respectively.

[72] LCDGC LCD F.A 20, 40, 60, &
80 (vol.%) ≤4.75 0.38, 0.44,

& 0.55 - 2.38

Decreased by 1%, 7%,
8%, and 9%,

respectively, for w/c
of 0.44.
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Table 7. Cont.

Refs. Type of
Composite Source Type of

Sub.
WG Sub.
Ratio%

WG Size
(mm)

w/c or
w/b

Addit. or
Admix.

Split ten. str. of
Control (MPa) Outcomes

[107] Waste glass
concrete CRT F.A

20, 40, 60,
80, & 100
(vol.%)

4.75 0.45 F.A. 4.48
Decreased by 6%, 6%,

13%, 15%, and
19%, respectively.

[128] Waste glass
concrete WG F.A 25, 50., 75, &

100 (wt.%) ≤5 0.5 - 3.6
Decreased by 22%,

39%, 39%, and
44%, respectively.

Where: UHPC is ultra-high-performance concrete; LCDGC is liquid crystal display glass concrete; LCD is liquid
crystal display; CRT is cathode ray tube; WG is waste glass; SP is superplasticizer; HRWRA is a high-range
water-reducing agent; SF is silica fume; F.A. is fly ash; F.A is fine aggregate; C.A is coarse aggregate; vol. is
replacing by volume; wt. is replacing by weight.

5.3. Flexural Strength

The flexural strength of waste-glass concrete shows comparable tendencies to its
compressive strength and tensile strength. Most of the research revealed that introducing
WG aggregates reduced flexural strength. However, other research showed that flexu-
ral strength increased when WG was included [134–136]. For instance, Kim, Choi and
Yang [79] substitute fine aggregate in WGC with recycled CRT glass at levels of 50% to 100%
by volume. They stated that flexural strength of concrete decreased by 9% and 14%, incor-
porating 50% and 100% of WG, respectively, for w/c of 0.45. On the contrary, Jiao, Zhang,
Guo, Zhang, Ning and Liu [81] substitute fine aggregate in UHPC with recovered WG at
levels of 25% to 100% by weight. They stated that flexural strength of concrete increased by
2%, 1%, 5%, and 1%, incorporating 25%, 50%, 75%, and 100% of WG, respectively.

Moreover, it can be concluded that the discrepancy between studies may be related to
the type, size, and source of WG used in the mixtures. The mineral composition varies as
the type of glass changes. Therefore, changing the mechanisms of interaction with binders
in concrete, in turn, affects the properties. Table 8 presents the outcomes of various studies
on the flexural strength of waste-glass concrete.

Table 8. Summary of the results of past studies on the flexural strength of waste-glass concrete.

Refs. Type of
Composite Source Type of

Sub.
WG Sub.
Ratio%

WG Size
(mm)

w/c or
w/b

Addit. or
Admix.

Flex. str. of
Control (MPa) Outcomes

[74] SCGC LCD F.A 10, 20, &
30 (vol.%) 11.8 0.28 SP 5.1

Changed by +16%,
−12%, and

−2%, respectively.

[78] Waste glass
concrete WG F.A

18, 19, 20,
21, 22, 23, &
24 (vol.%)

0.15–0.6 0.4 SP 4.84

Changed by +5%,
+6%, +8%, +7%, +1%,

−5% and
−6%, respectively.

[79] Waste glass
concrete CRT F.A 50 &

100 (vol.%) ≤5 0.35, 0.45,
& 0.55 WR & AE 4.4

Decreased by 9%, and
14%, respectively, for

w/c of 0.45.

[81] UHPC WG F.A 25, 50, 75, &
100 (wt.%) ≤0.6 0.19 Steel fiber

& HRWRA 21
Increased by 2%, 1%,

5%, and
1%, respectively.

[56] UHPC CRT F.A 25, 50, 75, &
100 (vol.%) 0.6–1.18 0.19 Steel fiber,

SF, & SP 39
Decreased by 5%, 8%,

18%, and
21%, respectively.

[84] Waste glass
concrete WG F.A 5, 15, &

20 (vol.%) 0.15–4.75 0.55 - 4.7 Increased by 6%, 11%,
and 15%, respectively.

[55] SCC WG F.A
10, 20, 30,

40, &
50 (vol.%)

0.075–5 0.4 SF & SP 7.4
Decreased by 3%,

11%, 12%, 23%, and
24%, respectively.

[87] Waste glass
concrete WG F.A 10, 15, &

20 (vol.%) 0.15–4.75 0.52 - 5.89
Increased by 4%, 7%,

and +11%,
respectively.
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Table 8. Cont.

Refs. Type of
Composite Source Type of

Sub.
WG Sub.
Ratio%

WG Size
(mm)

w/c or
w/b

Addit. or
Admix.

Flex. str. of
Control (MPa) Outcomes

[88] Waste glass
concrete WG F.A 15, 20, 30,

& 50 (wt.%) ≤5 0.52, 0.57,
& 0.67 - 4.5

Decreased by 11%,
22%, 33%, and 44%,

respectively, for w/c
of 0.57.

[72] LCDGC LCD F.A 20, 40, 60, &
80 (vol.%) ≤4.75 0.38, 0.44,

& 0.55 - 3.5

Decreased by 6%, 9%,
10%, and 11%,

respectively, for w/c
of 0.44.

[126] Resin
concretes WG F.A 0–

100 (wt.%) ≤2 N.M Epoxy
resin 24.3 Decreased by 1%, for

substitution of 100%.

Where: SCGC is self-compacting glass concrete; SCC is self-compacting concrete; UHPC is ultra-high-performance
concrete; LCDGC is liquid crystal display glass concrete; LCD is liquid crystal display; CRT is cathode ray tube;
WG is waste glass; SP is superplasticizer; HRWRA is a high-range water-reducing agent; WR is water-reducing;
AE is air-entraining; SF is silica fume; F.A is fine aggregate; C.A is coarse aggregate; vol. is replacing by volume;
wt. is replacing by weight.

5.4. Modulus of Elasticity (MOE)

The modulus of elasticity of concrete (MOE) depends on the normal and lightweight
aggregates elasticity modulus, cement matrix, and their relative ratios in the mixes [39].
In general, the incorporation of WG aggregates into concrete increases the modulus of
elasticity [72,84]. For instance, Steyn, Babafemi, Fataar and Combrinck [82] substitute fine
aggregate in WGC with recovered WG at levels of 15% to 30% by volume. They stated that
MOE of concrete increased by 1%, and 7%, incorporating 15% and 30% of WG, respectively.
In addition, Omoding, Cunningham and Lane-Serff [115] substitute coarse aggregate in
glass aggregate concretes with recycled WG at levels of 12.5% to 100% by volume. They
stated that MOE of concrete increased by 2% to 4% for a replacement rate of 12.5% to 50%,
then decreased by 3% to 9% for replacement ratios above 50% [137,138].

However, some studies have stated that including WG decreases the MOE of concrete.
For instance, Ali and Al-Tersawy [55] substitute fine aggregate in SCC with recovered WG
at levels of 10% to 50% by volume. They stated that MOE of concrete decreases by 2%,
8%, 9%, 12%, and 13%, incorporating 10%, 20%, 30%, 40% and 50% of WG, respectively.
Figure 3 presents the outcomes of various studies on the MOE of WG concrete.
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6. Conclusions

The utilization of WG in concrete affects the fresh and mechanical properties of waste-
glass concrete, which must be taken into consideration before being used in structures. The
overall conclusions of this review are:

1. The workability of waste-glass-containing concrete mixtures for fine or coarse aggre-
gates was less than for natural aggregate-containing mixtures. Nevertheless, despite
the poorer workability, some studies found that the mixtures were still workable.

2. Most studies indicated that with the introduction of WG, the density of concrete
decreased due to the decreased density and specific gravity of waste glass aggregates.

3. The findings of the literature have been somewhat indecisive regarding the properties
of concrete, such as compressive strength, splitting tensile strength, flexural strength,
and modulus of elasticity.

4. The findings revealed that the compressive strength, splitting tensile strength, and
flexural strength of concrete deteriorated by integrating WG. Nevertheless, the find-
ings concerning the elastic modulus of concrete were conflicting. This decrease was
essential because of the sharp edges and smooth surface of the waste glass that caused
the poorer bond between cement mortar and waste glass particles at the ITZ.

5. Studies also showed that the optimal aggregate substitution level was about 20%. In
addition, the glass color does not have a substantial influence on the strength. Al-
though the results are indecisive, WG has the possibility to be an acceptable substitute
for fine or coarse concrete aggregates in concrete.

6. Adding waste glass to the concrete mixture may improve certain mechanical charac-
teristics of concrete, reduce concrete dead load, and provide an ecological substitute
for normal aggregates.

7. Recommendations

This paper makes the following broad recommendations for future investigations:

1. More investigation is required into the mechanical characteristics of high-performance
and high-strength waste-glass concrete.

2. The effects of different glass kinds and colors on concrete mixes should be thoroughly
investigated in the future.

3. Test fewer common types of glass as aggregates in concrete because the vast majority
of research only covers soda-lime glass.

4. Conduct a comprehensive evaluation of the real environmental effects through life-
cycle assessment to evaluate the feasibility of using this waste.
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123. Walczak, P.; Małolepszy, J.; Reben, M.; Szymański, P.; Rzepa, K. Utilization of Waste Glass in Autoclaved Aerated Concrete.

Procedia Eng. 2015, 122, 302–309. [CrossRef]
124. Lu, J.-X.; Yan, X.; He, P.; Poon, C.S. Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. J.

Clean. Prod. 2019, 234, 1102–1112. [CrossRef]
125. Shen, P.; Zheng, H.; Liu, S.; Lu, J.-X.; Poon, C.S. Development of high-strength pervious concrete incorporated with high

percentages of waste glass. Cem. Concr. Compos. 2020, 114, 103790. [CrossRef]
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