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Abstract: Magnonics is an emerging field in spintronics, aiming at the development of new-concept
magnetic devices processing information via the manipulation of spin waves (SWs) in magnetic
nanostructures. One of the most popular SW waveguides exploited currently is ferromagnetic nanos-
trips. Due to quantization caused by the lateral confinements, the dispersion of SWs propagating in a
strip is characterized by a multi-branched structure. Consequently, SWs excited in the system involve
superpositions of degenerate modes from different branches of the dispersion curves. In this work,
we theoretically study the SW branch hybridization effect for two types of excitation methods, either
by using a local oscillating magnetic field or a fast-moving field pulse. The former is based on the res-
onance effect and the latter on the Cherenkov-like emission mechanism. Micromagnetic simulations
yield a variety of SW profiles with rather complex structures, which can be well explained by mode
superpositions. These results draw attention to the significance of the SW branch hybridization effect
when dealing with SWs in nanostrips and provide new aspects for the manipulation of SWs.

Keywords: spin waves; magnetization dynamics; magnetic thin films; micromagnetic simulations

1. Introduction

Magnons are the quanta of spin waves (SWs), which are disturbances of magnetiza-
tion that can propagate in magnetic systems. Magnonics, a branch of spintronics, aims
to develop new-concept magnetic devices utilizing SWs to transmit or process informa-
tion [1–12]. Due to the lack of Joule heat, magnonic devices would have the advantage
of low power consumption compared to conventional electronic devices [8–14]. The core
issue of magnonics is the manipulation of propagating SWs in particularly designed waveg-
uides [10–12,15–19]. At this time, the most popular SW guide exploited is still long magnetic
thin-film strips because of their simplicity for fabrication.

Similar to guided electromagnetic waves, SW modes traveling in nanostrips can
form standing wave patterns in the transverse directions with quantized wave numbers.
Since the strip is very thin, the thickness dependence can usually be ignored. However,
the confinement along the width direction must be considered, which yields multiple
branches of dispersion curves indexed by the corresponding order numbers of standing
waves [10,20,21]. As a consequence, there is mode degeneracy in the system. In real
experimental setups or numerical simulations, external stimuli must be applied to excite
SWs traveling in the strip. Depending on the excitation method used, the output may
contain multiple SW modes that are excited simultaneously. In this work, we systematically
study the branch hybridization effect of SW modes when using two different excitation
approaches, either by an oscillating field or a moving field pulse via the so-called spin-
Cherenkov effect [22–25]. In the former case, the hybridization occurs because of the
co-excitation of SW modes with different order numbers that are degenerate in frequency.
In the latter case, a field pulse moving with a constant speed causes the co-emission of SW
modes that are degenerate in phase velocity, resulting in branch hybridization in a different
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manner. We demonstrate the influence of the hybridization effect on the SW dispersion
relations. Moreover, we show that the complex patterns of the hybrid modes obtained in
our simulations can indeed be well reconstructed by superposing the relevant pure SW
eigen modes.

2. Materials and Methods

We exploited a ferromagnetic thin-film strip, which was 10 nm thick, 100 nm wide and
2000 nm long, to serve as the SW waveguide. Note that the strip was long enough to allow
the observation of SW propagations inside. Therefore, the modeled system with a finite
length effectively represents an infinitely long wire. The magnetization dynamics of the
system is governed by the Landau–Lifshitz–Gilbert (LLG) equation, given by

d
→
m

dt
= −γ

→
m×

→
He f f + α

[
→
m× d

→
m

dt

]
, (1)

where
→
m =

→
M/Ms is the normalized magnetization vector, γ is the gyromagnetic ratio,

and
→
He f f is the effective field, including the exchange field, dipolar field, external field,

and anisotropy field in principle. Micromagnetic simulations were performed by solving
the LLG equation numerically to study the properties of SWs propagating in the strip. In
simulations, the sample was discretized using a 1 nm cubic cell and the material parameters
used were typical for Permalloy, with saturation magnetization µ0Ms = 1 T, exchange
stiffness A = 1.3 × 10−11 J/m, damping factor
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= 0.01, and zero anisotropy. The simu-
lations were performed using an open-sourced micromagnetic package MuMax3 [26,27].
In simulations, the time revolution of the magnetization field of the modeled system was
calculated and recorded. By properly analyzing the obtained data, the properties of the
dynamical processes of the magnetization, such as SW propagations, could be extracted
and studied further.

Due to the shape anisotropy, the magnetic strip in equilibrium was magnetized along
the longitudinal direction (x direction) as shown in Figure 1a. We used two methods to
stimulate SWs in the system. The first one involved applying a localized magnetic field
oscillating with a particular frequency, which can excite monochromatic SW modes. The
other one involved applying a localized field pulse moving with a uniform velocity, which
can excite SW modes propagating with the same phase velocity [22,23]. In the next section,
we discuss our simulation results of these two excitation methods separately, focusing on
the branch hybridization effect of SW modes.
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Figure 1. (a) A Permalloy thin-film strip magnetized along the positive x axis serving as an SW guide.
An oscillating field is applied at the blue region to excite SWs. (b) Dispersion relations of SWs with
different order numbers n. The dots are numerical data obtained in simulations while the solid lines
are fittings using Equation (2). The dashed lines help to indicate the degeneracy of modes. The yellow
stars indicate degenerate modes that in principle can be co-excited by a particular oscillating field.
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3. Results

Before showing our simulation results, we will first explain the dispersion curves of
SW modes traveling in a thin-film strip and its influence on the excitation of SWs. Due to
the lateral confinements in the transversal direction (y axis in Figure 1a), the corresponding
wave vector is quantized, given by ky = nπ/w, where w is the width of the strip and n a
positive integer, defining the order number of the standing wave formed in the transversal
direction [28]. For each n, there is a dispersion curve with respect to the continuous wave
vector kx in the longitudinal direction of the strip (x axis in Figure 1a), thus yielding a
multi-branched structure (can be seen in Figure 1b). We point out that a quantization in the
thickness direction (z axis in Figure 1a), which would result in much higher frequency, is
ignored in our consideration.

In simulations or experiments, one may excite a monochromatic SW mode by applying
an oscillating field with a particular frequency. However, the frequency degeneracy of
SW modes with different order numbers n leads to multiple excitations simultaneously,
resulting in branch hybridizations. In our simulations, we applied local fields with specially
designed spatial distributions to maximally couple to a mode with a particular order
number [29]. For instance, a field uniformly distributed across the strip is supposed to
excite a n = 1 mode. By varying the frequency and shape of the oscillating fields, the
dispersion curves with respect to kx can be calculated numerically. The results obtained are
drawn in Figure 1b (dots), showing five dispersion curves in total (n = 1~5).

In fact, the dispersion relation of SW modes in a longitudinally magnetized stripe can be
calculated analytically neglecting the quantization along the thickness direction [20,30–33],
with the formula given by

ω = γ
√(

A∗Msk2 + Ms p sin2 ϕ
)
(A∗Msk2 + Ms(1− p)), (2)

where γ is the gyromagnetic ratio, A∗ = 2A/µ0M2
s , the wave numbers k2 = k2

x + k2
y,

p = 1− 1−e−kd

kd where d is the thickness of the wire, and sin2 ϕ = k2
y/k2. Note that ky = nπ/w,

which is quantized and yields multiple branches of the dispersion. As indicated by the dashed
lines in Figure 1b, except for frequencies below a certain value, there are always multiple
modes with different order numbers that are degenerate in frequency.

The dots in Figure 1b are numerical data obtained in simulations, while the solid
lines are fittings using Equation (2). As we will show later, the SWs excited in simulations
are not pure eigen modes with a definite order number, but actually the superposition of
several degenerate modes with different order numbers. As a consequence, there is a clear
discrepancy between simulations and analytical calculations in terms of the dispersion
relations. Note that, to fit the numerical results, the order numbers n used in fitting are
deviated from integer numbers as shown in Figure 1b.

We now demonstrate the branch hybridizations observed in our simulations. Although
we tried to excite SW modes with a definite order number from 1 to 5 using local fields
with different spatial distributions, the actual wave patterns obtained are clearly more
complex than those with a simple standing wave pattern along the width direction, as
shown in Figure 2a. The spatial configurations of the SW modes shown here and thereafter
are snapshots of the out-of-plane component (z component) of the magnetization, which
are taken when the modes are fully developed in the system after excitation. We argue
that these wave patterns are resulted from the superposition of degenerate modes that are
excited simultaneously by the oscillating field applied in simulations. For instance, when
applying a 44 GHz field as shown in Figure 1b, there are five degenerate modes in total
(n = 1~5) that in principle can be excited all together. The amplitude of each excited mode
depends on the strength of the coupling between the mode and the exciting field. The
actual wave patterns obtained in simulations are therefore the superposition of various
modes with different amplitudes.
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Figure 2. (a) SW patterns extracted from simulations when excited by using local fields oscillating
with a particular frequency f. Each local field has a specially designed spatial distribution to couple
maximally to a mode with a certain order number as indicated by n. These patterns are clearly more
complex than regular standing waves along the width direction. (b) Wave patterns reconstructed arti-
ficially by superposing several degenerate eigen modes with different order numbers, demonstrating
the branch hybridization effect taking place in simulations.

In fact, the wave patterns obtained in our simulations can be artificially reproduced as
shown in Figure 2b. This was done by superposing several pure eigen modes with different
integer order numbers mathematically. For example, the wave pattern for n = 5, f = 44 GHz
was reconstructed by using two pure eigen modes (n = 3, 5) with degenerate frequency, as
indicated by the yellow stars in Figure 1b. Note that other degenerate modes with even
order numbers are not relevant here because the spatial distribution of the excitation field
applied is symmetric with respect to the central line of the strip, which therefore does not
couple to SW modes that are antisymmetric. Although the excitation field in this case is
designed to maximally couple to the n = 5 mode, it must also couple to other modes with
odd order numbers. As shown in Figure 2b, the wave pattern for n = 5, f = 44 GHz is almost
perfectly reproduced by superposition using a ratio of 7:3 between the amplitude of the
pure n = 5 mode and the n = 3 one. For comparison, the wave pattern (n = 3, f = 44 GHz)
which is excited by applying a field designed to maximally couple to the n = 3 mode can
also be well reproduced by adjusting the ratio between the amplitude of the n = 5 mode
and the n = 3 one to 3:7. In a similar way, other wave patterns shown in Figure 2a can be
reproduced as well. This clearly demonstrates that the excited SWs that propagate in the
strip are not pure eigen modes with definite order numbers, but hybrid ones resulting from
the co-excitation of degenerate modes.

We further study the branch hybridization effect with an alternative excitation mecha-
nism, the SW Cherenkov effect [22,23]. A perturbation to the magnetic system moving with
a speed exceeding the minimum SW phase velocity would cause strong SW excitations,
similar to the Cherenkov radiation of lights or the sonic boom. As shown in Figure 3a,
a moving field pulse can easily generate Cherenkov-like excitation of SWs. This type of
excitation is characterized by the exact match between the SW phase velocity and the speed
of the moving pulse. From the SW dispersion, one can easily extract the SW phase velocity
dependence of the wave vector, as shown in Figure 3b. Again, the dots are numerical
results and the lines are analytical fittings using Equation (2). For each SW branch (with a
definite n), there are two modes that are degenerate in velocity, which can both be excited
by a moving field pulse traveling with the same speed. Due to their different group velocity,
the mode with a large (small) wave vector will move in front of (behind) the pulse [22,23].
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Figure 3. (a) A localized field pulse (blue) moving along the strip to generate Cherenkov-like
excitation of SWs. (b) SW phase velocity versus wave vector extracted from the dispersion relation.
Dots are numerical results and solid lines are fittings using Equation (2). Dashed lines help to identify
multiple degeneracy of phase velocity of SW modes with different order numbers n. The yellow stars
indicate modes that are degenerate in phase velocity that in principle can be co-excited by a particular
moving field pulse.

It can be seen from Figure 3b that if the pulse speed is large enough, the branch
hybridization effect should also take place because of the multiple degeneracy of SW phase
velocity. For instance, SWs excited by a pulse moving with a speed of 2000 m/s will in
principle involve the superposition of at least five modes both in front of and behind the
pulse. Again, this is clearly illustrated in Figure 4a, which shows complicated wave patterns
obtained in simulations when excited by using different pulse speeds. Similar to the case of
using an oscillating excitation field, these wave patterns obtained in simulations can also
be well reproduced by artificially superposing relevant SW modes with the same phase
velocity yet different order numbers, as shown in Figure 4b.
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4. Discussion

Finally, we point out a unique feature of the SW branch hybridization in the Cherenkov-
type excitation case. When considering the interference of two waves with different
frequencies in a common situation, the resulting wave acquires a so-called modulation
speed that is different from either of the phase velocities of the two waves. However, in our
case, although all the modes involved in the hybridization have different frequencies and
wave vectors, they share exactly the same phase velocity due to the merit of the excitation
mechanism. Consequently, the modulated wave has a modulation speed that is exactly
equal to the phase velocity of all the modes. This can be easily proven as

vh = vp1 = vp2 = vp = vm, (3)

where vh is the pulse velocity, vp1 and vp2 are the phase velocities of two monochromatic
SWs, with vp1 = ω1/kx1 and vp2 = ω2/kx2, vp = (ω1 + ω2)/(kx1 + kx2) is the phase
velocity of the modulation wave, and vm = (ω1 −ω2)/(kx1 − kx2) is the modulation
velocity of the modulation wave.

Figure 5 show several snapshots of the SW excitation using an 1800 m/s moving
pulse. Clearly, the wave patterns both in front of and behind of the pulse move precisely
together with the pulse, indicating the equivalence between the modulation speed and
phase velocity.
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5. Conclusions

In summary, we studied the branch hybridization effect of SWs propagating in a
commonly used wave guide, i.e., a magnetic thin-film strip, by using micromagnetic sim-
ulations. To a certain extent, such an effect is unavoidable due to the lateral confinement
of the magnetic sample resulting in a multi-branch structure of the SW dispersion rela-
tion. Our results show that the branch hybridization can lead to modification of the SW
dispersion relation and more significantly the spatial configurations of SWs traveling in
the strip either excited by using an oscillating field or a moving field pulse. As a matter of
fact, the complicated wave patterns obtained in our simulations can be almost perfectly
reproduced by the superposition of different eigen modes that are degenerate either in
frequency or phase velocity, which unambiguously proves the branch hybridization effect
in magnetic thin-film strips. From an application point of view, special attention must
be paid to the branch hybridization effect in the development of novel spintronic devices
utilizing ferromagnetic strips as SW guides. On the other hand, this effect also provides a
new approach for the manipulation of SWs in nanostructures.
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