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Abstract: High-performance fibre-reinforced concrete (HPFRC) is a composite material in which
the advantages of fibre-reinforced concrete (FRC) are combined with those of a high-performance
concrete (HPC), which mitigates the weaknesses of conventional concrete and improves its over-
all performance. With the aim to reduce the long-term maintenance costs of structures, such as
heavily loaded bridges, HPFRC is highly recommended due to its major durability performance.
Specifically, its good antifreezing property makes it suitable for application in cold regions where
cyclic freeze–thaw conditions cause the concrete to degrade. In this paper, a numerical simulation
of the degradation processes induced by freeze–thaw cycles on bond-slip laws in HPFRC beam
specimens has been developed so as to assess their effect on the flexural response of specimens as the
fibres’ volume percentage changes. Their cracking strength, postcracking strength, and toughness
were predicted, with the present model being able to predict the cracking strength, postcracking
strength and toughness of the HPFRC beam element under bending load conditions. Its accuracy
was confirmed by comparing the model predictions with experimental results.

Keywords: HPFRC; steel fibres; freezing and thawing durability; meso-scale model; cracked-hinge
approach; experimental validation

1. Introduction

Over the last few years, high-performance fibre-reinforced concrete (HPFRC) has
been widely used to strengthen ageing concrete structures [1–7] and to control the crack
propagation and displacement in concrete slabs and shells, such as industrial floors, while
also improving the seismic response of structural elements, such as columns, beams, and
walls [8,9]. Moreover, HPFRC is highly recommended in aggressive environments (e.g., ma-
rine environments, higher altitudes, northern areas) due to its high durability which is
suitable for long-term structures and heavily loaded bridges to reduce any maintenance
costs [10,11]. It is also considered a sustainable material for the manufacturing of small
thickness elements without steel rebars, resulting in a reduction in the CO2 footprint [12].
It is well-known how HPFRC is a composite material in which the advantages of fibre-
reinforced concrete (FRC) are combined with those of a high-performance concrete (HPC),
reducing the weaknesses of conventional concrete and improving its durability and mechan-
ical performance. The addition of discontinuous fibres (e.g., steel fibres [13–16], synthetic
fibres [17–21], natural fibres [22–24], basalt [25,26]), carbon and glass fibres [27]) in the HPC
as well as in the concrete in general is able to significantly reduce its brittle behaviour, thus
improving cracking, postcracking strength, and toughness [28–30] as well as its durability
such as freeze–thaw resistance. Thanks to its dense microstructure, high-performance
concrete also has a low permeability, resulting in a good resistance to various external
agents such as chloride attacks [31] and carbonation [32] as well as freezing and thawing
cycles [33–36]. Its good antifreezing property makes it suitable for application at both high
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altitudes and in northern areas where cyclic freeze–thaw conditions are one of the main
causes of two types of concrete degradation: surface scaling, which is the loss of cement
paste from the exposed surface, and internal crack growth, which makes the concrete
crumble and deteriorate. Both phenomena can reduce the quality of concrete throughout
its lifetime. Over the last few years, the research on evaluating the freezing resistance
of HPFRC has significantly increased, with several relevant achievements having been
obtained: in Feo et al. [37], the effects of 75 freeze and thaw cycles on both the dynamic
moduli of elasticity, cracking and postcracking strength, as well as the toughness of HPFRC
beam specimens reinforced with steel fibres were evaluated; in [38], it was reported how
the incorporation of basalt fibres can reduce the influence of freeze–thaw on the damage
and failure process of the beam specimen under a bending test; in [39], it was studied
how mineral admixtures (e.g., blast furnace slag, fly ash, silica fume, and metakaolin)
contained in the HPC matrix possess an excellent frost resistance; in [40], an experimental
investigation on the freeze–thaw resistance of HPC containing air-cooled slag (AS) and
water-cooled slag (WS) was conducted; in [41], it was explained how adding nanosilica to
the concrete makes it durable by enhancing its properties such as impermeability, porosity,
and acid resistance. However, based on our knowledge, such studies are experimental and
not many predictive models have been proposed that capture the mechanical response of
HPFRC, especially under freeze and thaw cycles.

In this study, the previous theoretical model developed by the authors [42], as an
extension of a meso-scale formulation of a cracked hinge model implemented in a Matlab
code [43], has been improved to predict the effect of freeze and thaw cycles on the flexural
behaviour of HPFRC specimens as the fibres’ volume percentage changes. This model
is intended to take into account explicitly the behaviour of the two typical “phases” of
fibre-reinforced cementitious composites (i.e., the cement-based matrix and the spread
reinforcement, as well as with their interaction). The kinematics of the proposed model
was inspired by the so-called “cracked-hinge” approach [44–48], but both the random
spatial distribution and orientation of fibres and the crack-bridging effect of fibres is
explicitly simulated. The present model is able to estimate the cracking, postcracking
strength, and toughness of a HPFRC beam element under bending load conditions. Its
reliability was confirmed by comparing the model predictions with the experimental results
obtained in [37].

2. Outline of the Experimental Results

The present study is part of a wider research whose experimental part was already
published into details in a previous paper [37]. A brief summary about the obtained results
is reported hereafter, for the readers’ sake.

Three different HPFRC mixtures CM0, CM1, and CM2, obtained by fixing the HPC
matrix and varying the fibre volume fraction, Vf, in the set 0%, 1.25%, and 2.50%, respec-
tively, were examined. Short steel fibres, Dramix OL 13/0.20 [49], with an aspect ratio,
lf/df, equal to 65 were chosen as the reinforcement of the HPC matrix whose mix design
was provided by the manufacturer [50]. For each type of HPFRC mixture, eight standard
150× 150× 600 mm prismatic specimens (PS) and five standard 150× 150× 150 mm cubic
samples (CS) were cast. At the end of the curing period, the prismatic specimens for each
HPFRC mixture were subjected to 75 freeze–thaw cycles according to UNI 7087-2017 [51].

Subsequently, the prismatic specimens were tested under a four-point bending setup
according to UNI 11039-2 [52] in which the vertical load (P) and the corresponding average
“Crack Tip Opening Displacement” (CTODavg) were monitored during each test. All the
cube samples were only tested in compression to evaluate, according to EN 12390-4 [53],
the compressive load, Fu, as well as the compressive strength, fc, for any changes of the
fibres’ volume fraction.

Table 1 reports the average values of the first crack load, Plf, of the first crack strength,
f (lf,avg), and the equivalent postcracking strengths, f (eq(0–0.6),avg) and f (eq(0.6–3),avg), before and
after the freeze–thaw cycles for each type of HPFRC mixture.
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Table 1. The average values of the first crack load, Plf, of the first crack strengths, f (If,avg), and
of the equivalent postcracking strengths, f (eq(0–0.6),avg) and f (eq(0.6–3),avg), before (NFT) and after the
freeze–thaw cycles (FT) for each type of HPFRC mixture (CM0, CM1, and CM2).

Mix.
PNFT

I f ,avg PFT
I f ,avg f NFT

I f ,avg f FT
I f ,avg f NFT

eq(0–0.6),avg f FT
eq(0−0.6),avg f NFT

eq(0.6–3),avg f FT
eq(0.6–3),avg

[kN] [kN] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

CM0 11.213 9.105 3.05 2.477 - - - -
CM1 14.489 12.538 4.013 3.475 6.617 5.435 7.99 6.845
CM2 18.595 16.175 5.06 4.327 9.15 7.537 11.473 9.255

Table 2 summarises the average values of the work capacity indices, U(1,avg) and
U(2,avg), and the ductility indices, D(0,avg) and D(1,avg), before and after the freeze–thaw
cycles for the two types of HPFRC mixture (CM1 and CM2).

Table 2. The average values of the work capacity indices, U(1,avg) and U(2,avg), and ductility indices,
D(0,avg) and D(1,avg), before (NFT) and after the freeze–thaw cycles (FT) for the two types of HPFRC
mixture (CM1 and CM2).

Mix.
UNFT

1,avg UFT
1,avg UNFT

2,avg UFT
2,avg DNFT

0,avg DFT
0,avg DNFT

1,avg DFT
1,avg

[kNmm] [kNmm] [kNmm] [kNmm] [-] [-] [-] [-]

CM1 14,283.43 11,742.40 69,226.73 59,175.15 1.647 1.565 1.265 1.265
CM2 20,508.47 16,895.83 102,877.93 82,992.00 1.837 1.747 1.257 1.250

3. Theoretical Model

The abovementioned experimental results were here used to improve the cracked-hinge
model [42] in which a meso-mechanical approach was adopted with the aim of predicting
the bending response of HPFRC beam elements under normal environmental conditions.

3.1. Assumptions and Formulation

In this new model, however, a different transition zone length and a modified bond-
slip law of the fibres were taken into account in order to estimate the effects of freeze–thaw
cycles on the flexural behaviour of standard specimens of a length L, width b, depth h, and
transversely notched at the midspan section for a depth equal to h0 (Figure 1).
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By denoting x, y, and z, the axes of a Cartesian coordinate system originating at the
centre of the midspan section, a random distribution of the fibres inside the specimen
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prismatic volume was generated (by utilising the standard random number generator of
Matlab) in which x(f,k), y(f,k), and z(f,k) (with k between 1 and nf), and α(y,k) and α(z,k) are the
three coordinates of the fibre centroid (G(f,k)) and the two relevant angles, respectively. In
order to consider the bridging effect offered by the fibres, the total number of fibres in the
midspan section, nf, was determined as a ratio between the fibres’ volume fraction, Vf, and
the cement matrix volume, Vc.

Furthermore, the model was based on the following assumptions:

(i) The flexibility was distributed in the central part of the specimen for a length equal to
“s” while a rigid body behaviour was exhibited by the remaining end parts (Figure 2).

(ii) The midspan cross-section was discretized in nc layers as shown in Figure 3. The
average axial strain of the k-th layer, εk, before crack formation, and the crack-opening
displacement, wk, after the crack formation, can be easily expressed for the k-th layer
(k = 1, . . . , nc) as in Equations (1) and (2).

εk =
2 ϕj·(zc − zk)

s
(1)

wk = 2 ϕj·(zc − zk) (2)

Equations (1) and (2) are typical of the “cracked hinge” model family (after their origi-
nal formulations by Hillerborg et al. [46] and Olesen [47]). Specifically, Equation (2) rests
on the assumption that plane sections remain plane and Equation (1) on the assumption
of a characteristic length “s” which can be defined to convert axial displacements (at the
numerator of the right-hand side) in axial strains (at the left-hand side).

(iii) Consequently, the average value of the axial stress, σc,k, at k-th strip can be determined
as a function of the axial deformation, εk, before cracking, or a function of the crack-
opening displacements, wk, after cracking. The stress–strain and stress–displacement
relationships assumed in this paper are reported in Section 3.2.2.

(iv) A transition length, lt, was introduced in the notched cross-section (Figure 4), which
starts from the top of the notch to the top of the integral part of the section, in order to
consider the possible microdamage phenomena produced by the notching process.
The mechanical meaning of this quantity is discussed in details in a previous paper [42]
and omitted herein for the sake of brevity. Therefore, a reduced value of the width, bk,
inside the transition zone was considered which can be evaluated with an exponential
law as in Equation (3) where lk and α are the distance of the k-th strip from the top of
the notch and the coefficient of the exponential law, respectively:

bk = b·
(

lk
lt

)α

(3)

(v) The bridging effect offered by the fibres was taken in to account by introducing the
action, Fk,j, mobilised at the j-th step of the incremental analysis as in Equation (4):

Fk

(
z f ,k; zc,j; ϕj

)
= A f ·σf ,k

(
z f ,k; zc,j; ϕj

)
(4)

in which z f ,k, zc,j and ϕj are the position of the k-th fiber in the cross section, the position of
the neutral axis and the rotation of the two rigid blocks at the j-th step of the increment
analysis (Figure 2), respectively. In particular, the axial stress of the k-th fiber, σf ,k depends
on the sliding of one of the two parts embedded in the two sides of the crack and, therefore,
it was correlated to the bond stresses, τ, mobilized on its lateral surface due to the crack
opening displacement wk:

σf ,k

(
z f ,k; zc,j; ϕj

)
= 4·

l f − w f ,k

(
z f ,k; zc,j; ϕj

)
d f

·τ
[
w f ,k

(
z f ,k; zc,j; ϕj

)]
(5)
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Moreover, it should be noted that only a low number of these fibres, n′f < n f , will
cross the crack which will potentially open in the middle of the beam. With the above
assumptions, the position zc,j of the neutral axis for the j-th imposed rotation ϕj can be
determined by solving the following equilibrium equation along the longitudinal axis
which can be written as follows:

∆z·b·
[

nt

∑
k=1

(
lk
lt

)α

·σc,k
(
zk; zc,j; ϕj

)
+

nc

∑
k=nt+1

σc,k
(
zk; zc,j; ϕj

)]
+

n′f

∑
k=1

Fk

(
z f ,k; zc,j; ϕj

)
= 0 (6)

where nc is the number of layers into which the midspan section is discretized (Figure 3)
and nt is the number of layers of reduced width [42].

The solution of Equation (6) brings us to determining zc,j, at the j-th step of the
incremental analysis. It is worth highlighting that this solution can only be obtained
numerically: the well-known bisection method was employed to determine the actual value
of zc,j which should obviously be included in the range between 0 and h–h0 (Figure 3).

Then, the corresponding values of the bending moment Mj can be obtained as follows:

Mj = ∆z·b·
[

nt
∑

k=1

(
lk
lt

)α
·σc,k

(
zk; zc,j; ϕj

)
·
(

h
2 − zk

)
+

nc
∑

k=nt+1
σc,k
(
zk; zc,j; ϕj

)
·
(

h
2 − zk

)]

+
n′f
∑

k=1
Fk

(
z f ,k; zc,j; ϕj

)
·
(

h
2 − z f ,k

)
(7)

which is obviously related to the applied vertical load P (in 3-point bending):

Pj = 4·
Mj

l
. (8)

The corresponding CTODj value of can be obtained from Equation (2) by just replacing
the generic value of zk with the position of the crack tip (zk = −h/2 + h0 from Figue 2).

Therefore, for each value of the imposed rotation ϕj, a couple (CTODj, Pj) can be deter-
mined, and then, the Force-CTOD graph can be incrementally determined up to failure.

Furthermore, the constitutive laws adopted for the HPC matrix and short steel fibres
have the same shape as well as mathematical expressions as those already presented by the
authors [42]. However, the unknown parameters in the constitutive laws were calibrated in
Section 4 on the experimental results already summarized in Section 2.
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3.2. Constitutive Laws Assumed in the Present Study
3.2.1. Stress–Strain Relationships for Concrete in Compression and in Tension

The stress–strain relationship when the concrete is in compression was described
by Equation (7), according to [54], in which η can be calculated as the ratio between
the strain, εc, and the strain at maximum compressive stress, εc1, can be evaluated as in
Equation (8); whereas k is the plasticity number which depends on the elastic modulus
in compression, Ec, and on the secant modulus from the origin to the peak compressive
stress, Ec1, as in Equation (9). The last one can be evaluated as a function of εc1 and the
concrete compressive strength ( fcm). The schematic representation of the above stress–strain
relationship in compression is shown in Figure 5.

σc = fcm·
k·η − η2

1 + (k− 2)·η (9)

εc1 = 1.60·
(

fcm

10

)0.25
(10)

k =
Ec

Ec1
=

Ec(
fcm
εc1

) (11)

The constitutive law when the concrete is in tension, evaluated according to the
“fictitious crack method” employed in [44], presents a bilinear relation until the tensile strain
of the k-th strip, εk, reaches the conventional value equal to 0.00015 (Figure 6a). A linear
elastic behaviour is described by Equation (12a) until the section is uncracked after which
the behaviour is expressed by the linear Equation (12b) as follows:

σct =


Ect·εct f or εct ≤ 0.9· fctm

Ect
(a)

fctm·
(

1− 0.1· 0.00015−εct

0.00015−0.9· fctm
Ect

)
f or 0.9· fctm

Ect
≤ εct ≤ 0.00015 (b)

(12)
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in which σct, Ect, and εct represent the tension stress (in MPa), the elastic modulus under
tension load (in MPa), and the tensile strain, respectively, whilst fctm (in MPa) indicates the
tensile strength. Beyond this level, a softening constitutive stress-crack opening law was
considered due to the opening of a crack in the k-th strip of the cross-section, Equation (13).
Consequentially, the residual tension σct must be expressed as a function of the crack-
opening displacement, w, (Figure 6b) in which w1 and wc are dependent on the fracture
energy as defined in [54]:

σct =

 fctm·
(

1.0− 0.8· w
w1

)
f or w ≤ w1 (a)

fctm·
(

0.25− 0.05 w
w1

)
f or w1 ≤ w ≤ wc (b)

(13)
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𝑓𝑐𝑡𝑚 ∙ (0.25 − 0.05
𝑤

𝑤1
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Figure 5. Schematic representation of the stress–strain relation for uniaxial compression.
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the stress–strain behaviour is described by a bilinear relation; (b) for εk > 0.00015, the stress–strain
behaviour is described by a softening constitutive stress–crack opening law.

3.2.2. Modified Bond-Slip Model for Short Steel Fibres

The mathematical relation of the local τ − s constitutive law adopted in this study is
provided in Equation (14) in which s was considered equal to the crack-opening displace-
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ment w f ,k at the level of the k-th fibre while the six unknown parameters
(i.e., sel , sR, su, τel , τR, τu) have to be calibrated using the experimental data of Section 2:

τ =


τel · s

sel
f or s ≤ sel (a)

τel + (τR − τel)
s−sel

sR−sel
f or sel ≤ s ≤ sR (b)

τR f or sR ≤ s ≤ su (c)
(14)

Consequently, the nonlinear bond-slip law is divided in three different branches, as
expressed in Equation (12):

• a linear-elastic behaviour up to the stress level corresponding to matrix tensile strength,
identified by the two parameters sel , τel ;

• a hardening behaviour, characterized by the formation of many microcracks in the
HPFRC mix, identified by the two parameters sR and τR;

• a constant behaviour defined by the two parameters su and τu.

The curve presents an adequate “shape” for describing the global pull-out response
of short steel fibres embedded within the HPC matrices. For the sake of simplicity, the
current assumption includes the effect of the fibre orientation in space (from 0◦ to 45◦) with
respect to the matrix surfaces, as demonstrated in a previous study [55]. However, more
accurate assumptions could be formulated with the aim to take into account both the axial
deformation of fibres (which is neglected in this study, as it is focused on “short” fibres)
and the aforementioned effect of fibre orientation with respect to the transverse section of
the specimen at midspan.

4. Inverse Identification of the Relevant Material Laws

An inverse identification procedure was carried out with the aim to determine the val-
ues of the model parameters that lead to minimizing the difference between the measured
and predicted Force-CTOD curves. Specifically, the cylindrical compression strength, fcm,
the transition length lt, the exponential parameter, α, and the six parameters of the bond-
slip law (i.e., sel , sR, su, τel , τR, τu) were considered as variable with some quantitative
restrictions (e.g., sel < sR < su, τel < τR and τR = τu) intended at respecting the mechanical
consistency of the model. In order to evaluate how the values of these parameters depend
on the effect of freeze–thaw cycles, several numerical simulations were carried out. In
particular, three groups of 100 simulations each, assuming nc = 50 and s = 300 mm, were
run as described below.

• In the first one, the cylindrical compression strength, fcm, the transition length lt,
and the exponential parameter, α, were calibrated on the flexural response of the
conditioned CM0 specimens (labelled CM0-FT). Experimentally, a 21% reduction in
the cylindrical compression strength, fcm, was observed on the conditioned specimens
compared to not conditioned ones. This reduction was taken in account to calibrate
the value of the transition length, lt, whose value, in the present model, was assumed
equal to 85 mm (with an increase of 21% compared to that used in the previous
model [42] in which the flexural behaviour of unconditioned CM0 specimens (labeled
CM0-NFT) was predicted with a transition length, lt, equal to 70 mm). In both models,
the coefficient of the exponential law, α, was considered constant and equal to 0.40
(Table 3). Figure 7 shows both the average experimental P− CTOD,avg curve (light-
blue line) and the average numerical P− CTOD,avg curve (pink line) obtained with
the present model employed for the CM0-FT specimens.

• In the second one, the six parameters of the bond-slip law (i.e., sel , sR, su, τel , τR, τu)
were calibrated on the flexural response of conditioned CM1 specimens (labelled
CM1-FT). A 13% reduction in the parameter τel was adopted in the calibration of the
conditioned specimens compared to the unconditioned ones.

• In the last one, only the parameter, τel , was calibrated again on the flexural response
of conditioned CM2 specimens (labelled CM2-FT) while all the other parameters
were considered constant. A 19% reduction in the parameter τel was adopted for the
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conditioned specimens compared to the unconditioned ones. Moreover, as in [42], a
20% reduction in the fibres’ volume fraction, Vf , was considered in order to take into
account the nonuniform fibre distribution.

Table 3. Calibration of the input data for unconditioned CM0 specimens (labelled CM0-NFT) and for
conditioned CM0 specimens (labelled CM0-FT) used in the previous model of Ref. [42] and in the
last one, respectively.

Specimen Designation fcm lt α Model
[MPa] [mm] [− ]

CM0-NFT 53.0 70.0 0.4 Ref. [42]
CM0-FT 42.0 85.0 0.4 Present paper
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Figure 7. The average experimental P− CTOD,avg curve (light-blue line) versus the average numeri-
cal P− CTOD,avg curve (pink line) for conditioned CM0 specimens (labelled CM0-FT) obtained with
the present model.

The results of the last two calibrations were listed in Figure 8 and Table 4, while
Figures 9a and 10a show the comparison between the average experimental P− CTOD,avg
curve (violet line) and the average numerical P− CTOD,avg curve (green line) obtained
with the previous model for the CM1-NFT and CM2-NFT specimens, respectively. Whereas
Figures 9b and 10b show the comparison between the average experimental P− CTOD,avg
curve (light-blue line) and the average numerical P−CTOD,avg curve (pink line) used with
the present model for the CM1-FT and CM2-FT specimens, respectively.
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Table 4. Calibration of the six parameters in the local bond-slip law for unconditioned CM1 and CM2
specimens (labelled, respectively, CM1-NFT and CM2-NFT) as well as for conditioned CM1 and CM2
specimens (labelled, respectively, CM1-FT and CM2-FT) used in the previous model of Ref. [42] and
in the last one, respectively.

Series
sel sR su τel τR τu Model

[mm] [mm] [mm] [MPa] [MPa] [MPa]

CM1-NFT 0.10 8.00 10.00 8.00 21.50 21.50 Ref. [42]
CM1-FT 0.10 8.00 10.00 7.00 21.50 21.50 Present paper

CM2-NFT 0.10 8.00 10.00 8.00 21.50 21.50 Ref. [42]
CM2-FT 0.10 8.00 10.00 6.50 21.50 21.50 Present paper
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Figure 9. (a). The average experimental P−CTOD,avg curve (violet line) versus the average numerical
P− CTOD,avg curve (green line) for unconditioned CM1 specimens (labelled CM1-NFT) obtained
with the previous model of Ref. [42]. (b). The average experimental P− CTOD,avg curve (violet line)
versus the average numerical P− CTOD,avg curve (green line) for unconditioned CM2 specimens
(labelled CM2-NFT) obtained with the previous model of Ref. [42].
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Figure 10. (a). The average experimental P− CTOD,avg curve (light-blue line) versus the average nu-
merical P− CTOD,avg curve (pink line) for conditioned CM1 specimens (labelled CM1-FT) obtained
with the present model. (b). The average experimental P− CTOD,avg curve (light-blue line) versus
the average numerical P− CTOD,avg curve (pink line) for conditioned CM2 specimens (labelled
CM2-FT) obtained with the present model.

5. Results

The model developed by the authors [42] was, here, used to predict the postcracking
response of HPFRC beam elements under freeze–thaw cycles.

In order to assess the model accuracy, the theoretical and experimental results of the
CM1 and CM2 specimens were compared: first, the average values of the two equivalent
postcracking strengths after the freeze–thaw cycles, f FT

eq(0−0.6),avg and f FT
eq(0.6−3),avg, are listed

in Table 5, for the CM1 and CM2 mixtures, in which the values were compared with
those obtained before the freeze–thaw cycles of Ref. [42], f NFT

eq(0−0.6),avg and f NFT
eq(0.6−3),avg;

second, the average values of the two working capacity indices after the freeze–thaw cycles,
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UFT
1,avg and UFT

2,avg, are summarised in Table 6, for the CM1 and CM2 mixtures, in which the
values were compared with those obtained before the freeze–thaw cycles of Ref. [42], UNFT

1,avg

and UNFT
2,avg.

Table 5. Comparison between the experimental and theoretical average values of the two equivalent
postcracking strengths after the freeze–thaw cycles, f FT

eq(0–0.6),avg and f FT
eq(0.6–3),avg, and those before

the freeze–thaw cycles of Ref. [42], f NFT
eq(0–0.6),avg and f NFT

eq(0.6–3),avg, for the CM1 and CM2 mixtures.

Results

CM1 CM2

f NFT
eq(0–0.6),avg f FT

eq(0–0.6),avg f NFT
eq(0.6–3),avg f FT

eq(0.6–3),avg f NFT
eq(0–0.6),avg f FT

eq(0–0.6),avg f NFT
eq(0.6–3),avg f FT

eq(0.6–3),avg
[MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

Experimental 6.617 5.435 7.990 6.845 9.150 7.537 11.473 9.255
Theoretical 6.179 5.411 7.672 6.871 8.486 7.125 11.532 9.871

Percentage difference (%) 6.61 0.45 3.98 0.39 7.26 5.47 0.51 6.66

Table 6. Comparison between the experimental and theoretical average values of the two working
capacity indices after the freeze–thaw cycles, UFT

1,avg and UFT
2,avg, and those before the freeze–thaw

cycles of Ref. [42], UNFT
1,avg and UNFT

2,avg, for the CM1 and CM2 mixtures.

Results

CM1 CM2

UNFT
1,avg UFT

1,avg UNFT
2,avg UFT

2,avg UNFT
1,avg UFT

1,avg UNFT
2,avg UFT

2,avg
[kNmm] [kNmm] [kNmm] [kNmm] [kNmm] [kNmm] [kNmm] [kNmm]

Experimental 14,283.43 11,742.40 69,226.73 59,175.15 20,508.47 16,895.83 102,877.93 82,992.00
Theoretical 13,625.51 11,930.62 67,667.93 60,606.61 18,711.24 15,709.63 101,710.39 87,061.56

Percentage difference (%) 4.61 1.60 2.25 2.42 8.76 7.02 1.13 4.90

The correlation graphs of the two equivalent postcracking strengths were plotted in
Figures 11 and 12, respectively, while Figures 13 and 14 show the correlation graphs of the
average values of the two working capacity indices U1 and U2, respectively. For each point,
the red bars represent the standard deviation of the experimental and predicted values. It
was noted how the convergence with the present model was good so that a lower standard
deviation was observed.
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postcracking strengths after the freeze–thaw cycles, f FT

eq(0.6–3),avg, and before the freeze–thaw cycles

of Ref. [42], f NFT
eq(0.6–3),avg, for the CM1 and CM2 mixtures.
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UNFT
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6. Conclusions

The present paper was aimed at scrutinizing the effects of freeze–thaw cycles on
the fundamental mechanical behaviour of the “components” controlling the structural
behaviour of HPFRC members in bending. Specifically, based on a series of experimental re-
sults obtained by the first two authors in a previous study [37], a simplified “cracked-hinge”
model was considered with the aim to identify both the concrete constitutive relationship
and the bond-slip law of fibres in “unconditioned” and “conditioned specimens”.

Based on the results obtained from the aforementioned inverse identification proce-
dure, the following main considerations can be drawn out:

• The freeze–thaw cycles effect the cylindrical compression strength, fcm, the transition
length lt, and the bond-slip law of fibres, which confirms their significance as relevant
parameters controlling the resulting response of HPFRC specimens;

• Table 3 shows that the compressive strength fcm undergoes a substantial reduction (in
the order of 20%) as a result of the degradation processes induced by the FT cycles;

• as for the transition zone, which is a peculiar aspect of the considered model, a
moderate increase in its the depth (from 70 mm to 85 mm) can be identified after the
FT cycles, whereas its shape (controlled by the exponent α) does not change;

• Table 4 points out that the bond-slip law of fibres is also affected by the FT cycles, as,
specifically, the elastic limit stress, τel, (and, consequently, the initial elastic stiffness of
the same law) reduces by about 15%, with no changes in the other parameters;

• however, under the designers’ standpoint (and besides the specific values obtained in
the present study), it should be noted that this change affects both serviceability and
ultimate limit states in the structural response.

Finally, the generally good agreement between the experimental data and the values
obtained from the identified model confirms the mechanical consistency of the latter and its
potential accuracy. However, further experimental results are needed to calibrate general
relationships between the main parameters controlling the bond-slip law of fibres and the
actual number of freeze–thaw cycles: this will be part of the future developments of the
present research.
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