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Abstract: Gradually increasing power transmission voltage requires an improved high-voltage
capability of polymeric insulating materials. Surface modification emerges as an easily accessible
approach in enhancing breakdown and flashover performances due to the widely acknowledged
modification of space-charge behaviors. However, as oxidation and fluorination essentially react
within a limited depth of 2 µm underneath polymer surfaces, the nature of such bulk space-charge
modulation remains a controversial issue, and further investigation is needed to realize enhancement
of insulating performance. In this work, the surface oxidation-dependent space-charge accumulation
in LDPE film was found to be dominated by an electrode/polymer interfacial barrier, but not by the
generation of bulk charge traps. Through quantitative investigation of space-charge distributions
along with induced electric field distortion, the functions of surface oxidation on the interfacial
barrier of a typical dielectric polymer, LDPE, is discussed and linked to space-charge behaviors. As
the mechanism of surface modification on space-charge behaviors is herein proposed, space-charge
accumulation can be effectively modified by selecting an appropriate surface modification method,
which consequentially benefits breakdown and flashover performances of polymeric insulating films
for high-voltage applications.

Keywords: space charge; high voltage; LDPE; surface oxidation; charge injection; insulating polymer

1. Introduction

Non-conjugated polymers such as polyethylene, polypropylene and epoxy resin (EP)
serve as the main electrical insulating component in power equipment [1–8]. Due to the
gradually increasing power transmission voltage, advanced polymer insulators are required
to sustain long-term extremely high electrical strengths [5,9–11]. Space charges, injected
from a metal electrode, inevitably accumulate inside the bulk of insulating polymers, which
are considered as the main reason for inner electrical field distortion, leading to accelerated
deterioration and breakdown of the polymeric insulating materials [12–15].

Based on the recently developed high-resolution space-charge detection methods such
as pulsed electroacoustics (PEA) and pressure wave propagation (PWP), the existence, pro-
file and functions of space charges on insulation discharge have been realized [16–19]. DC
high voltage induces continuous space-charge injection and accumulation, which trigger
increased electric field strength in the middle bulk, leading to breakdown of the insulating
film [14,15,17,20,21]. Differently, due to the periodic alternated polarities of AC voltage,
large quantities of space charges accumulate near film/electrode interfaces, giving rise to
great electric field distortion, which leads to the decreased breakdown strength as com-
pared to that under DC voltages [15]. Although most of the references reported decreased
breakdown strength by the introduction of space charges, surface charges contribute to
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improved flashover performance for most of the insulating polymers [22–24]. Recent in-
vestigations on electron beam-irradiated EP indicate increased density of deep-trapping
sites which suppress the multiplication of secondary electrons, and consequently results in
enhanced flashover performance [25–27].

Since space charge shows the double-edged sword effect on high voltage discharges,
its regulation strategy has become a research hotspot, among which surface modification
is an emerging approach. Investigations on surface-fluorinated polyimide and EP show
generation of shallow traps with increased surface conductivity, which improves flashover
performance [28,29]. Similar enhancement is achieved with surface oxidation on low-
density polyethylene (LDPE) and high-density polyethylene (HDPE) [30], and there exists
opposite arguments about surface fluorination, which simultaneously inhibits space-charge
injection and accumulation in LDPE [31–33].

Thus, divergence still exists on the surface modification-dependent space-charge be-
haviors of polymer insulating materials; thus, further investigation and understanding
are needed. Furthermore, the surface treatment of polymer insulators will unavoidably
lead to modified interfacial contact between metal electrodes and insulating film, resulting
in varied space-charge injecting behaviors which largely modulate the absolute quan-
tities of space charges [34]. However, such major factors, namely, the injection barrier
between the electrode and dielectric has not been systematically investigated, which re-
stricts further understanding on the surface treatment-dependent space-charge behaviors
of polymer dielectrics.

Here, based on surface-oxidized LDPE films, the charge injection barrier is investigated
and linked to the accumulation of space charges. With the assistance of numerical simula-
tions, the injection barrier-dominated space-charge profile of a model dielectric polymer
LDPE is investigated, providing in-depth understanding of surface treatment-dependent
space-charge behaviors.

2. Materials and Methods

Materials: LDPE with the nameplate of LE4147 was purchased from Borealis (Vienna,
Austria), which exhibits a nominal density of 0.922 g/cm3, and a dielectric constant of
2.3. For preparing the LDPE film, the LDPE pellet was first heated at 60 ◦C, and then
thermal pressed at 140 ◦C, 15 MPa for 15 min. After that, the LDPE film was cooled down
to ambient room temperature. To conduct surface oxidation, the prepared LDPE film was
placed into a reactor with 0.04 MPa, 110 mg/L ozone atmosphere. At each duration of 1 h,
2 h, 4 h and 6 h, the oxidized LDPE film was taken out and labeled.

Characterization: X-ray photoelectron spectroscopy (XPS) was conducted with a
Thermo Fisher ESCALAB Xi+. Thermally stimulated current (TSC) was performed with
a Novocontrol Concept 80 system. During testing, the LDPE film with sputtered gold
electrodes was polarized at 80 ◦C, 2 kV/mm for 30 min, and then rapidly cooled down
to −100 ◦C with a temperature ramping rate of −30 ◦C/min. After that, a short-circuited
depolarization process was conducted for 3 min, and the temperature was re-increased
to 90 ◦C at 3 ◦C/min for obtaining the TSC. The total trap amount and trap level of the
LDPE film was obtained through a fitting process [20,35,36]. A PEA test was conducted
under 30 kV/mm, with polarization and depolarization durations of 1200 s and 300 s, at
room temperature.

Simulations: For first-principle simulations, an LDPE molecular chain with the po-
larization of 10 ethylene monomers was established. Before calculating the energy band
structure, the configuration optimization of the molecular chain was first conducted, and
the ORCA software package [37] was used to optimize the lowest energy configuration
under the B3LYP function [38,39], with DFT-D3-quantified dispersion corrections. For the
numerical simulations of space-charge behaviors, the space-charge injection and transport
processes were described by the Schottky thermionic emission, charge transport and charge
trapping–detrapping dynamic equations, as reported in our early investigations [40,41].
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The space-charge-induced electric field distortion along the film thickness direction was
described by Poisson’s equation [42].

3. Results and Discussion
3.1. Characterisation of Surface Oxidation

XPS was first applied in characterizing the surface element within a depth of ca.
10 nm of the LDPE film after ozone treatment. As shown in Figure 1a, three peaks at
the binding energy of 282 eV, 528 eV and 974 eV were observed, which represented C1s,
O1s and O auger electrons, respectively. The intensity of these three peaks increased with
the prolonged oxidation duration, indicating that the surface oxidation treatment had
successfully introduced O atoms onto the LDPE film.
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Figure 1. XPS spectra of as-prepared LDPE film and LDPE films with surface oxidation durations of
1–6 h. (a) XPS spectrum in binding energy range of 200–1200 eV; (b) The C 1s XPS spectrum; (c) The
O 1s XPS spectrum; (d) The O Auger electron XPS spectrum.

More detailed information is reported in Figure 1b,d. In Figure 1b of the C1s photo-
electron spectroscopy, despite the barely changed intensity of C1s peak at 282 eV, a small
peak was observed at 286.5 eV, which corresponds to C=O. A left shift of the C=O peak
was observed in inset of Figure 1b, indicating the raising binding energy of C=O with the
increased oxidation duration. Figure 1c is the O1s spectrum, showing a gradually enhanced
peak intensity with the prolonged oxidation duration, which further indicates the growing
absolute quantity of introduced O atoms, proving the surface modification of LDPE by
ozone treatment. Figure 1d is the O auger peak, the trend of which shows a similar increase
with that of O1s in Figure 1c.

Generally, the intensity of the photoelectron peaks in XPS spectrum represents the
concentration of O element in the surface layer of the LDPE film. A higher intensity of
the peak corresponds to a larger O intensity. Based on the XPS results in Figure 1, ozone
treatment introduced O atoms onto the surface of the LDPE film through forming a C=O
bond, and the concentration of O element increased with the continuous extension of the
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oxidation treatment duration. A supporting data of Fourier transform infrared spectroscopy
(FTIR) with a gradually emerging C=O peak at 1710 cm−1 also suggests the grafting of O
atoms onto the LDPE surface, as reported in Ref. [26]. Thus, the surface modification of the
LDPE film was successfully achieved through UV-ozone treatment.

3.2. Characterisation of Charge Traps

Surface treatment of dielectric films could lead to varied space-charge performance.
Here, the space-charge characteristics of LDPE film under ozone treatment are investigated
through thermally stimulated current (TSC) tests, the result of which are reported in Figure 2.
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Three peaks were observed and labeled as peak α, peak β and peak γ, arranged from
high temperature to low temperature, respectively. Earlier investigation indicated that the
generation mechanism of peak γ was dipole polarization, and peak α was generated by
the accumulation of space charges [35,43]. In Figure 2a, the TSC of peak α was apparently
larger than those of peak β and peak γ, which indicates the minor contribution to the total
quantity of space charges from peak β and peak γ. As the TSC of peak α continuously
increased with oxidation duration, it is thus verified that the space-charge accumulation
tended to be more violent after ozone treatment of the LDPE film.

In order to quantitatively investigate the variation in the space-charge behaviors of
the LDPE after ozone treatment, the trap level and trap amount of peak α were extracted
from the TSC curves, by applying [35,43],

ITSC(T) =
p
τ

exp
[
−ET

kT
− 1

βτ

∫ T

T0

exp
(
−ET

kT

)
dT
]

(1)

where ITSC is the TSC in A; T is the test temperature in K; p is the polarization intensity in
C/m2; τ is the relaxation time in s; ET is the trap level in eV; k is the Boltzmann constant;
and β is the temperature ramping rate in K/s.

The variations in trap level and trap amount with the changes in oxidation duration is
shown in Figure 2b and Table 1. The as-prepared LDPE film exhibited a trap level of 0.66 eV,
and the surface oxidation lead to a tremendously increased trap level of 0.76 eV after 1 h
ozone treatment. However, further prolonging of the oxidation treatment resulted in a
decreased trap energy towards 0.63 eV under 6 h treatment. Differently, the trap amount
showed a continuous increase with ozone treatment, from 1.44 nC of as-prepared LDPE
film to 9.00 nC of 6 h treated film, indicating an increased quantity of space charges. This
increasing trend of space charges is in accordance with that of the PEA results as reported
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in ref. [26], which suggests an increase from 2.5 nC of as-prepared film to 9.4 nC of 6 h
ozone treated film.

Table 1. The obtained charge trap parameters of surface oxidized LDPE films.

Film Trap Level/eV Trap Amount/nC

LDPE 0.66 1.44
Oxidized by 1 h 0.76 2.82
Oxidized by 2 h 0.71 6.64
Oxidized by 4 h 0.69 8.32
Oxidized by 6 h 0.63 9.00

As is widely acknowledged, surface oxidation could only occur within several mi-
crometers of the polymer film, and the chemical structure in the bulk of the film stayed
unchanged. TSC represents the space-charge behaviors of the film bulk. In other words,
the quantity of space charges along the film depth direction is integrally accounted for [36].
However, the TSC results in Figure 2 show extremely large variations with oxidation dura-
tion, which indicates that the charge trap information of the whole film was changed by
surface oxidation.

Earlier investigation suggests that surface shallow traps are generated by oxidation
treatment, which has been well proved by isothermal surface potential decay (ISPD) ex-
periments. These shallow traps on the film surface facilitate space-charge injection from
the electrodes, which results in more accumulated charges in the bulk of the film, and
consequently leads to an enlarged TSC.

PEA experiments were conducted, and the result was compared with that of TSC. PEA
is a common method for characterizing the space-charge behaviors of a dielectric material
and the PEA results of the LDPE film after surface oxidation are shown in Figure 3.
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Materials 2022, 15, 6095 6 of 14

In Figure 3a, for as-prepared LDPE film, the HOMO charge density near the cathode
reached ca. −30 C/m3, while that near the anode reached ca. 8 C/m3. Comparatively in
Figure 3b,c, for LDPE films after surface oxidation treatment, a large increase was observed
in space-charge density. For instance, in Figure 3b, the negative charge density near the
cathode reached ca. −50 C/m3, and the positive charge density near the anode reached
ca. 20 C/m3, which were nearly double those of the as-prepared LDPE film. These results
indicate that the quantity of space charges in the bulk of the LDPE film was tremendously
increased after surface oxidation, and a more detailed result is reported in Figure 3d.

In Figure 3d, for the calculated total amount of space charges, both the TSC and PEA
results show greatly enhanced space charge accumulation by surface oxidation, while the
ISPD result shows a barely changed trap amount (data obtained from [44]). As ISPD applies
non-electrode contact for space-charge injection, such an interesting result indicates that
surface oxidation does not naturally change the bulk trap features of the dielectric films.
However, surface treatment inevitably modulates the charge injection barrier between the
electrode and the film surface. Thus, as both TSC and PEA apply electrode contact for
space-charge injection, the quantities of accumulated charges increased tremendously after
surface oxidation treatment.

3.3. Characterisation of Charge Injection Barrier

The above-mentioned discussion suggests that the changed trap parameters extracted
from TSC and PEA do not actually represent the bulk trap information, but are mainly
related to the changes in charge injection and accumulation, controlled by the surface trap
conditions. This consideration is also proved by the barely changed trap energy alongside
the greatly varied trap amount. Earlier ISPD results also suggest that surface oxidation
introduces shallow traps on the surface of dielectric films, resulting in much more violent
space-charge injection [26]. This promoted charge injection by surface shallow traps could
essentially be attributed to the varied electrode/polymer interfacial barriers, which has
been further investigated by first-principle molecular simulations.

In respect of the measurement of the charge injection barrier, we have also consid-
ered experimentally measuring the HOMO level of the surface-oxidized LDPE films by
ultraviolet photo-electron spectroscopy (UPS) and obtaining the charge injection barrier
by subtractive calculation with the work function of the metal electrode. However, UPS
testing requires vertical electrical conduction along the film thickness direction, and thus
LDPE films with excellent electrical insulating performance can hardly be tested. After
careful reading of the literature, it is still an extremely hard issue to experimentally measure
the energy band structure of such dielectric polymers, and thus, a molecular simulation is
carried out.

The energy level structures of C20H42 (LDPE with a polymerization index of 10) and
C20H40O (LDPE with a one grafted O atom) were first investigated, as demonstrated in
Figure 4. C20H42 exhibited the lowest unoccupied molecular orbital (LUMO) of 1.49 eV
and a highest occupied molecular orbital (HOMO) of −6.77 eV, forming a bandgap (φg)
of 8.26 eV, thus showing excellent electrical insulating characteristics. Oxidation lead to
a lower LUMO of −1.92 eV with an increased HOMO of −5.68 eV. Meanwhile, charge
trapping sites were formed near LUMO and HOMO, which exhibited φte = 3.56 eV for
electrons and φth = 1.90 eV for holes. Apparently, the bandgap φg decreased to 3.76 eV,
indicating substantially reduced insulating performance.

Most commonly in the power industry, copper electrodes are applied, exhibiting a
work function of −4.7 eV. As the charge injection barrier (φinj) is defined as the energy
discrepancy between the work function of a metal electrode and the LUMO of a dielectric
polymer for electrons, oxidation lead to tremendously decreased φinj (6.2 eV for LDPE
and 2.8 eV for oxidized LDPE). Similarly, φinj for holes synchronously decreased from
2.1 eV to 1.0 eV.
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The prolonged oxidation duration could have caused more grafted O atoms onto
the LDPE, which may have further modulated the energy structure of the dielectric
polymer. Here, the molecular structures of C20H36O3, C20H32O5 and C20H28O7 were
formed, as demonstrated in Figure 5a, and the results are indicated in Figure 5b. The
introduction of O atoms lead to a tremendously lowered LUMO below the vacuum level,
and C20H40O, C20H36O3, C20H32O5 and C20H28O7 exhibited LUMO values of −1.92 eV,
−1.94 eV, −1.99 eV and −2.08 eV, respectively. Therefore, a continuous surface oxidation
process could result in a lower LUMO. Comparatively, the corresponding HOMO levels
were −5.69 eV, −5.73 eV, −5.65 eV and −5.80 eV, respectively. With the variations in HOMO
and LUMO levels, the oxidized LDPE exhibited bandgaps of 3.76 eV, 3.63 eV, 3.65 eV and
3.72 eV, respectively, which was far smaller than that of the as-prepared LDPE with 8.26 eV.
However, the absolute quantity of introduced O atoms did not effectively influence the
bandgap. In terms of the charge trapping site, with an increased number of introduced
O atoms, the trap level for electrons decreased from 3.56 eV of C20H40O to 2.84 eV of
C20H28O7, while the trap level for holes gradually increased from 1.90 eV to 2.86 eV.
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A comparable simulation by T. Takada et al. suggests a LUMO energy level of 2.20 eV,
a HOMO energy level of −7.69 eV and a bandgap 9.89 eV for C24H50 [45]. With one grafted
O atom, the LUMO and HOMO energy levels of C24H48O changd to −0.91 eV and −6.84 eV,
respectively, with the formed band gap of 5.93 eV, which is consistent with our results.

It should be noticed that the first-principle simulation applies the optimized molecular
structure with minimized energy at the theoretical temperature of absolute zero. Therefore,
the calculated energy structure might be different from practical conditions. For instance,
the common acknowledgement of charge injection barriers is within 1.0–1.5 eV for a typical
contact between a copper electrode and a dielectric polymer in practical applications, which
is far smaller than the calculated 6.2 eV for electrons and 2.1 eV for holes in an LDPE/copper
system. In fact, a 6.2 eV barrier height could lead to a blockage of space-charge injection,
which is apparently unrealistic in real conditions.

As the quantity of space charges is directly controlled by a charge injection barrier, and
charge injection barrier is modulated by the degree of surface oxidation (represented by
the number of grafted O atoms), and a qualitative investigation can be achieved, as shown
in Figure 6. In Figure 6, the as-prepared LDPE film exhibited a charge injection barrier
of 2.12 eV based on molecular simulations, and short-term surface oxidation (C20H40O)
resulted in a tremendously decreased charge injection barrier at about 1.03 eV. Further
prolonging of the surface oxidation duration did not apparently affect the charge injection
barrier, as it is maintained a range of 1.00–1.15 eV. The decreased charge injection barrier
resulted in more charge injection and accumulation, as the space-charge quantity increased
from 141 nC for as-prepared film to 469 nC of 1 h oxidized film. Such a large space-charge
quantity was maintained by further enhancing the surface oxidation duration, the trend of
which shows a perfect contrast with that of barrier height.
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3.4. Space-Charge Distributions and Electric Field Distortion

Here, in order to systematically investigate the electrode/polymer interfacial barrier-
dependent space-charge behaviors of the oxidized LDPE, numerical simulations were
carried out, and the results are reported in Figure 7.

When determining the range of the charge injection barrier, several articles are refer-
enced. A charge injection barrier was estimated by G. Chen’s group through an improved
trapping/detrapping model, and they concluded that the charge injection barrier was in
range of 1.1–1.3 eV for as-prepared dielectric films [46]. Similarly, the charge injection
barrier was reported as 1.2–1.24 eV by simulations by Y. Zhou’s group [47]. As surface mod-
ification may greatly change the charge injection barrier, this work assumes a wider range
of 1.1–1.5 eV, as we considered such a wide range could benefit scientific understanding
and provide a data-set for space-charge behaviors related to charge injection barriers.
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In the simulations, a 1–9 kV DC voltage was stressed onto a 100 µm thickness LDPE
film for up to 20,000 s, and the electrode/polymer interfacial charge injection barrier was set
as a variable in the range of 1.1–1.5 eV. A calculating grid of 200 was utilized, and thus the
space charge distribution accuracy was controlled to 0.5 µm along the film depth direction.
First, the total space charge (Nsp) with the variations in the charge injection barrier was
investigated, as reported in Figure 7.

Figure 7a applies a voltage of 1 kV (1 × 107 V/m). At the charge injection barrier of
1.1 eV, space charges could be sufficiently injected under 107 V/m. During the first few
seconds, Nsp of ca. 10−6 C/m2 was formed, and rapidly increased towards 10−4 C/m2

in 500 s. After that, a balanced Nsp was gradually achieved until the end of 20,000 s. By
increasing φinj by 0.1 eV, the initial Nsp dropped to 1.6 × 10−8 C/m2. With the prolonged
voltage application duration, the increasing rate of space-charge quantity was similar to
that under a 1.1 eV barrier height, showing a nearly parallel configuration in a log(total
space charge)-log(duration) plot. Nsp continuously increased during the applied 20,000 s,
thus, the balanced space-charge accumulation was not reached. Further increasing φinj
lead to tremendously decreased space-charge density, and thus the soaring of space-charge
quantities after oxidation was mainly contributed by the reduced charge injection barrier
height, rather than the newly generated charge traps in the bulk of the material.

The applied voltage increased to 5 kV and 9 kV for further discussions of space-charge
behaviors, as shown in Figure 7b,c, respectively. Apparently, increasing the applied voltage
lead to enhanced space-charge injection. For φinj = 1.1 eV, the applied 5 kV voltage resulted
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in an initial Nsp of 3.2 × 10−5 C/m2, while that under 9 kV was 2.5 × 10−4 C/m2. The
balanced Nsp also showed an increase with the increased applied voltage. An accelerated
charge injection naturally lead to an earlier arrival of a balanced state. For instance,
under φinj = 1.1 eV, it required 1000 s to reach the saturation state with space charges of
2.2 × 10−4 C/m2 for 1 kV voltage conditions, while those are 800 s with 1.2 × 10−3 C/m2

and 100 s with 1.8 × 10−3 C/m2 when 5 kV and 9 kV were applied to the LDPE film,
sequentially. In Figure 7b,c, the saturation state could be observed for φnj ranging in
1.1–1.5 eV, however it only existed with φinj = 1.1 eV under 1 kV voltage. Figure 7d shows
the applied voltage-dependent Nsp at 20,000 s, which directly indicates that the charge
injection barrier dominated the space-charge accumulation.

Space-charge distributions greatly affected the inner electric filed distribution of the
film, leading to a varied electrical breakdown performance. Here, the space-charge dis-
tributions of the LDPE with an electrode/dielectric interfacial barrier height of 1.1 eV
and 1.5 eV, under 5 kV voltage, were compared, and the results are shown in Figure 8.
Under φinj = 1.1 eV, large quantities of space charges were injected, and distributed in
the vicinity of the left electrode. However, no space charge could be observed beyond
6 µm near the left electrode. With a prolonged applied voltage duration towards 1000 s,
continuous injection occurred, and the space-charge density reached 56 C/m3. The strong
electric stress promoted space-charge migration to the inner bulk of the film, as its density
reached 10 C/m3 at a depth of ca. 50 µm. Space-charge reached the right electrode by
1000 s duration, and its density kept ca. 13 C/m3 with the prolonged duration.
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Figure 8. Space-charge distributions and induced electric field distortion inside LDPE film, under
5 kV (5 × 107 V/m) applied voltage. (a) Distribution of space charges along film depth direction
in LDPE with 1.1 eV charge injection barrier; (b) Distribution of space charges along film depth
direction in LDPE with 1.5 eV charge injection barrier; (c) Distribution of electric field along film
depth direction in LDPE with 1.1 eV charge injection barrier; (d) Distribution of electric field along
film depth direction in LDPE with 1.5 eV charge injection barrier.
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As is discussed in Figure 7, the charge accumulation was tremendously suppressed
with high interfacial barriers. In Figure 8b, apparently, densities of space charges were
exponentially smaller than those under the conditions of φinj = 1.1 eV, as only 10−4 C/m3

was reached. By increasing the voltage application duration, the space-charge density in
vicinity of the left electrode continuously increased, with observable space-charge migration
towards the right electrode.

According to Poisson’s equation, less space-charge accumulation results in less distor-
tion of the inner electric field along the film depth direction of LDPE [48], and the electrical
field distributions corresponding to Figure 8a,b are shown in Figure 8c,d, respectively.
As most of space charges were accumulated near the left electrode in Figure 8a, these
homogeneous charges triggered an observable reduction in the electric field in the 10 µm
vicinity of the electrode. This distortion became more violent with an enlarged accumu-
lated space-charge density, and the drop of the electrical field even reached 1 × 107 V/m.
Electrons started to accumulate near the right electrode when the voltage application
duration exceeded 100 s, and these formed heterogeneous charges that elevated the corre-
sponding electric field. After 1000 s, the electric strength near the right electrode reached
7 × 107 V/m, which exhibited a far-larger value of 5 × 107 V/m. Thus, the possibility
of breakdown increased near the right electrode, and an applied voltage with a value of
2 kV/mm below the theoretical breakdown strength of LDPE could trigger a breakdown.
Apparently, in terms of electric field distortion, the accumulation of space charges did not
benefit the electrical insulating performance. Thus, such space-charge injection should be
strictly prohibited, and one efficacious strategy is to increase the interfacial barrier height,
as indicated in Figure 8d. In Figure 8d, although the electric field distribution profile was
similar to that in Figure 8c, showing a decrease near the left electrode alongside an increase
near the right electrode, the absolute value of the distorted electric stress was inhibited to
102 V/m. These results suggest that the space charge-induced electric field distortion could
be systematically ignored when considering the issue of electrical breakdown.

As the TSC and PEA results in Figures 2 and 3 suggest enhanced space-charge ac-
cumulation, and the energy structure results in Figures 4 and 5 reveal decreased charge
injection barrier, as theoretically, surface oxidation leads to the deterioration of breakdown
performance, which is in accordance with earlier investigations.

In this work, the variations in the charge injection barrier by surface oxidation of poly-
meric dielectrics were investigated, as well as their influence on space-charge behaviors.
Generally, surface oxidation lead to a decreased charge injection barrier, which promoted
space charge injection and accumulation. This increased absolute space-charge amount
enhanced the electric field distortion along the film depth direction, which lead to an en-
larged inner electric strength (higher than the applied field), and consequently resulted in a
decreased breakdown strength. Hence, when considering improving the electrical break-
down performance of a dielectric polymer, surface modification methods such as oxidation
should be strictly forbidden. Oppositely, this fact leads to the confirmation of the validity of
space-charge suppression methods such as surface fluorination, introduction of a dielectric
barrier and interfacial deep-charge-trapping sites in improving breakdown performance.

In terms of surface dielectric performance, commonly, surface oxidation leads to an
enlarged surface conductance, which is beneficial for inhibiting charge distribution concen-
tration and surface electric field distortion. Consequently, the flashover performance of the
dielectric polymer is improved. Generally, surface oxidation contributes to promoting a
better flashover performance, but probably reducing the breakdown performance, showing
a double-edged sword effect. Thus, the dielectric and electrical insulating performances can
be well controlled and enhanced by selecting an appropriate surface modification method.

4. Conclusions

In this work, surface oxidation triggered variation in the electrode/dielectric charge
injection barrier, and its function on the space-charge behaviors of LDPE films were in-
vestigated. Although multiplied quantities of bulk space charges were observed in the
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surface-oxidized LDPE, it was found that they were mainly induced by a decreased barrier
height between the metal electrode and the dielectric polymer, which promoted space-
charge injection. Further enhancing the surface oxidation duration lead to a lowered LUMO
level and an elevated HOMO level of the polymer dielectrics, which consequently resulted
in a decreased charge injection barrier for both electrons and holes. Through first-principle
and numerical simulations, surface oxidation was found to modify the interfacial charge
injection barrier to an extreme extent, and thus the accumulated space charges in the bulk
of the dielectric polymers could differ in an exponential level, leading to a greatly varied
electric field distortion along the film depth direction. By selecting an appropriate surface
modification method in controlling electrode/dielectric interfacial barriers, space-charge
accumulation could be selectively promoted or inhibited, which consequentially benefitted
the flashover and electrical breakdown performance of the dielectric films.
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