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Abstract: In large metal civil constructions (stadium roofs, bridges), slender bars can lose their 

stability under compression loading. There is a lack in the literature regarding design solutions and 

methods for increasing the critical buckling force of bars with variable cross-sections. The aim of 

this research is to present a numerical model with finite elements used for a comparative analysis 

of increasing the critical force of stability loss in cases of (i) bars with stepwise variation in the 

cross-sections and (ii) bars with continuous variation in the moment of inertia along the bar axis 

(parabolic, sinusoidal, triangular, and trapezoidal variation). Considering the large-scale applica-

tions in civil engineering, bars that were pin-connected at one end and simple-supported at the 

other end were analyzed. Firstly, the analytical model was described to compute the critical buck-

ling force for bars with stepwise variation in the cross-sections. Then, a finite element model for a 

slender bar and the assumptions considered were presented. The results were computed using the 

MATLAB program based on the numerical model proposed and were validated with the analytical 

model for stepwise variable cross-sections of the bars. The numerical model was adapted for bars 

with continuous variation in the moment of inertia along the bar axis. It was shown that, by trap-

ezoidal variation in the second moment of inertia along the axis of a bar, i.e., as buckling occurred 

in the elastic field, the critical buckling force could be increased by 3.556 times compared to a bar 

with a constant section. It was shown that there was certain bar with stepwise variation in the 

cross-section for which the critical buckling force was approximately equal to the one obtained for 

the bar with sinusoidal variation in the moment of inertia (increased by 3.427 times compared to a 

bar with a constant section). 

Keywords: buckling; stability; civil engineering; slender bars; columns; numerical analysis;  

variable cross-section 

 

1. Introduction 

The loss in stability of elements designed for engineering structures remains of great 

importance and topicality for various applications in civil engineering (stadium roofs, 

bridges), shipbuilding, and aerospace construction (aircraft). These items are usually 

made of steel or alloys with high strength characteristics. Depending on the type of the 

element (slender column, beam, plate, or shell) and on the type of loading, there are dif-

ferent analytical models and numerical models used for the analysis of their stability. 

The first problems regarding elastic instability were approached and solved by L. 

Euler [1,2] in the middle of the 18th century, over 200 years ago. Nowadays, the main 

problems regarding the theory of elastic stability for different types of elements (col-

umns, beams, frames, rings, curved bars, arches, thin plates, and thin shells), were syn-

thesized by S. P. Timoshenko and J. M. Gere in a reference book in the scientific literature 

[2]. The loss in stability of structural elements takes place under the action of compressive 
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loads [3,4] or bending (lateral buckling of beams) [2,5,6]. The optimized designs of such 

elements involve modifying geometry in order to increase the critical buckling force and 

ensure a low weight. In the case of steel structures, just decreasing the volume can lead to 

weight reduction. In the context of the research approached in this article, the control of 

the variation in the cross-section along the axis of a slender bar subjected to compression 

is of great importance for increasing the critical buckling force and, last but not the least, 

for reducing the weight. The problem of designing the shapes of bars concerning the 

cross-section variation also becomes stringent for bars subjected to compression in 

tensegrity structures [7] used for roofs in modern civil buildings. 

The questions are as follows: which geometric parameter (dimensions, area, or the 

second moment of inertia) of a cross-section should be considered, and which mathe-

matical function models the continuous variation in the section along the axis of a bar to 

significantly increase the critical buckling force while keeping the length of the bar and 

boundary conditions unchanged? What is the best design solution for the shape of a bar: 

stepwise or continuous variation in the cross-section along the bar axis? Another issue 

raised is how much the ratio between the critical buckling force and volume of a bar is 

affected considering the variation in the cross-section along the axis of the bar. 

In the last years, many researchers around the world have investigated the stability 

loss in columns having different boundary conditions and non-uniform cross-sections 

under the action of axially distributed force [3,4,8]. S. P. Timoshenko and J. M. Gere were 

among the first researchers who presented a theoretical approach of buckling for bars 

with changes in the cross-sections without considering an axial distribution of compres-

sive force in the second edition of their book [2] (the first edition of this book was pub-

lished in 1961). 

Eisenberger M. [3] found an exact solution for the buckling loads of columns with 

polynomial variation in the bending stiffness of the cross-sections under an axial load 

with a polynomial distribution along the bar axis by considering the determinant of the 

stiffness matrix to be equal to zero at the stability loss. Considering the Euler–Bernoulli 

beam theory to model a column with a variable moment of inertia 𝐼(𝑥) (linear or para-

bolic variation) in the rectangular cross-section along its axis, which is subjected to dis-

tributed axial force, Darbandi et al. [8] computed buckling loads, taking into account the 

Wentzel–Kramers–Brillouin method of singular perturbation. Just the buckling loads and 

corresponding mode shapes for the rectangular variable cross-sections of columns were 

reported in that research, and those results were compared with the results given by Ei-

senberger [3]. 

Coskun and Atay [9] used a variational integration method to compute the normal-

ized critical buckling load for Euler’s columns with variable cross-sections with different 

boundary conditions, considering that the flexural stiffness varied by exponential func-

tion or by power function (linear, quadratic, and cubic variation). Their results matched 

very well with the exact solutions, but the paper did not customize the solutions for dif-

ferent shapes of cross-sections (for example, rectangular, circular, and annular 

cross-sections). Regarding computation methods, Ma et al. [10] computed critical buck-

ling force considering various higher-order shear deformation beam theories based on 

Engesser’s hypothesis and Haringx’s hypothesis in comparison with Euler’s theory in 

order to show the effects of warping shape. That research showed that buckling loads 

were not influenced by the theory used in the case of very slender columns or in the case 

of those having high shear rigidity. 

Taking into account the achievements of the research mentioned above, we focus on 

finding an analysis method that allows the accurate calculation of the critical buckling 

force both for a bar with a stepwise variable cross-section and for a bar with a continuous 

variable cross-section. The analysis model must be flexible in terms of easy adaptation for 

any function used for variation in the second moment of inertia of the cross-section along 

the axis. This is the reason why the research focuses on the use of a finite element method 

for the numerical analysis of a slender bar subjected to compression in order to compute 
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the critical buckling force. However, only a program made with specific software for 

calculation (such as MATLAB) can ensure the necessary flexibility, not a commercial one 

used for finite element analysis. Another problem arises concerning the validation 

method. In this context, it is necessary to present the state-of-the-art methods in the lit-

erature regarding the numerical methods used to analyze the stability of columns sub-

jected to compression. 

Using a finite difference method, Soltani and Sistani [11] also investigated a stability 

analysis for columns having variable flexural stiffnesses subjected to variable axial force. 

In that research, a finite difference method was applied in the case of column having a 

rectangular cross-section or an I-shaped cross-section whose dimensions were variable 

along the axis of the column in order to compute the critical buckling load. On the other 

hand, in nanomechanics, there are specific methods to analyze the buckling of nano-

beams resting on elastic substrate media [12]. 

Saraçaoğlu and Uzun [13] showed critical buckling loads obtained with Ansys 19.0 

software for certain columns having square or circular cross-sections that were variable 

along the axis of the column (linear variation combined with a portion having a constant 

cross-section). Szmidla et al. [14] investigated and showed results concerning a stability 

analysis for steel columns consisting of portions having inhomogeneous cross-sections 

(composed cross-sections). Regarding columns with inhomogeneous cross-sections, Li et 

al. [15] made a parametric optimization of composite columns against buckling. 

For columns consisting of certain portions having constant cross-sections, Maalawi 

[16] approached the optimization of buckling calculation in order to obtain design vari-

ables (area of the cross-section, length of each portion, radius of gyration) for the maxi-

mization of the critical buckling load and for certain input data (number of portions, 

boundary conditions, cross-section type). 

A localized differential quadrature method was used by Yilmaz et al. [17] in order to 

compute non-dimensional critical buckling loads for non-uniform columns with contin-

uous elastic restraint and different boundary conditions. 

Using a discretized Hencky bar-chain model and a parallel genetic algorithm, Ru-

occo et al. [4] provided in 2017 an optimization method against buckling for columns 

with non-uniform variation in the cross-section subjected to both distributed and con-

centrated compressive forces. In this case, the geometrical variation in the cross-section 

was not given as input data. The paper [4] reported the optimal variation in the circular 

cross-section in non-dimensional coordinates and its corresponding non-dimensional 

normalized buckling load by keeping the same length and volume of the column with a 

uniform cross-section. 

In the literature [18], optimization methods were also presented for columns having 

thin-walled, open cross-sections in order to obtain the maximum critical buckling by 

considering the constraint that the volume of the column remained constant. 

As mentioned before, a retrospective analysis of the literature highlights the fact that 

there is a lack of research on design methods and solutions to increase the critical buck-

ling force of slender bars with annular cross-sections subjected to compression by con-

tinuous variation in the dimensions of the cross-sections along the axis of the bars. Fur-

thermore, no comparative studies have been reported regarding the critical buckling 

force for slender bars with continuous annular cross-sections compared to bars with 

stepwise variable cross-sections. 

The present research aims to make some contributions to the scientific literature 

regarding design solutions for slender bars with variable cross-sections along the bar 

axis. The research provides a numerical model with finite elements validated by an ana-

lytical model, which is used to compute the critical buckling forces both for bars with 

stepwise variation in the cross-section and for bars with continuous variation in the 

cross-section along the bar axis. The MATLAB program used in this research based on 

the finite element model presented allows easy adaptation for any variation function 

considered for the moment of inertia. Considering variable annular cross-sections, the 
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MATLAB program calculates additionally the inner and outer diameters that define the 

geometry of the bar. Moreover, a comparison is shown of the critical buckling forces for 

different particular cases considered for variation in the cross-section. In this way, the 

comparative analysis leads to finding some functions for variation in the second moment 

of inertia of the cross-sections, which ensure a major increase in the critical buckling 

force. 

In this context, the main purpose of the research is to present a numerical model 

with finite elements used for a comparative analysis of increasing the critical buckling 

force for two types of slender bars subjected to compression: (i) bars with stepwise vari-

ation in the cross-section and (ii) bars having annular cross-sections with continuous 

variation in the moment of inertia along the bar axis. The results are also compared with 

the values of the critical buckling forces corresponding to bars having constant 

cross-sections along the bar axis. The case of bars that are pin-connected at one end and 

simple-supported at the other end is taken into account, considering the wide range of 

applications of these kinds of bars in engineering construction (stadium roofs, bridges, 

aircraft, and so on). 

The main objectives of the research are: (i) the generalization of an analytical model 

for the calculation of the critical buckling force for a slender bar with stepwise variation 

in the cross-section, as well as a bar consisting of three portions; (ii) a numerical analysis 

using the MATLAB program, which uses modeling with finite elements for a slender bar 

with a stepwise variable cross-section along the axis of the bar in order to obtain the 

critical buckling force; (iii) the validation of the finite element model (FEM), with the re-

sults obtained with an analytical model for a bar with stepwise variation in the 

cross-section; (iv) an adaptation of the MATLAB program for a numerical analysis of a 

bar with a continuous variable cross-section; and (v) a comparison of the results regard-

ing the critical buckling force for slender bars with stepwise variation and with contin-

uous variation in the cross-sections. It is considered that the dimensions of a cross-section 

vary along the bar axis as the second moment of inertia 𝐼(𝑥) varies from 𝐼 to 4𝐼. For a 

slender bar with continuous variation in the cross-section, the following types of varia-

tion are considered for the second moment of inertia 𝐼(𝑥) along the bar axis: parabolic, 

sinusoidal, triangular, and trapezoidal. The numerical simulation with FEM is made us-

ing a computer program made with MATLAB R2014a software. 

All the results are interpreted in terms of the normalized critical buckling force with 

respect to the critical force for stability loss corresponding to the bars having constant 

cross-sections along the axes of the bars. It is assumed that all the bars involved in this 

study lose their stability in the elastic field. 

Finally, this research reports accurate results on increasing the normalized critical 

buckling force for slender bars with stepwise or continuous variations in the 

cross-sections involved in this study. In this way, this research shows design solutions 

regarding the mathematical functions for variation in the second moment of inertia of a 

cross-section along the bar axis in order to increase the critical buckling force for slender 

bars subjected to compressive loads. 

2. Work Methods 

2.1. Analytical Model for Buckling of a Column with Pin Connections at Ends with Stepwise 

Variable Section 

In Figure 1, a geometrical model is shown of a bar having a stepwise variable circu-

lar cross-section whose bottom end is pin-connected, while the upper end is simply 

supported. The undeformed and deformed shapes of the bar under compression are 

shown in Figure 1a. The bar consists in three portions. The first and the third portions 

have the same values for length 𝑙 and for the second moment of inertia 𝐼  of the 

cross-section. The second bar portion has a cross-section whose moment of inertia 𝐼1 is 

equal to 𝑘1𝐼, with 𝑘1 > 1, and its length is equal to 2𝑘2𝑙. In other words, the parameters 
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𝑘1 and 𝑘2 represent the ratios of the lengths and of the second moment of inertia, re-

spectively, corresponding to the second and first portions of the bar (Figure 1a). The to-

tal length of the column is denoted with 𝑙𝑐 (Figure 1a). All portions of the bar are made 

of the same isotropic material having a modulus of elasticity 𝐸. The column is symmet-

ric with respect to its midpoint (Figure 1a), and consequently, the analysis model may be 

reduced to half of the bar, considering the symmetry conditions (Figure 1b). The shape 

of the bending-moment diagram for half of the bar is shown in Figure 1c. 

 

  

(a) (b) (c) 

Figure 1. Bar analyzed having a stepwise variable cross-section whose bottom end is 

pin-connected, while the upper end is simply supported: (a) geometrical model of the entire bar 

and deformed shape at stability loss; (b) geometrical model considering the symmetry condition; 

(c) bending-moment diagram. 

The main purpose of this subsection is to compare the critical buckling force corre-

sponding to a column having a stepwise variable circular cross-section with the critical 

buckling force corresponding to a column having the same length and a constant 

cross-section whose moment of inertia is equal to 𝐼. For this purpose, the main objec-

tives are to compute the critical buckling force corresponding to the column having a 

stepwise variable cross-section and to compare it with the one corresponding to the 

column with a constant cross-section, as well as an analysis of the rational shapes for 

buckling in the case of columns having stepwise variable circular cross-sections. 

Due to symmetry, the buckling analysis was made by considering a model of half of 

a column (Figure 1b) with boundary conditions corresponding to the midpoint of the 

column located on the horizontal symmetry axis. 

It was assumed that the column buckled in the elastic domain. This meant that 

Bernoulli’s hypothesis and Euler’s relation were valid at buckling. 

The bending moment 𝑀𝑏1(𝑥) developed at buckling and caused by the compres-

sive force P at the level of the arbitrary cross-section located on the first portion of the 

column was computed using Equation (1): 

𝑀𝑏1(𝑥) = −𝑃𝑣1(𝑥), (1) 
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where 𝑣1(𝑥) represents the deflection function of the arbitrary cross-section of the first 

column portion located at distance 𝑥 with respect to the end of the column (Figure 1b). 

In the same manner, the bending moment 𝑀𝑏2(𝑥) developed at buckling at the 

level of the arbitrary cross-section located on the second portion of the column was 

computed using Equation (2): 

𝑀𝑏2(𝑥) = −𝑃𝑣2(𝑥), (2) 

where 𝑣2(𝑥) represents the deflection function of the arbitrary cross-section of the sec-

ond column portion located at distance 𝑥 with respect to the end of the column (Figure 

1b). 

To compute the critical buckling force, we used an analytical method. The differen-

tial equation of the approximate deformed median fiber corresponding to the first por-

tion of the bar is given in Equation (3): 

𝑑2𝑣1(𝑥)

𝑑𝑥2
= −

𝑀𝑏1(𝑥)

𝐸𝐼
. (3) 

Replacing Equation (1), Equation (3) became the following [2]: 

𝑑2𝑣1(𝑥)

𝑑𝑥2
+
𝑃𝑣1(𝑥)

𝐸𝐼
= 0. (4) 

In the same manner, the differential equation of the approximate deformed median 

fiber corresponding to the second portion of the bar is given in Equation (5) [2]: 

 
𝑑2𝑣2(𝑥)

𝑑𝑥2
+
𝑃𝑣2(𝑥)

𝑘1𝐸𝐼
= 0. (5) 

The notation 𝛼 was introduced for the ratio given in Equation (6) [2]: 

𝛼 = √
𝑃

𝑘1𝐸𝐼
     or     𝛼2 =

𝑃

𝑘1𝐸𝐼
. (6) 

By using Equation (6), differential Equations (4) and (5) of the approximate de-

formed median fibers for the bar portions became: 

1. Equation (7) for the first portion of the column [2]: 

𝑑2𝑣1(𝑥)

𝑑𝑥2
+ (𝛼√𝑘1)

2
∙ 𝑣1(𝑥) = 0, (7) 

2. Equation (8) for the second portion of the column [2]: 

𝑑2𝑣2(𝑥)

𝑑𝑥2
+ 𝛼2 ∙ 𝑣2(𝑥) = 0. (8) 

Solutions of inhomogeneous second-order differential Equations (7) and (8) were 

given by Equations (9) and (10) for the first portion and for the second portion of the 

column, respectively: 

𝑣1(𝑥) = 𝐶1 sin(𝛼√𝑘1𝑥) + 𝐶2 cos(𝛼√𝑘1𝑥), (9) 

𝑣2(𝑥) = 𝐶3 sin(𝛼𝑥) + 𝐶4 cos(𝛼𝑥). (10) 

Integration constants 𝐶𝑖  (𝑖 = 1, 4̅̅ ̅̅̅) were computed using the boundary conditions 

given in Equation (11): 

{

for 𝑥 = 0, 𝑣1(0) = 0;

for 𝑥 = 𝑙 + 𝑘2𝑙, 𝑣2(𝑙 + 𝑘2𝑙) = 𝑓;

for 𝑥 = 𝑙 + 𝑘2𝑙,
d𝑣2
d𝑥

(𝑙 + 𝑘2𝑙) = 0,

 (11) 
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where 𝑓 represents the deflection of the midpoint of the bar at buckling. The continuity 

conditions for the deformed shape of the median fiber of the column are given in Equa-

tion (12) at the level of the bar cross-section located at distance 𝑙 with respect to the 

upper simply supported end of the column: 

{
for 𝑥 = 𝑙, 𝑣1(𝑙) = 𝑣2(𝑙);

for 𝑥 = 𝑙,
d𝑣1
d𝑥

(𝑙) =
d𝑣2
d𝑥

(𝑙).
 (12) 

The first derivatives of the functions 𝑣1(𝑥) and 𝑣2(𝑥) of the deflections of the ar-

bitrary cross-section corresponding to each column portion were computed using Equa-

tions (9) and (10), respectively. In fact, these derivatives represented the functions of the 

rotations of the arbitrary cross-section and were expressed by Equations (13) and (14): 

d𝑣1(𝑥)

d𝑥
= 𝛼√𝑘1𝐶1[cos(𝛼√𝑘1𝑥) − 𝐶2 sin(𝛼√𝑘1𝑥)], (13) 

d𝑣2(𝑥)

d𝑥
= 𝛼[𝐶3 cos(𝑘𝑥) − 𝐶4 sin(𝛼𝑥)]. (14) 

By replacing Equations (9), (10), (13), and (14) in the boundary conditions given by 

Equation (11) and in the continuity conditions given in Equation (12), the system of 

Equation (15) was obtained: 

{
 
 

 
 
𝐶2 = 0;

𝐶3 sin[𝛼𝑙(1 + 𝑘2)] + 𝐶4 cos[𝛼𝑙(1 + 𝑘2)] = 𝑓;

𝛼{𝐶3 cos[𝛼𝑙(1 + 𝑘2)] − 𝐶4 sin[𝛼𝑙(1 + 𝑘2)]} = 0;

𝐶1 sin(𝛼𝑙√𝑘1) + 𝐶2 cos(𝛼𝑙√𝑘1) = 𝐶3 sin(𝛼𝑙) + 𝐶4 cos(𝛼𝑙) ;

𝛼√𝑘1[𝐶1 cos(𝛼𝑙√𝑘1) − 𝐶2 sin(𝛼𝑙√𝑘1)] = 𝛼[𝐶3 cos(𝛼𝑙) − 𝐶4 sin(𝛼𝑙)],

 (15) 

whose unknown quantities are the integration constants 𝐶𝑖  (𝑖 = 1, 4̅̅ ̅̅̅) and the deflection 

f of the midpoint of the column. 

Equation system (15) was reduced practically to the following system of four equa-

tions: 

{
 
 

 
 
𝐶3 sin[𝛼𝑙(1 + 𝑘2)] + 𝐶4 cos[𝛼𝑙(1 + 𝑘2)] − 𝑓 = 0;

𝐶3 cos[𝛼𝑙(1 + 𝑘2)] − 𝐶4 sin[𝛼𝑙(1 + 𝑘2)] = 0;

𝐶1 sin(𝛼𝑙√𝑘1) − 𝐶3 sin(𝛼𝑙) − 𝐶4 cos(𝛼𝑙) = 0;

𝐶1√𝑘1 cos(𝛼𝑙√𝑘1) − 𝐶3 cos(𝛼𝑙) + 𝐶4 sin(𝛼𝑙) = 0.

 (16) 

The homogeneous system of Equation (16) had nonzero solutions for 𝐶𝑖 (𝑖 = 1, 4̅̅ ̅̅̅) 

and f if the determinant of the coefficients was zero. This condition led to Equation (17): 

Det 

[
 
 
 
 

0 sin[𝛼𝑙(1 + 𝑘2)] cos[𝛼𝑙(1 + 𝑘2)] −1

0 cos[𝛼𝑙(1 + 𝑘2)] − sin[𝛼𝑙(1 + 𝑘2)] 0

sin(𝛼𝑙√𝑘1) − sin(𝛼𝑙) − cos(𝛼𝑙) 0

√𝑘1 cos(𝛼𝑙√𝑘1) − cos(𝛼𝑙) sin(𝛼𝑙) 0 ]
 
 
 
 

= 0. (17) 

The notation 𝜉 was introduced and computed with Equation (18): 

𝜉 = 𝛼𝑙, (18) 

and Equation (17) became: 

Det

[
 
 
 
 

0 sin[𝜉(1 + 𝑘2)] cos[𝜉(1 + 𝑘2)] −1

0 cos[𝜉(1 + 𝑘2)] − sin[𝜉(1 + 𝑘2)] 0

sin(𝜉√𝑘1) − sin 𝜉 − cos 𝜉 0

√𝑘1 cos(𝜉√𝑘1) − cos 𝜉 sin 𝜉 0 ]
 
 
 
 

= 0, (19) 
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whose unknown is ξ. To compute the critical buckling force, the minimum value of the 

absolute values of the solutions ξ must be used because, for other solutions ξ, the value 

of the critical force would be greater. 

𝜉𝑚𝑖𝑛  denoted the minimum value of the absolute values of the solutions ξ of Equa-

tion (19). 

From Equation (18), the minimum value of 𝛼 could be computed using Equation 

(20): 

𝛼𝑚𝑖𝑛 = 𝜉min 𝑙⁄ . (20) 

Equation (20) was replaced in relation (6) in order to compute the critical buckling 

force for a column having a stepwise variable cross-section: 

𝑃𝑐𝑟 = 𝑘1𝛼min
2 𝐸𝐼 = 𝑘1𝜉min

2
𝐸𝐼

𝑙2
. (21) 

The length 𝑙 of the first portion was expressed in the function of the total length 𝑙𝑐 

of the column using Equation (22) according to Figure 1a: 

𝑙 = 𝑙𝑐 [2(1 + 𝑘2)]⁄ . (22) 

Equation (22) was replaced in Equation (21) in order to compute the critical buck-

ling force 𝑃𝑐𝑟  for a column having a stepwise variable cross-section: 

𝑃𝑐𝑟 = 4𝑘1(1 + 𝑘2)
2𝜉min

2
𝐸𝐼

𝑙𝑐
2
= (

2√𝑘1(1 + 𝑘2)𝜉min
𝜋

)

2
𝜋2𝐸𝐼

𝑙𝑐
2
. (23) 

On the other hand, the critical buckling force 𝑃𝑐𝑟0 for a column with a constant 

cross-section whose moment of inertia of the section was 𝐼 having the same total length 

𝑙𝑐 with pin connections at its ends was computed as follows: 

𝑃𝑐𝑟0 = 𝜋
2𝐸𝐼 𝑙𝑐

2⁄ . (24) 

Using Equations (23) and (24), the normalized buckling force (denoted with c) was 

computed as being equal with the ratio between the critical buckling force 𝑃𝑐𝑟  for a 

column having a stepwise variable cross-section and the critical buckling force 𝑃𝑐𝑟0 for 

a column having a constant cross-section whose moment of inertia of the section was 𝐼: 

𝑐 =
𝑃𝑐𝑟
𝑃𝑐𝑟0

= (
2√𝑘1(1 + 𝑘2)𝜉min

𝜋
)

2

. (25) 

It is said that a column is rationally designed if the critical buckling force is in-

creased while the mass of the material of the column is optimal. In structure design, both 

the mass of the material, which influences the material costs, and the weight of the 

structure are also important. The manufacturing costs increase due to the additional 

manufacturing operations required for a column having a stepwise variable 

cross-section. 

In this research, it was said that a column having a stepwise variable cross-section 

was rationally designed if its ratio between the critical buckling force 𝑃𝑐𝑟  and the total 

volume 𝑉 of the column was greater than the similar ratio computed for a column with 

a constant cross-section whose moment of inertia of the section was 𝐼 with the same to-

tal length 𝑙𝑐. 

The ratio between the critical buckling force 𝑃𝑐𝑟  and the total volume 𝑉 of the 

column was computed as follows, taking into account the geometry of the column 

shown in Figure 1a: 

𝑃𝑐𝑟
𝑉
=

𝑃𝑐𝑟
2𝑙(𝐴 + 𝐴1𝑘2)

, (26) 
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where 𝐴 represents the cross-sectional areas for the first and the third portions of the 

column having the length 𝑙, while 𝐴1 represents the area of the cross-section for the 

second column portion whose length is equal to 2𝑘2𝑙. 

It was assumed that each portion of the column had a circular cross-section. It may 

be remarked in Equation (27), which gives the ratio between the moment of inertia 𝐼 

and the second power of the area of the cross-section 𝐴 for the first portion, whose di-

ameter is denoted with 𝑑: 

𝐼

𝐴2
=

𝜋𝑑4 64⁄

(𝜋𝑑2 4⁄ )2
=
1

4𝜋
 (27) 

or 

𝐼 = 𝐴2 4𝜋⁄ . (28) 

In the same manner, Equation (29) was written for the second portion of the col-

umn: 

𝐼1 = 𝐴1
2 4𝜋⁄ . (29) 

On the other hand, the relation between the moments of inertia I1 and I corre-

sponding to the first two portions of the column, respectively, is given in Equation (30): 

𝐼1 = 𝑘1𝐼. (30) 

Equations (28) and (29) were replaced in Equation (30), and it obtained Equation 

(31): 

𝐴1 = 𝐴√𝑘1. (31) 

Then, relations (22) and (31) were replaced in relation (26), which became: 

𝑃𝑐𝑟
𝑉
=

(1 + 𝑘2)𝑃𝑐𝑟

𝑙𝑐𝐴(1 + 𝑘2√𝑘1)
. (32) 

From Equation (25), the critical buckling force 𝑃𝑐𝑟  for a column having a stepwise 

variable cross-section could be computed in the function of the critical buckling force 

𝑃𝑐𝑟0 of a column with a constant cross-section: 

𝑃𝑐𝑟 = 𝑐𝑃𝑐𝑟0. (33) 

The volume of the column with a constant cross-section was: 

𝑉0 = 𝑙𝑐𝐴. (34) 

Replacing Equations (33) and (34) in Equation (32) obtained Equation (35): 

𝑃𝑐𝑟
𝑉
=
(1 + 𝑘2)𝑐

1 + 𝑘2√𝑘1

𝑃𝑐𝑟0
𝑉0
, (35) 

which led to Equation (36), which computed the rationality factor 𝑘𝑟𝑎𝑡: 

𝑘𝑟𝑎𝑡 =
𝑃𝑐𝑟 𝑉⁄

𝑃𝑐𝑟0 𝑉0⁄
=
(1 + 𝑘2)𝑐

1 + 𝑘2√𝑘1
 . (36) 

Replacing the ratio c given by Equation (25) in Equation (36) led to Equation (37): 

𝑘𝑟𝑎𝑡 =
𝑃𝑐𝑟 𝑉⁄

𝑃𝑐𝑟0 𝑉0⁄
=

(1 + 𝑘2)

1 + 𝑘2√𝑘1
(
2√𝑘1(1 + 𝑘2)𝜉min

𝜋
)

2

=
4𝜉min

2 𝑘1(1 + 𝑘2)
3

𝜋2(1 + 𝑘2√𝑘1)
, (37) 

which was used to compute the ratio between the rationality factor 𝑃𝑐𝑟 𝑉⁄  correspond-

ing to a column having a stepwise variable cross-section and the rationality factor 

𝑃𝑐𝑟0 𝑉0⁄  corresponding to a column with a constant cross-section. 
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2.2. Numerical Modeling and Simulation for Loss in Stability of a Column with Pin Connections 

at Ends with Stepwise Variable Cross-Section 

If the compressive stress, which acts on the slenderness of a column, is variable, 

then the relation between force and displacement may be written with Equation (38): 

{𝑑𝑃} = [𝐾𝑇]{∆𝑈}, (38) 

where infinitesimal variation in the force is denoted with d𝑃. A similar relation may be 

written with Equation (39): 

{∆𝑃} = [𝐾𝑠]{∆𝑈}, (39) 

where finite variation in the force is denoted with ∆𝑃. In Equations (38) and (39), [𝐾𝑇] =
[𝐾𝑇{𝑈}] and [𝐾𝑇] = [𝐾𝑇{𝑈}] represent the tangent stiffness matrix and the secant stiff-

ness matrix, respectively. The finite variation in the displacements was computed with 

Equation (40): 

{∆𝑈} = [𝐾𝑇(𝑈)]
−1{∆𝑃} =

[𝐾𝑇(𝑈)]
∗

det[𝐾𝑇(𝑈)]
{∆𝑃}, (40) 

where [𝐾𝑇(𝑈)]
∗ is the adjunct matrix of the stiffness matrix. 

The phenomenon of loss in stability (transition from one equilibrium shape to an-

other equilibrium shape) takes place when the displacements tend toward infinity for a 

variation ∆𝑃 in the compressive force. From a mathematical point of view, this condi-

tion is fulfilled if the determinant of the tangent stiffness matrix [𝐾𝑇] is equal to zero, 

which was expressed by Equation (41): 

det[𝐾𝑇(𝑈)] = 0. (41) 

Equation (41) could be written with Equation (42): 

det [[𝐾] − 𝜆[𝐾𝑔]] = 0, (42) 

where [𝐾] represents the elastic stiffness matrix of the structure (e.g., the column) ob-

tained by assembling of the stiffness matrices [𝐾𝑒] corresponding to the finite elements 

that form the structure; [𝐾𝑔] is the geometric stiffness matrix of the structure obtained 

by assembling of the geometric stiffness matrices [𝐾𝑔𝑒] corresponding to the finite ele-

ments that form the structure; and 𝜆 is the common multiplier of the axial forces N act-

ing in the slender bar. 

For the finite element of the double-embedded bar type (Figure 2), the elastic stiff-

ness matrix [𝐾𝑒] and the geometric stiffness matrix [𝐾𝑔𝑒] were expressed with Equa-

tions (43) and (44), respectively: 

[𝐾𝑒] =

[
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝐴′

𝑙′
0 0

0
12𝐸𝐼′

𝑙′3
6𝐸𝐼′

𝑙′2

0
6𝐸𝐼′

𝑙′2
4𝐸𝐼′

𝑙′

−
𝐸𝐴′

𝑙′
0 0

0 −
12𝐸𝐼′

𝑙′3
−
6𝐸𝐼′

𝑙′2

0
6𝐸𝐼′

𝑙′2
2𝐸𝐼′

𝑙′

−
𝐸𝐴′

𝑙′
0 0

0 −
12𝐸𝐼′

𝑙′3
6𝐸𝐼′

𝑙′2

0 −
6𝐸𝐼′

𝑙′2
2𝐸𝐼′

𝑙′
𝐸𝐴′

𝑙′
0 0

0
12𝐸𝐼′

𝑙′3
−
6𝐸𝐼′

𝑙′2

0 −
6𝐸𝐼′

𝑙′2
4𝐸𝐼′

𝑙′′ ]
 
 
 
 
 
 
 
 
 
 
 
 

, (43) 
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[𝐾𝑔𝑒] =
𝑁

𝑙

[
 
 
 
 
 
 
 
 
 
 
0 0 0

0
6

5

𝑙′

10

0
𝑙′

10

2𝑙′2

15
0 0 0

0 −
6

5
−
𝑙′

10

0
𝑙′

10
−
𝑙′2

30

0 0 0

0 −
6

5

𝑙′

10

0 −
𝑙′

10
−
𝑙′2

30
0 0 0

0
6

5
−
𝑙′

10

0 −
𝑙′

10

2𝑙′2

15 ]
 
 
 
 
 
 
 
 
 
 

, (44) 

where 𝑙′, 𝐴′, and 𝐼′ are the length, area of the cross-section, and the second moment of 

inertia of the cross-section, respectively, corresponding to the finite elements dou-

ble-embedded at both ends. 

 

Figure 2. Characteristics of the finite elements of the bar double-embedded at both ends in terms of 

both the internal forces and deflections (displacement and rotation) developed at the nodes. 

In this context, the solving of the stability equation involved solving a problem of 

eigenvectors and eigenvalues. The solutions of the stability equation were the eigenval-

ues 𝜆𝑘 (𝑘 = 1, 𝑛̅̅ ̅̅̅) corresponding to the multiplier of the axial forces. For the eigenvalues 

𝜆𝑘 (𝑘 = 1, 𝑛̅̅ ̅̅̅), the corresponding eigenvectors {𝑈𝑘} (𝑘 = 1, 𝑛̅̅ ̅̅̅) were determined, which 

represented the geometric shapes (equilibrium shapes) of the loss in stability. From a 

practical point of view, only the lowest eigenvalue 𝜆min was of interest, the other values 

being of interest just from a theoretical point of view. 

The numerical model for the calculation of the critical buckling force was validated 

for a bar having a pin connection at one end and a simple support at the other end. Con-

sidering the numerical model previously described, a computer calculation program 

was written with MATLAB R2014a software for the calculation of the eigenvalues and 

eigenvectors for the loss in stability of a slender bar subjected to compression. Because 

just the first value of the critical buckling force and the corresponding deformed shape 

were of interest, the calculation program reported just the first three values of the critical 

buckling force and plotted the corresponding eigenvectors. 

The assumptions considered in the numerical analysis of the finite elements were 

the following: (i) the material of the bar was isotropic, homogeneous, and linearly elas-

tic; (ii) the hypothesis of small strains was valid; and (iii) the normal stress 𝜎𝑝 at the 

proportionality limit was approximately equal to the normal stress at yielding, denoted 

with 𝑓𝑦, for the material of the bar. 

In order to obtain the numerical solution with the finite element method, the main 

steps covered by the MATLAB program were the following: (i) meshing of the bar in a 

certain number of finite elements; (ii) computing both the elastic stiffness matrix [𝐾𝑒] 

and the geometric stiffness matrix [𝐾𝑔𝑒] corresponding to each finite element according 

to Equations (43) and (44), respectively; (iii) assembling all the stiffness matrices [𝐾𝑒] 
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and geometric stiffness matrices [𝐾𝑔𝑒] in order to obtain the elastic stiffness matrix [𝐾] 

and geometric stiffness matrix [𝐾𝑔] of the column analyzed; (iv) computing the eigen-

values 𝜆𝑘 (𝑘 = 1, 𝑛̅̅ ̅̅̅) by solving Equation (42); (v) computing the eigenvectors {𝑈𝑘} (𝑘 =

1, 𝑛̅̅ ̅̅̅) using Equation (40); and (vi) by using the eigenvalues 𝜆k, computing the critical 

buckling forces 𝑃𝑐𝑟 . The smallest critical buckling force corresponded to the minimum 

eigenvalue 𝜆min. 

In order to validate the numerical model, the loss in stability was analyzed using 

the numerical model with 18 finite elements for a bar having a pin connection at one end 

and a simple support at the other end, for which the geometrical characteristics and the 

material properties are given in Table 1. Considering the geometrical characteristics of 

the bar given in Table 1, the following quantities were computed: the area 𝐴 of the 

cross-section of 2826 mm2; the second moment of inertia I of the cross-section, whose 

value was 2,896,650 mm4; and the radius 𝑖 of inertia, having a value of 32.01562 mm. 

Table 1. Geometrical characteristics and material properties for the bar analyzed by numerical 

modeling. 

A. Geometrical Characteristics of the Bar 

Characteristic Symbol 
Measure 

Unit 
Value 

Bar length 𝑙𝑐 (mm) 8000 

Outer diameter of the circular cross-section 𝐷 (mm) 100 

Inner diameter of the circular cross-section 𝑑 (mm) 80 

B. Properties for S355 Steel [19] 

Young’s modulus E (MPa) 2.1 ∙ 105 

Normal stress at yielding 𝑓𝑦 (MPa) 355 

For the bar involved, the slenderness ratio 𝜆 was computed with Equation (45): 

𝜆 = 𝑙 𝑖⁄ = 8000 32.0⁄ 1562 = 249.878. (45) 

For steel of type S355, whose properties are shown in Table 1, the slenderness ratio 

𝜆0 that limited buckling in the elastic field was computed with Equation (46): 

𝜆0 = 𝜋√𝐸 𝜎𝑝⁄ = 𝜋√𝐸 𝑓𝑦⁄ = 76.37041, (46) 

where it is assumed that the normal stress 𝜎𝑝 at the proportionality limit is approxi-

mately equal to the normal stress at yielding, denoted with 𝑓𝑦, for the material of the bar 

(Table 1). 

The first three eigenshapes and the corresponding eigenvalues for the bar analyzed 

are shown in Figure 3. 
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Figure 3. The first three shapes of stability loss and corresponding critical buckling forces for the 

bar, whose geometrical and material characteristics are given in Table 1. 

In Figure 4, the convergence of the critical buckling load 𝑃𝑐𝑟  obtained with the al-

gorithm of the numerical model is shown related to the number of the finite elements of 

the numerical model, and it is analyzed with respect to the critical buckling load of 

93.807 kN computed with Equation (24) using the analytical model. By analyzing Figure 

4, it can be remarked that the solutions obtained through numerical modeling with the 

FEM tended asymptotically to the value of 93.86 kN for the numerical model, which had 

at least six elements. It can be concluded that the numerical model consisting of 18 finite 

elements provided results that were sufficiently accurate concerning the critical buckling 

load. 

 

Figure 4. Analysis concerning the convergence of the solution obtained for the critical buckling 

load by the FEM compared with respect to the value computed with the analytical model. 

Six cases of bars with pin connections at one end and simple supports at the other 

end, shown in Table 2, were analyzed using the numerical model with finite elements in 

order to show the effects of a stepwise variable cross-section on the critical force of sta-

bility loss. 
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Table 2. Values of the ratios 𝑘1 and 𝑘2 considered for the analyzed cases with the FEM for bars 

with pin connections at one end and simple supports at the other end. 

No. 
Code of Case An-

alyzed 
Type of Column 

Ratio k1 * 

between the Second Mo-

ment of Inertia of Portions 

Ratio k2 * 

between the Lengths 

of Bar Portions 

1 CONST_1I 
Column with constant cross-section 

whose moment of inertia was I 
1 0.0 

2 STEPWISE405 

Column with stepwise variable 

cross-section 

4 0.5 

3 STEPWISE410 4 1.0 

4 STEPWISE420 4 2.0 

5 STEPWISE430 4 3.0 

6 CONST_4I 
Column with constant cross-section 

whose moment of inertia was 4I 
4 0.0 

* Ratios k1 and k2 are shown in Figure 1a. 

In Table 2, two extreme cases were considered for bars whose the second moments 

of inertia were constant along the bar length 𝑙: (i) a bar having a second moment of iner-

tia equal to 𝐼 (code CONST_1I); and (ii) a bar having a second moment of inertia equal 

to 4𝐼 (code CONST_1I). For both cases, the length 𝑙 of the bar was that given in Table 1, 

and it was assumed that the bar had an annular cross-section. The value 𝐼 for the sec-

ond moment of inertia corresponded to an annular cross-section having an inner diame-

ter 𝑑 and an outer diameter 𝐷, which are also given in Table 1. For the second bar, for 

which the second moment of inertia was equal to 4𝐼, the inner diameter 𝑑 and outer 

diameter 𝐷 were computed by considering the area 𝐴 of the annular cross-section in 

order for the normal stress in compression to be equal to the normal stress 𝜎𝑝 at the 

proportionality limit (which was approximately equal to the normal stress at yielding 

𝑓𝑦). 

The results obtained using the numerical model with 32 finite elements were com-

paratively analyzed for all the types of columns shown in Table 2. 

2.3. Numerical Modeling and Simulation for Loss in Stability of a Column with Pin Connections 

at Ends with Continuous Variable Cross-Section 

2.3.1. Cases Approached and Assumptions Concerning the Variation in the Second Mo-

ment of Inertia 

Four cases of variation in the second moment of inertia 𝐼(𝑥) were investigated: (i) 

parabolic variation; (ii) sinusoidal variation; (iii) triangular variation; (iv) trapezoidal 

variation; and (v) constant variation. 

It was assumed that the arbitrary cross-section of a bar whose area was A(x) was an 

annular cross-section having an inner diameter d(x) and an outer diameter D(x). The 

length of the bar was denoted with l. Assuming that the bar must lose its stability in the 

elastic field (for which Euler’s relation is valid), the normal stress σ developed at the ar-

bitrary point of the cross-section must be smaller or equal to the normal stress at the 

proportionality limit denoted with σp , which was considered to be equal to the normal 

stress at yielding 𝑓𝑦 (given in Table 1 for S355 steel). In this context, the area 𝐴(𝑥) of 

the cross-section was computed with Equation (47), considering that the normal stress σ 

developed at that cross-section was equal to the normal stress 𝜎𝑝 at the proportionality 

limit for the material of the bar at stability loss: 

𝐴(𝑥) = 𝑃𝑐𝑟 𝜎𝑝⁄ , (47) 

where 𝑃𝑐𝑟  is the critical buckling force (or the critical force of stability loss). 

For the arbitrary cross-section of the bar, knowing the area 𝐴(𝑥) computed with 

Equation (47) and the variation in the second moment of inertia 𝐼(𝑥), the inner and out-
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er diameters of the cross-section were computed with Equations (48) and (49), respec-

tively [20]: 

𝑑(𝑥) = √
8𝐼(𝑥)

𝐴(𝑥)
−
2𝐴(𝑥)

𝜋
, (48) 

𝐷(𝑥) = √
8𝐼(𝑥)

𝐴(𝑥)
+
2𝐴(𝑥)

𝜋
. (49) 

Equations (48) and (49) show that the wall thickness of the bar cross-section 

changed along the axis of the bar as long as the ratio between 𝑑(𝑥) and 𝐷(𝑥) was not 

constant. 

To analyze the critical buckling force 𝑃𝑐𝑟  for a column with pin connections at both 

ends whose second moment of inertia 𝐼 had continuous variation along the axis of the 

bar, numerical models were used that were similar to the one corresponding with the 

bar with stepwise variation in the cross-section. In order to analyze the solution conver-

gence for the critical buckling force 𝑃𝑐𝑟 , the numerical analysis was repeated for FEMs 

consisting of 20, 80, 100, 200, 400, and 800 elements, respectively. The convergence anal-

ysis made for FEMs corresponding to bars with continuous variation in the second mo-

ment of inertia along the bar axis led to the conclusion that the solutions for the critical 

buckling force converged for FEMs consisting of a minimum of 100 elements. 

2.3.2. Parabolic Variation in the Second Moment of Inertia of the Cross-Section along the 

Bar 

The consideration of the second moment of inertia 𝐼(𝑥)  of an arbitrary 

cross-section with parabolic variation along the bar axis is given by Equation (50): 

𝐼(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 𝐶, (50) 

where 𝑥  represents the position of the arbitrary cross-section with respect to the 

pin-connected end of the bar. 

The constants 𝐴, 𝐵, 𝐶 were computed considering that the second moment of iner-

tia was equal with 𝐼 for the cross-sections of the bar ends, and it was equal to 4𝐼 for 

the middle of the bar. These conditions are given by Equation (51): 

{

for 𝑥 = 0, I(0) = C = I;

for 𝑥 = 𝑙 2⁄ , 𝐼(𝑙 2⁄ ) = 𝐴(𝑙 2⁄ )2 + 𝐵 𝑙 2⁄ + 𝐶 = 4𝐼;

for 𝑥 = 𝑙, 𝐼(𝑙) = 𝐴𝑙2 + 𝐵𝑙 + 𝐶 = 𝐼,

 (51) 

and led to the constants given by Equation (52): 

𝐴 = −12𝐼 𝑙2⁄ ; 𝐵 = 12𝐼 𝑙⁄ ; 𝐶 = 𝐼. (52) 

By replacing the above constants 𝐴, 𝐵, and 𝐶 in Equation (50), the parabolic varia-

tion in the second moment 𝐼(𝑥) along the axis of the bar is given by Equation (53): 

𝐼(𝑥) = −(12𝐼 𝑙2⁄ )𝑥2 + (12𝐼 𝑙⁄ )𝑥 + 𝐼, (53) 

which is plotted in Figure 5 for a bar whose length 𝑙 is given in Table 1 and whose sec-

ond moment of inertia 𝐼 of the cross-sections located at the bar ends was computed for 

an annular cross-section having an inner diameter 𝑑 and an outer diameter 𝐷, which are 

also given in Table 1. 
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Figure 5. Parabolic variation in the second moment of inertia I along the bar axis. 

In Figure 6, a geometrical model is shown of a bar whose parabolic variation in the 

second moment of inertia 𝐼(𝑥) is given by Equation (53). 

 

 

(a) (b) 

Figure 6. Geometrical model for a bar with parabolic variation in the second moment of inertia 

along the bar axis: (a) isometric view and (b) longitudinal section. 

2.3.3. Sinusoidal Variation in the Second Moment of Inertia of the Cross-Section along the 

Bar 

The variation in the second moment of inertia 𝐼(𝑥) of an arbitrary cross-section 

along the bar axis as a sinusoidal function is given by Equation (54): 

𝐼(𝑥) = 3𝐼 sin(𝜋𝑥 𝑙⁄ ) + 𝐼. (54) 

Considering the conditions given by Equation (55), it could be checked that the 

second moment of inertia was equal to 𝐼 for the cross-sections located at the bar ends, 

and it was 4𝐼 for the cross-section located at the middle of the bar: 

{

for 𝑥 = 0; 𝐼(0) = 3𝐼 sin(𝜋 ∙ 0 𝑙⁄ ) + 𝐼 = 𝐼;

for 𝑥 = 𝑙 2⁄ ; 𝐼(𝑙 2⁄ ) = 3𝐼 sin(𝜋(𝑙 2⁄ ) 𝑙⁄ ) + 𝐼 = 3𝐼sin(𝜋 2⁄ ) + 𝐼 = 4𝐼;

for 𝑥 = 𝑙; 𝐼(𝑙) = 3𝐼 sin(𝜋𝑙 𝑙⁄ ) + 𝐼 = 3𝐼sin𝜋 + 𝐼 = 𝐼.

 (55) 

The sinusoidal variation in the second moment 𝐼(𝑥) along the axis of the bar given 

by Equation (54) is plotted in Figure 7 for a bar whose length 𝑙 is given in Table 1 and 

whose second moment of inertia 𝐼 of the cross-sections located at bar ends was com-

puted for an annular cross-section having an inner diameter 𝑑 and an outer diameter 𝐷, 

which are also given in Table 1. 
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Figure 7. Sinusoidal variation in the second moment of inertia along the bar axis. 

In Figure 8, a geometrical model is shown of a bar whose sinusoidal variation in the 

second moment of inertia 𝐼(𝑥) is given by Equation (54). 

 
 

(a) (b) 

Figure 8. Geometrical model for s bar with sinusoidal variation in the second moment of inertia 

along the bar axis: (a) isometric view and (b) longitudinal section. 

2.3.4. Triangular Variation in the Second Moment of Inertia of the Cross-Section along the 

Bar 

It was considered that the second moment of inertia linearly increased from the 

value 𝐼 to the value 4𝐼 from the pin-connected end of the bar to the middle of the bar, 

which meant position x of the cross-section was in the range of [0, 𝑙 2⁄ ]. Then, the second 

moment of inertia linearly decreased from the value 4𝐼 to the value 𝐼 from the middle 

of the bar to the other end of the bar, which meant a variation of 𝑥 in the range of 

[𝑙 2⁄ , 𝑙]. 

A linear function for the second moment of inertia for the first half of the bar, which 

meant 𝑥 ∈ (0, 𝑙 2⁄ ), and it was given by Equation (56): 

𝐼1(𝑥) = 𝐴𝑥 + 𝐵, (56) 

whose constants 𝐴 and 𝐵 are computed using the conditions given by Equation (57) 

regarding the values of the second moments of inertia for the cross-sections located at the 

pin-end connection and at the middle of the bar: 

{
for 𝑥 = 0; 𝐼1(0) = 𝐴 ∙ 0 + 𝐵 = 𝐼;

for 𝑥 = 𝑙 2⁄ ; 𝐼1(𝑙 2⁄ ) = 𝐴 𝑙 2⁄ + 𝐵 = 4𝐼.
 (57) 

Using the conditions given by Equation (57), the constants 𝐴 and 𝐵 were com-

puted, and the results are given in Equation (58): 

𝐴 = 6𝐼 𝑙⁄ ; 𝐵 = 𝐼. (58) 
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By replacing the constants 𝐴 and 𝐵 in Equation (56), a linear function was ob-

tained for the second moment of inertia for the first half of the bar, which is given in 

Equation (59): 

𝐼1(𝑥) = 6𝐼𝑥 𝑙⁄ + 𝐼, for 𝑥 ∈ (0, 0.5𝑙). (59) 

A linear function was assumed for the second moment of inertia for the second half 

of the bar, which meant 𝑥 ∈ (0.5, 𝑙), and it was given by Equation (60): 

𝐼2(𝑥) = 𝐶𝑥 + 𝐷, (60) 

whose constants 𝐶 and 𝐷 are computed by using the conditions given by Equation (61) 

regarding the values of the second moments of inertia for the cross-sections located at the 

middle of the bar and at bar end, which is simple-supported: 

{
for 𝑥 = 𝑙 2⁄ ; 𝐼2(𝑙 2⁄ ) = 𝐶 𝑙 2⁄ + 𝐷 = 4𝐼;

for 𝑥 = 𝑙; 𝐼2(𝑙) = 𝐶𝑙 + 𝐷 = 𝐼.
 (61) 

Using the conditions given by Equation (61), the constants 𝐶 and 𝐷 were com-

puted, and the results are given in Equation (62): 

𝐶 = −6𝐼 𝑙⁄ ; 𝐷 = 7𝐼. (62) 

By replacing the constants 𝐶 and 𝐷 in Equation (60), a linear function was ob-

tained for the second moment of inertia for the first half of the bar, which is given in 

Equation (63): 

𝐼2(𝑥) = −6𝐼𝑥 𝑙⁄ + 7𝐼, for 𝑥 ∈ (0.5𝑙, 𝑙). (63) 

The triangular variation in the second moment 𝐼(𝑥) along the axis of the bar given 

by Equations (59) and (63) is plotted in Figure 9 for a bar whose length 𝑙 is given in Table 

1 and whose second moment of inertia 𝐼 of the cross-sections located at the bar ends was 

computed for an annular cross-section having an inner diameter 𝑑 and an outer diame-

ter 𝐷, which are also given in Table 1. 

 

Figure 9. Triangular variation in the second moment of inertia along the bar axis. 

In Figure 10, a geometrical model is shown of a bar whose triangular variation in the 

second moment of inertia 𝐼(𝑥) is given by Equations (59) and (63). 
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(a) (b) 

Figure 10. Geometrical model for a bar with triangular variation in the second moment of inertia 

along the bar axis: (a) isometric view and (b) longitudinal section. 

2.3.5. Trapezoidal Variation in the Second Moment of Inertia of the Cross-Section along 

the Bar 

For trapezoidal variation in the second moment of inertia 𝐼(𝑥) along the axis of a 

bar, three portions of the bar length 𝑙 were considered in order to obtain the functions 

for such a variation: (i) for the first third of the bar, which meant 𝑥𝜖(0, 𝑙 3⁄ ), the second 

moment of inertia linearly increased from the value 𝐼 to the value 4𝐼; (ii) for the second 

third of the bar, which meant 𝑥𝜖(𝑙 3⁄ , 2𝑙 3⁄ ), the cross-section remained constant, and 

the second moment of inertia was equal with 4𝐼; and (iii) for the last portion, which 

meant 𝑥𝜖(2 𝑙 3⁄ , 𝑙), the second moment of inertia linearly decreased from the value 4𝐼 

to the value 𝐼. 

The linear function corresponding to the first portion is given in Equation (64): 

𝐼1(𝑥) = 𝐴𝑥 + 𝐵, (64) 

for which the constants 𝐴 and 𝐵 are computed using the conditions written in Equation 

(65): 

{
for 𝑥 = 0; 𝐼1(0) = 𝐴 ∙ 0 + 𝐵 = 𝐼;

for 𝑥 = 𝑙 3⁄ ; 𝐼1(𝑙 3⁄ ) = 𝐴 𝑙 3⁄ + 𝐵 = 4𝐼.
 (65) 

Solving the above system of two equations led to the following values for the con-

stants 𝐴 and 𝐵: 

𝐴 = 9𝐼 𝑙⁄ ; 𝐵 = 𝐼. (66) 

By replacing the constants 𝐴 and 𝐵 in Equation (64), a linear function was obtained 

of the second moment of inertia corresponding to the first portion of the bar, as shown in 

Equation (67): 

𝐼1(𝑥) = 9𝐼𝑥 𝑙⁄ + 𝐼, for 𝑥 ∈ [0, 𝑙/3]. (67) 

The function for the second moment of inertia corresponding to the second portion 

of the bar is given by Equation (68): 

𝐼2(𝑥) = 4𝐼, for 𝑥 ∈  [𝑙/3, 2𝑙/3]. (68) 

For the third portion of the bar, the function of the second moment of inertia was 

assumed, as given by Equation (69): 

𝐼3(𝑥) = 𝐶𝑥 + 𝐷, (69) 

for which constants 𝐶 and 𝐷 are computed using the following conditions: 



Materials 2022, 15, 6094 20 of 28 
 

 

{
for 𝑥 = 2𝑙 3⁄ ; 𝐼3(𝑙 3⁄ ) = 2𝐶𝑙 3⁄ + 𝐷 = 4𝐼;

for 𝑥 = 𝑙; 𝐼3(𝑙) = 𝐶𝑙 + 𝐷 = 𝐼.
 (70) 

By solving the system of two equations given by Equation (70) and replacing con-

stants 𝐶 and 𝐷 in Equation (69), the following function of the second moment of inertia 

was obtained: 

𝐼3(𝑥) = −9𝐼𝑥 𝑙⁄ + 10𝐼, for 𝑥 ∈ [2𝑙/3, 𝑙]. (71) 

Considering the functions given by Equations (67), (68), and (71), trapezoidal varia-

tion in the second moment of inertia along the bar axis is graphically shown in Figure 11 

for a bar whose length 𝑙 is given in Table 1 and whose second moment of inertia 𝐼 of the 

cross-sections located at the bar ends was computed for an annular cross-section having 

an inner diameter 𝑑 and an outer diameter 𝐷, which are also given in Table 1. The ge-

ometrical model of such a bar is shown in Figure 12. 

 

Figure 11. Trapezoidal variation in the second moment of inertia along the bar axis. 

 

 

(a) (b) 

Figure 12. Geometrical model for a bar with trapezoidal variation in the second moment of inertia 

along the bar axis: (a) isometric view and (b) longitudinal section. 

3. Results 

3.1. Results Obtained by Analytical Model 

Figure 13 shows the variation in the ratio 𝑃𝑐𝑟 𝑃𝑐𝑟0⁄  computed with Equation (25) 

for the case of 𝑘1 = 4 related to the value 𝑘2 ∈ [0; 3]. It may be observed that, for this 

design of a column with a variable cross-section, the maximum value of the ratio 

𝑃𝑐𝑟 𝑃𝑐𝑟0⁄  was equal to 3.69 in the case when 𝑘2 was equal to 3. 
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Figure 13. Variation in the normalized critical buckling force 𝑃𝑐𝑟 𝑃𝑐𝑟0⁄  computed with Equation 

(25) considering 𝑘1 = 4 related to the ratio 𝑘2. 

Figure 14 shows the variation in the rationality factor 𝑘𝑟𝑎𝑡 computed with Equa-

tion (37) for the case of 𝑘1 = 4 related to the value 𝑘2 ∈ [0, 3]. It was observed that the 

column with a stepwise variable cross-section was more rationally designed because the 

rationality factor 𝑘𝑟𝑎𝑡 was always greater than 1, and the greatest value was 2.1086 in 

the case when 𝑘2 was equal to 3. In fact, for the ratio 𝑘2 in the range of [2, 3], the ra-

tionality factor 𝑘𝑟𝑎𝑡 varied between 1.9973 and 2.1086. 

 

Figure 14. Variation in the rationality factor 𝑘𝑟𝑎𝑡 computed with Equation (37) considering 𝑘1 = 4 

related to the ratio 𝑘2. 

The least squares method was used for the approximation of the data in both Figures 

13 and 14 considering the second-degree polynomial functions. The approximation 

functions both for the normalized critical buckling load 𝑃𝑐𝑟 𝑃𝑐𝑟0⁄  and for the rationality 

factor 𝑘𝑟𝑎𝑡 are given in Figures 13 and 14, where the value R2 close to 1 shows that the 

data were accurately approximated. 

3.2. Results by Numerical Modeling for Loss in Stability of a Bar with Pin Connections at Ends 

with Stepwise Variable Cross-Section 

Considering the column with pin connections at its ends and a stepwise variable 

cross-section shown in Figure 1, the results obtained using the MATLAB calculation 

program for the numerical model with 32 finite elements are plotted in Figure 15 for all 

six cases given in Table 2. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 15. The first three shapes of stability loss and corresponding critical forces 𝑃𝑐𝑟 obtained by 

the FEM for the six cases of bars analyzed: (a) CONST_1I; (b) STEPWISE405; (c) STEPWISE410; (d) 

STEPWISE420; (e) STEPWISE430; and (f) CONST_4I (details about each case are given in Table 2). 

3.3. Validation of the Numerical Model by Theoretical Results for a Column with Stepwise 

Variable Cross-Section 

Table 3 shows the results obtained for the critical buckling force 𝑃𝑐𝑟  using both the 

FEM and the analytical model in the cases of columns with stepwise variable 

cross-sections and with constant cross-sections involved in this research. It was observed 

that the numerical model was validated by the results obtained with the analytical model 

because the maximum error was equal to 3.84%, as shown in Table 3. 

Table 3. Comparison between the critical buckling force 𝑃𝑐𝑟 obtained by the FEM with the one 

obtained with the analytical model for different cases of bars involved in this research. 

Code of Case Ana-

lyzed * 

Critical Force 𝑷𝒄𝒓 of Stability Loss (kN) Error 

(%) FEM Analytical Model 

CONST_1I 93.8546 93.807 0.05 

STEPWISE405 159.2584 165.620 3.84 

STEPWISE410 230.5490 230.430 0.05 

STEPWISE420 321.9348 312.270 3.10 

STEPWISE430 346.3275 346.150 0.05 

CONST_4I 375.4182 375.228 0.05 

* Details about bars of each case are given in Table 2. 
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The values of the normalized critical buckling forces obtained by the FEM and by the 

analytical model are comparatively plotted in Figures 16 and 17, respectively, for the 

columns with stepwise variable cross-sections and with constant cross-sections. These 

graphs also show a good correlation between the numerical model and the analytical 

model. 

 

Figure 16. Comparison of the normalized critical buckling forces 𝑃𝑐𝑟 𝑃𝑐𝑟0⁄  computed with the fi-

nite element models for the bars involved (details about each case are given in Table 2). 

 

Figure 17. Comparison of the normalized critical buckling forces 𝑃𝑐𝑟 𝑃𝑐𝑟0⁄  computed with the an-

alytical model for the bars involved in this research (details about each case are given in Table 2). 

3.4. Results of Numerical Modeling for Loss in Stability of a Column with Pin Connections at 

Ends with Continue Variable Cross-Section 

3.4.1. Critical Buckling Forces for the Parabolic Variation in the Second Moment of Inertia 

of the Cross-Section along the Bar 

Using the numerical model with 100 finite elements for the bar with parabolic vari-

ation in the second moment of inertia, the first three eigenshapes of stability loss were 

obtained that corresponded to the first three values for the critical buckling force shown 

in Figure 18. It was observed that the smallest value of the critical force for stability loss 

𝐹𝑐𝑟 was equal to 329.7439 kN. 
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Figure 18. The first three shapes of stability loss and corresponding critical buckling forces for the 

bar with parabolic variation in the second moment of inertia along the bar axis. 

3.4.2. Critical Buckling Forces for the Sinusoidal Variation in the Second Moment of In-

ertia of the Cross-Section along the Bar 

Using the numerical model with 100 finite elements, for the bar with sinusoidal 

variation in the second moment of inertia, the first three eigenshapes of stability loss were 

obtained that corresponded to the first three values for the critical buckling force shown 

in Figure 19. It was observed that the smallest value of the critical force for stability loss 

𝐹𝑐𝑟 was equal to 321.6489 kN. 

 

Figure 19. The first three shapes of stability loss and corresponding critical buckling forces for the 

bar with sinusoidal variation in the second moment of inertia along the bar axis. 

3.4.3. Critical Buckling Forces for the Triangular Variation in the Second Moment of In-

ertia of the Cross-Section along the Bar 

Using the numerical model with 100 finite elements for the bar with triangular var-

iation in the second moment of inertia, the first three eigenshapes of stability loss were 
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obtained that corresponded to the first three values for the critical buckling force shown 

in Figure 20. It was observed that the smallest value of the critical force for stability loss 

𝐹𝑐𝑟 was equal to 275.4322 kN. 

 

Figure 20. The first three eigenshapes of stability loss and corresponding values for the critical 

buckling forces for the bar with triangular variation in the second moment of inertia along the bar 

axis. 

3.4.4. Critical Buckling Forces for the Trapezoidal Variation in the Second Moment of 

Inertia of the Cross-Section along the Bar 

Using the numerical model with 100 finite elements for the bar with trapezoidal 

variation in the second moment of inertia, the first three shapes of stability loss corre-

sponding to the first three values of the critical buckling force were obtained and are 

shown in Figure 21. These were obtained using the numerical model with finite elements 

of the bar with trapezoidal variation in the second moment of inertia along the bar axis. 

The smallest value of the critical force for stability loss 𝐹𝑐𝑟 was equal to 333.7152 kN. 

 

Figure 21. The first three shapes of stability loss and corresponding values for the critical buckling 

force for the bar with trapezoidal variation in the second moment of inertia along the bar axis. 
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4. Discussion 

In Figure 22, the values of the normalized critical buckling forces 𝑃𝑐𝑟 𝑃𝑐𝑟0⁄  are 

comparatively analyzed for all the bars involved in this theoretical research in order to 

establish the best shapes of both bars with stepwise variable cross-sections and with 

continuous variable cross-sections, which can lead to a significant increase in the critical 

buckling force. 

 

Figure 22. Comparison of the critical buckling force obtained by the FEM for all the cases of bars 

involved in this research. 

By analyzing the results shown in Figure 22, it can be observed that the normalized 

critical buckling force of 3.43 obtained for the bar with stepwise variation in the 

cross-section corresponding to case STEPWISE420 was approximately equal to the nor-

malized critical buckling force of 3.427 obtained for the bar with sinusoidal variation in 

the second moment of inertia along the bar axis from I to the maximum value of 4I. This 

remark is very important as long as the bar with the stepwise variable cross-section is 

more easily obtained from a technological point of view. 

Considering Figure 22, it may be also remarked that the normalized critical buckling 

force of 3.556 recorded for the bar with trapezoidal variation in the second moment of 

inertia along the bar axis was close to the normalized critical buckling force of 3.513 ob-

tained for the bar with parabolic variation in the second moment of inertia along the bar 

axis. 

For the bars with variable cross-sections involved in this research, the highest value 

of 3.69 for the normalized critical buckling force was recorded for the bar with stepwise 

variation in the cross-section corresponding to case STEPWISE430 (Figure 22). 

5. Conclusions 

The research presented in this paper is very important for the design of shapes of 

slender bars that can lose their stability under compression loads. Increasing the critical 

buckling force for columns with annular cross-sections by stepwise or continuous varia-

tion in the cross-sections along the bar axes was proposed. Moreover, the shapes of the 

slender bars were designed so that these bars lost their stability in the elastic field. 

A particular case was considered for which the second moment of inertia varied 

between the values 𝐼  and 4𝐼  along the bar axis. For bars with variation in the 

cross-sections in three steps, the normalized critical buckling force continuously in-

creased by a second-degree polynomial function reported in the paper related to the ratio 
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𝑘2 between the lengths of the bar portions. It was shown that the geometry proposed for 

the bar with stepwise variation in the cross-section was more rational with respect to the 

bar with a constant cross-section, taking into account the ratio between the critical buck-

ling force and the volume of the bar. 

Among the bars involved in this research with continuous variations in the annular 

cross-sections, it was concluded that the parabolic or trapezoidal variations in the 

cross-sections were the best solutions. These design solutions led to increases in the crit-

ical buckling force by 3.513 times and 3.556 times, respectively, compared with the bar 

with a constant cross-section along the axis. In fact, the normalized critical buckling 

forces obtained for both parabolic and trapezoidal variations were close to the one cor-

responding to case STEPWISE420 with stepwise variation in the cross-section, which was 

more technologically affordable. 

The numerical analysis approach in this research was one of an appropriate design 

solution to optimize the variation in the cross-section along the axis of a bar by compar-

ing the results in order to maximize the critical buckling force. The numerical model was 

validated by an analytical model for the bar with stepwise variation in the cross-section, 

and then the numerical approach was applied for bars with different methods of varia-

tion in the second moment of inertia along the bar axis. In fact, the continuous variation 

in the cross-section was approximated with stepwise variation in the cross-section con-

sidering that the bar consisted of a number of portions equal to the number of finite el-

ements considered in the numerical analysis. The main advantage was that the MATLAB 

program used in this research was not a commercial one, and as a result, the algorithm 

could be further adapted for other types of variation in the cross-section along the bar 

axis. 

At a time when the rapid printing of construction elements has taken off around the 

world in the field of construction, the results presented in this paper are of great interest 

in many applications, taking into account that these results could lead to increasing the 

critical buckling force for compressed slender bars. However, there is still a need for 

3D-printing equipment for construction to be perfected, developed, and made more af-

fordable in terms of cost so that the manufacture of bars with variable cross-sections is 

easy for construction elements whose shapes have been optimized. 

Considering the design solutions for continuous variation in the cross-section pre-

sented in this article, it is possible to manufacture sleeves to be welded on compressed 

bars of various structures (stadium roofs, steel bridge structures, trusses) to increase the 

critical buckling force. The sleeves may be welded without removing the bars from the 

structures. Because the research in this article was limited to slender bars with pin con-

nections at both ends, the study may be continued for other boundary conditions in fur-

ther research. 
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