
Citation: Sha, W.; Liu, Y.; Zhou, Y.;

Huang, Y.; Huang, Z. Effect of

Carbon Content on Mechanical

Properties of Boron Carbide

Ceramics Composites Prepared by

Reaction Sintering. Materials 2022, 15,

6028. https://doi.org/10.3390/

ma15176028

Academic Editors: Alexey Smolin

and Mingchao Wang

Received: 27 July 2022

Accepted: 28 August 2022

Published: 1 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Effect of Carbon Content on Mechanical Properties of Boron
Carbide Ceramics Composites Prepared by Reaction Sintering
Wenhao Sha 1,2 , Yingying Liu 1,2 , Yabin Zhou 3, Yihua Huang 1,* and Zhengren Huang 1,*

1 State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of
Ceramics, Chinese Academy of Sciences, No. 588, HeShuo Road, Jiading District, Shanghai 201800, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
* Correspondence: wyu@mail.sic.ac.cn (Y.H.); zhrhuang@mail.sic.ac.cn (Z.H.)

Abstract: In this study, different reaction-bonded boron carbide (RBBC) composites with a free carbon
addition from 0 to 15 wt% were prepared, and the effect of the carbon content on the mechanical
properties was discussed. With the free carbon addition increase from 0 to 15 wt%, the residual silicon
content in the RBBC composite decreased first and then increased. Meanwhile, the strength of the
RBBC composite improved first and then worsened. In the RBBC composite without free carbon, the
B4C grains are obviously dissolved, the grains become facet-shape, and the grain boundary becomes
straight. The microstructure of the composite was tested by SEM, and the phase composition of the
composite was tested by XRD. The RBBC composite with the addition of 10 wt% free carbon has the
highest flexural strength (444 MPa) and elastic modulus (329 GPa). In the composite with a 10 wt%
carbon addition, the phase distribution is uniform and the structure is compact.

Keywords: composites; elastic modulus; flexural strength; reaction sintering; vickers hardness

1. Introduction

Boron carbide (B4C) ceramics are a significant structural material. They have the
advantages of a high hardness, low density, high melting point, excellent corrosion and wear
resistance, good chemical stability and neutron absorption performance. They are widely
used as bulletproof material, radiation proof material, wear-resistant and self-lubricating
material, special acid and alkali-resistant material cutting and grinding tools, and atomic
reactor control and shielding materials. However, the sintering and densification of B4C
ceramics are difficult. Hot pressing can be used for preparing dense B4C [1], but only
samples with simple shapes can be prepared. There have been many studies on B4C
prepared by spark plasma sintering in recent years [2–4]. However, only small-size samples
can be prepared by spark plasma sintering. Pressureless sintering can also prepare dense
B4C but requires a high temperature (2000 ◦C) [5–7]. Then, these common sintering methods
often require a higher cost or higher sintering temperature. In recent decades, reaction
sintering has been widely used in the preparation of B4C ceramic composites [8]. This
new method has two outstanding advantages in the preparation of RBBC composites.
First, the sintering temperature of reaction sintering (1450–1650 ◦C) is far lower than that
of pressureless sintering (2000 ◦C) or hot press sintering. The use of reactive sintering
can effectively reduce the sintering temperature. Second, reaction sintering is a net size
sintering technology, and the sample size is almost unchanged before and after sintering
(size change < 1%) [9].

In recent decades, reaction sintering has attracted more and more attention in the
preparation of dense boron carbide ceramics. Adding different contents of free carbon into
the material system will obviously affect the structure and properties of reaction-sintered
B4C ceramics. At present, there are few studies on this aspect, or some aspects have not
been mentioned. Zhang et al. [10] reported the preparation of RBBC composites, but did
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not systematically study the effect of the free carbon content. Gao et al. [11] explored the
influence of free carbon content upon mechanical properties, but did not consider the
dissolution of the B4C main phase in silicon.

In this study, the effect of the amount of free carbon in the material on the mechanical
properties and the microstructure evolution during siliconization were investigated. The
change of the residual silicon content in RBBC ceramics is also mentioned in this study.
In addition, this study provides a new recipe to better improve the properties of boron
carbide-based ceramic composites.

2. Materials and Methods
2.1. Materials

The raw powders were commercially available B4C (D50 = 20 µm, Mudanjiang di-
amond boron carbide Co., Mudanjiang, China), amorphous carbon black (D50 = 1 µm,
Fusman, Beijing, China) powders. The binder used is phenolic resin (Aladdin, Shanghai,
China). N-butanol and paraffin wax (Aladdin, Shanghai, China) were also used in this
study. Figure 1 shows the particle morphology and the particle size distribution of the raw
B4C powders. B4C and carbon powder, along with a certain amount of binders, N-butanol,
paraffin wax were mixed in various proportions. The binder is phenolic resin, and the
addition amount is 10% of the sum of the mass of boron carbide powder and silicon carbide
powder. N-butanol can eliminate bubbles in slurry. Paraffin is conducive to the complete
demoulding process of the sample. Table 1 lists the name of samples and their composition.
The mixtures were ball-milled in an ethanol solvent with SiC balls for 24 h. The milling
speed was 60 rpm. Then, the slurries were dried at 70 ◦C for 24 h. The powder mixtures
were uniaxially pressed at 200 MPa. The compacted specimens (40 mm × 8 mm × 6 mm)
were placed into a vacuum furnace and heated up to 900 ◦C for half an hour to burn off the
binder. After that, the green bodies were infiltrated by silicon from lumps (1–5 mm) placed
on the surface of the green compacts. The mass of added silicon lumps is about 1.2 times
that of green. The sintering temperature, holding time, and heating rate are 1600 ◦C, 30 min,
and 5 ◦C /min, respectively. The samples were sintered under vacuum (50 Pa).
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Figure 1. (a) SEM image and (b) particle size distribution of raw B4C powders.

Table 1. The nomenclature of composites and their raw material composition.

Samples C0 C5 C10 C15

C/wt% 0 5 10 15
B4C/wt% 100 95 90 85

2.2. Characterization

The Archimedes principle (GB-T1966-1996) was used for measuring the open poros-
ity and density of sintered bodies. The pore size distribution and the open porosity of
the green body was measured by Automatic mercury porosimeter (Poremaster60, Anton
paar, Ashland, VA, USA). The particle size distribution of the powder was measured by
a laser diffraction particle size analyzer (Mastersizer 3000, Malvern, UK). The mechan-
ical properties of sintered samples were tested by a universal material testing machine
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(Instron-5566, Instron Co., Norwood, MA, USA). The Vickers hardness of samples was
tested under a load of 10 N for 10 s and tested for at least 5 independent points. Bars of
3 mm × 4 mm × 36 mm were prepared for the flexural strength test. A three-point bend-
ing method (bend span = 20 mm, load speed = 0.5 mm/min) was used for measuring the
flexural strength. An indentation method (the applied load = 10 N) was used for measuring
the fracture toughness. The microstructure and element distribution of the composites
were examined with a scanning electron microscope (SEM, Magellan 400, FEI, Hillsboro,
OR, USA) and transmission electron microscope (TEM, JEM-2100F, JEOL, Tokyo, Japan).
The surface conditions of the SEM specifications are polished. The polished samples were
prepared according to standard metallographic procedures including the final polishing
stage with a 0.5 µm diamond paste. The phase was analyzed via X-ray diffraction (XRD,
D/Max2250V, Rigaku, Tokyo, Japan) and Energy Dispersive Spectroscopy (EDS). Jade was
used to analyze the XRD results. The XRD data was obtained from the polished exterior
surfaces of the samples. The residual silicon content of composites was tested by chemical
method. The residual silicon in the RBBC composites was extracted by nitric acid and
hydrofluoric acid. Then, the content of silicon was determined by potassium fluosilicate
volumetric method.

3. Results and Discussion
3.1. Phase Compositions of RBBC Ceramic Composites

The result of the XRD test is shown in Figure 2. The diffraction peak of B4C can be
observed in Figure 2a. However, there is no diffraction peak from C in Figure 2a due to the
added C being amorphous.
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Figure 2. (a) XRD patterns of raw powder (mixture of B4C and C); (b)XRD patterns of composites
with different contents of carbon.

Figure 2b shows that the main phase composition includes B13C2, B12(C,Si,B)3, SiC,
and Si. The reaction between B4C and Si leads to the formation of B12(C,Si,B)3 and SiC [12].
The stoichiometric ratio of boron carbide is unstable. From Figure 2a,b, we can see that the
diffraction peaks of B4C and B13C2 are almost the same. The sintered samples should still
have a large amount of B4C phase. Comparing the test results of XRD with the standard
XRD card, it can be observed that the generated SiC is 6H-SiC.

In addition, the relative intensity of the main diffraction peak of Si in the four RBBC
composites (2θ = 28.6◦ and 47.5◦) shows a trend of first decreasing and then increasing.
The main diffraction peak of Si is the lowest when the carbon content is 10 wt%, which
indicates that the residual silicon content in the C10 sample is the lowest. The test results of
the residual silicon content of the composites also confirmed this conclusion.

Table 2 shows the content of residual silicon in different sintered samples. After
sintering, there is still some unreacted silicon in the sample. When the added carbon
content changes in the range of 0–10 wt%, the residual silicon in the sintered sample
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gradually decreases with the increase of the carbon content. In the sintering process, the
generated silicon carbide and molten silicon are filled in the pores of the green body [8,13].
Table 3 shows that the open porosity of the four green billets is similar. With the increase of
free carbon, the content of silicon carbide increases, and so the content of residual silicon
decreases. When the added carbon content is 15 wt%, the raw boron carbide particles
dissolved and reacted [14]. The phase of boron carbide in the composite was reduced.
Then, more liquid Si entered the sample, and the content of residual silicon increased. The
change in the residual silicon and silicon carbide content can also be observed in the SEM
(Figure 3). The residual silicon content in the C10 sample is low, which is one of the reasons
for its high strength.

Table 2. The residual silicon content of composites.

Samples C0 C5 C10 C15

Si/wt% 27.18 19.57 14.14 16.70

Table 3. The open porosity of green bodies.

Samples C0 C5 C10 C15

Porosity/% 32.3 33.5 31.5 29.8
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3.2. Microstructures of RBBC Ceramic Composites

The SEM photographs of four samples are shown in Figure 3. It can be observed in
Figure 3a that there are three phases in the RBBC composites. The black, gray, and white
areas were B4C phase, SiC phase, and free Si, respectively. In Figure 3, the areas of phase
became smaller and the distributions of phase become more uniform for carbon content
ranging from 0 to 10 wt%. Figure 3a shows the phase distribution of the C0 specimen
without free carbon. The phase distribution is nonuniform. The nonuniform distribution
may be due to the difficulty of B4C sintering, which may lead to a lower strength [15]. The
abnormal phase size distribution becomes the flaw size and hence reduces the strength.
Previous studies also show that when the microstructure of the composites is more uniform,
the strength is higher [16].
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The formation of more bright, white silicon phases can also be observed in Figure 3d.
This shows that the residual silicon content in the sample increases. The increase of the
residual silicon content will lead to the decrease of the material strength [17].

From Figure 3, we can see that some abnormally large SiC grains are generated in the
sample. In Figure 3a in particular, there are many such large grains. In order to find out
the reason for the formation of large SiC grains, the samples were tested by TEM. Figure 4
shows the results of the TEM and energy spectrum tests. The sample used for the TEM test
uses a focused ion beam. The area where the sample is cut for the TEM test is indicated
in Figure 4a. The sample morphology used for the TEM test is shown in Figure 4b. It
can be seen from Figure 4c that the grain boundaries of large grains are obvious. Three
regions were selected for energy spectrum point scanning. Spectrum 1 is inside the grain;
Spectrum 2 is at the grain boundary; and Spectrum 3 is outside the grain. The results of
the energy spectrum point scan are shown in Figure 4d. Large grains are surrounded by
Si. B12(CxSiyBz) was formed on the surface of large grains, and a small amount of boron
was observed inside. During the process of reaction sintering, boron carbide will react
with silicon according to Si(l) + 3B4C(S) = SiC(S) + B12(B,C,Si)3(S) [18,19]. B12(CxSiyBz)
is the product of the reaction between B4C and Si. Therefore, we can speculate that the
large-size grains are related to the dissolution of B4C. B element was observed in the interior
of large grains, but because the TEM test area was small, we did not obtain the element
composition in the interior of large grains. We put forward a guess about the formation of
large grains. Large size grains are formed by the reaction of B4C particles with Si in the
process of reaction sintering. The reaction first occurred on the surface of B4C particles. The
surface of the grain is reaction-formed silicon carbide, and there may be unreacted boron
carbide phase inside the grain. In the C0 sample, only a small amount of C is provided by
phenolic resin, so more boron carbide particles react with silicon and generate more large
grains. Additional free C was added to the other three samples, and silicon reacted with C
first. Therefore, less boron carbide is reacted and fewer large particles are generated.
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Figure 5 shows the EDS data of the polished surface of four samples. As mentioned
earlier, the black, gray, and white areas were B4C phase, SiC phase, and free Si, respectively.
EDS test data also confirmed this result. It is observed that there is a small amount of
aluminum in the sample, which may be the impurity introduced in the sintering process.
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Figure 6 shows the microstructures of four samples. The black particles were B4C
grains. The shape of B4C grains in the C10, C15 composite (Figure 6c,d) is irregular, and the
boundaries are curved. It is consistent with the original boron carbide grains (Figure 1a).
However, when the addition of free carbon is reduced to 5 wt%, the shape of the B4C grains
is changed. It is not irregular, but faceted. In addition, the boundaries of the B4C grains
become straight. When the addition of free carbon is reduced to 0 wt%, almost all of the
B4C grains in the C0 sample (Figure 6a) become facet-shaped, and the boundaries become
straight. The change in the B4C grain may be due to dissolution. During sintering, B4C
grains dissolve and react in molten silicon [20]. When there is no free carbon in the raw
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material, the dissolution of B4C particles is most serious during the Si infiltration. The
serious dissolution of B4C grains in the C0 composite results in the mechanical properties
of the RBBC composite becoming poor.
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Figure 7 shows the fracture surfaces’ morphology and phase distribution of the com-
posite with different carbon contents. The secondary electron images show the fracture
surface morphology, and the backscattered electron images show the phase distribution.
The phase distribution of the fracture surface is similar to that of the surface (Figure 3).
The black, gray, and white areas were B4C phase, SiC phase, and free Si, respectively. The
fracture mode of the four composites is transgranular fractures. River-like pattern fracture
surfaces with a large-size grain area can be observed in Figure 7a,d. These fracture surfaces
show the typical fracture morphologies of brittle materials. This also confirms that the for-
mation of a large-size grain region leads to the reduction of the RBBC composites’ strength.
In Figure 7c, one can observe that small-size silicon carbide can surround large-size B4C
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particles. This further shows that the phase distribution in the C10 RBBC composites
is uniform.
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3.3. Density and Mechanical Properties of RBBC Ceramic Composites
3.3.1. Pore Size Distribution and Porosity of Green Bodies

Figure 8 shows the pore size distribution of green bodies with different carbon contents.
All green bodies only have one peak. When the carbon content increases, the pore size of
the green body gradually decreases; this is due to the smaller amorphous carbon particles
filling the pores between the larger B4C particles and the pores of the green bodies becoming
smaller. The peak of the green body without free carbon (C0) is sharper. This shows that
the pore size distribution of the green body without free carbon is more concentrated.
This result is assumed to show that the green body only exists for B4C particles with the
same pore size distribution. In addition, the B4C particle size range is relatively narrow, as
presented in Figure 1b. Thus, the pore size would also be narrow.
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Table 3 shows the open porosity of four green bodies. The porosity of four green
bodies is almost the same and is close to 30%. The green body is porous. Therefore, liquid
silicon can easily penetrate into the green body during sintering.

3.3.2. Density and Porosity of RBBC Composites

Figure 9 shows the open porosity and volume density of four samples. The open
porosity of four samples is low and less than 1%. There are two reasons for the low porosity
of samples. First, during sintering, molten silicon reacted with carbon or boron carbide to
form SiC. SiC filled some of the pores [21]. Second, molten silicon entered the remaining
pores. The low porosity of the sample indicates that enough liquid silicon entered the
green body.
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3.3.3. Mechanical Properties of RBBC Composites

The flexural strength and elastic modulus of four samples are shown in Figure 10.
Flexural strength and elastic modulus are significant mechanical properties of B4C. With the
increase of the carbon content, the flexural strength and elastic modulus of the composites
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have a similar change trend. When the free carbon content increases in the range of
0~10 wt%, the density of sintered samples increases slightly and the flexural strength
increases. This is because the defect size in the C10 sample is smaller. The defect size
should be the SiC-Si-B4C interfaces, based on the exaggerated SiC grain growth and the
thermal expansion mismatch between the phases upon cooling. A large-size grain was
formed in the C0 and C5 samples, but the phase distribution was uniform in the C10
samples. Therefore, the defects in the C10 sample are smaller. When the free carbon content
increases to 15%, the density of the composites changes little. But the phase distribution
becomes uneven. This is the reason for the decrease in strength in the C15 sample. The
elastic modulus of the material is related to the type of chemical bond. The elastic modulus
of B4C is much larger than that of Si. The C0 and C15 samples have a high residual silicon
content, so the elastic modulus is lower.
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The Vickers hardness and fracture toughness of four samples is shown in Figure 11.
With the change in the carbon content, the hardness of the material does not change
significantly. The hardness of the four samples is stable in the range of 20–22 GPa. The
fracture toughness of different RBBC composites is also similar. This may be because the
grain sizes of the four samples are similar. The fracture mode of the four composites is
transgranular fractures. This may lead to a poor toughness of the sample.
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In summary, when the carbon content is 10 wt%, the phase distribution is more
uniform and the density is higher. The RBBC composite with the addition of 10 wt% free
carbon has the highest flexural strength (444 MPa) and elastic modulus (329 GPa). The
effect of the carbon content on the hardness and toughness is not obvious.

4. Conclusions

In this work, RBBC composites with 0–15 wt% free carbon content were prepared, and
the influence of the carbon content on the microstructure and mechanical properties were
studied. When the carbon content change is in the range of 0–10 wt%, the phase distribution
in the sample is gradually uniform with the increase of the free carbon content. When the
carbon content increases to 15 wt%, the phase distribution of the sintered sample begins
to become uneven. In the C0 sample without free carbon, the B4C grains are obviously
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dissolved, the grains become facet-shaped, and the grain boundary becomes straight. In
addition, many large-size grains were formed in the C0 samples. When the content of free
carbon is 10 wt%, the phase distribution of RBBC-Si-infiltrated ceramic is uniform, and the
residual silicon content is the lowest. Furthermore, the flexural strength (444 MPa) and
the elastic modulus (329 GPa) of the C10 sample are the highest. The effect of the carbon
content on the hardness and toughness is not obvious. The toughness of boron carbide
ceramics obtained in this study is low, and the question of how to improve the toughness
of boron carbide ceramics will be explored in the future.
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