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Abstract: This work aimed to fabricate a boron-doped diamond film electrode for detecting trace
amounts of lead in drinking water so as to safeguard it for the public. Available detectors suffer
from high costs and complex analytical processes, and commonly used electrodes for electrochemical
detectors are subject to a short life, poor stability, and secondary pollution during usage. In this
work, a boron-doped diamond (BDD) electrode was prepared on a porous titanium substrate, and
the microstructure and electrochemical properties of the BDD electrode were systematically studied.
Moreover, the stripping parameters were optimized to obtain a better signal response and determine
the detection index. As a result, diamond particles were closely arranged on the surface of the
BDD electrode with good phase quality. The electrode showed high electrochemical activity, specific
surface area, and low charge transfer resistance, which can accelerate the stripping reaction process
of Pb2+. The BDD electrode presented a low detection limit of 2.62 ppb for Pb2+ under an optimized
parameter set with an enrichment time of 150 s and a scanning frequency of 50 Hz. The BDD electrode
also has good anti-interference ability. The designed BDD electrode is expected to offer a reliable
solution for the dilemma of the availability of metal electrodes and exhibits a good application
prospect in the trace monitoring of Pb2+ content in drinking water.

Keywords: boron-doped diamond; electrode; water detection; heavy metal pollutant

1. Introduction

Increasing concerns about Pb2+ pollutants in drinking water have prompted the
development of reliable analytical techniques for water quality monitoring. The rapid
development of industry has caused serious water pollution and threatens the security
of water drinking for over 1 billion people around the world [1]. Heavy metal pollu-
tants are intractable pollutants that cause water quality deterioration and have extensive
sources and abundant transmission channels such as industrial, agricultural, and domestic
wastewater, atmospheric deposition, etc. [2,3]. Among them, Pb2+ is a typical stubborn
heavy metal pollutant due to its characteristics of difficult degradation, easy accumula-
tion, and high toxicity [4]. The excessive intake of Pb2+ can cause irreversible damage to
the nervous system, internal organs, and reproductive system of the human body. The
World Health Organization recommends a maximum lead content of 10 ppb in drinking
water [5,6]. The detection of Pb2+ in drinking water is thus crucial for preventing water
pollution and ensuring the safety of drinking water. Available methods for detecting trace
Pb2+ include liquid chromatography, atomic absorption spectrometry, and flow injection
analysis. The available methods suffer from high costs and complex analytical processes,
and their applications for water quality monitoring are therefore constrained [7]. Instead,
electrochemical analysis technologies such as square wave stripping voltammetry and
differential pulse voltammetry present good potential due to their high sensitivity and fast
signal response [8]. Therefore, it is of significance to develop water quality monitoring
sensors based on electrochemical analyses.
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The detection electrode is the core component of an electrochemical detector and
determines its analytical capability. Currently, commonly used detection electrodes include
mercury film electrodes and metal film electrodes, and the metal film electrodes include
bismuth, antimony, gold, etc. [9]. Unfortunately, such electrodes are subject to poor stability
and short life. It is thus imperative to develop new electrode materials. Being a new carbon
material, BDD (boron-doped diamond) has both the good physical and chemical charac-
teristics of diamonds and the functional performance of semiconductors. High hardness,
excellent chemical stability, and good electrochemical characteristics (low background
current, high potential window) make BDD applicable in the fields of supercapacitors and
advanced oxidation technologies [10]. Developing heavy metal analysis electrodes based
on BDD can be expected to obtain high stability and reliability in water quality monitoring.
However, there is still a lack of systematic research on using BDD electrodes to detect Pb2+

content in drinking water.
In this work, a BDD electrode is prepared on a titanium slice to detect trace Pb2+ in

water. The microstructural and electrochemical behavior of the prepared BDD electrodes
are systematically investigated and the Pb2+ detection ability is also explored to evaluate
the application potential of BDD electrodes in heavy metal monitoring.

2. Experimental Section
2.1. Reagents and Instruments

All reagents used were of analytical grade. The lead ion standard solution was
purchased from the National Institute of Standards and Materials, and the concentration
required for the solution to be tested was set by mixing it with ultrapure water. Sodium
sulfate, potassium ferricyanide, and boron trioxide were purchased from Shanghai McLean
Biochemical Co., Ltd. (Shanghai, China); anhydrous ethanol was provided by the Shanghai
Sinopharm group; nanodiamond (10 nm) was purchased from Nanjing Hongde Material
Co., Ltd. (Nanjing, China); and the titanium substrate was purchased from Shaanxi Huanya
Senna Hydrogen Energy Technology Co., Ltd. (Baoji, China).

The BDD film electrode was prepared in a hot-filament chemical vapor deposition
system (HFCVD, HF800, Beijing Wald Diamond Tools Co., Ltd. (Beijing, China)). The
micromorphology of the electrode was observed using a scanning electron microscope
(SUPRA55, Carl Zeiss AG, Oberkochen, Germany). The binding structure was detected
using a Raman confocal microscope (LabRAM HR Evolution, HORIBA JobinYvon, Edi-
son Township, NJ, USA). The electrochemical test was carried out in an electrochemical
workstation (CHI 660E, Shanghai Chenhua, Shanghai, China).

2.2. Preparation of BDD Electrode

A titanium metal slice was used as the substrate of the BDD electrode. The cleaned
substrate was placed in a diamond seed solution (5 g ND (nanodiamond)/20 mL ethanol)
for 10 min for the seeding treatment.

The substrate was then dried and placed in an HFCVD chamber for deposition.
Diboron trioxide was dissolved in ethanol as a doping boron source and was brought
into the chamber through hydrogen gas. In the nucleation stage, methane was used as a
carbon source, hydrogen was used as an etching gas, and the ratio of H2:CH4 was set as
10:1000 sccm for 0.5 h. In the growth stage, the gas flow of H2 (bubbling) was adjusted
to C2H5OH + H2 + B2O3:H2 = 25:50:1000 sccm for 7.5 h. The layer thickness could be
determined by the product of the deposition rate and deposition time. The main deposition
parameters included the C/H ratio (2.4%), B/C ratio (6000 ppm), deposition pressure
(3 KPa), and deposition temperature (700 ◦C).

2.3. Electrochemical Measurement

BDD film was used as the working electrode (10 × 10 mm2), a saturated glyceryl
electrode was used as the reference electrode (3 M KCl), and a platinum sheet was used
as the counter electrode (10 × 15 mm2). A cyclic Voltammetry (CV) test was used to
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investigate the electrode potential window, background current, and reaction kinetics in the
electrolytes of a 0.1 M Na2SO4 solution and a 0.1 M K3[Fe(CN)6] solution. Electrochemical
impedance spectroscopy (EIS) was used to detect the electrochemical reaction process in a
frequency range of 10−2–105 Hz. Square wave dissolution voltammetry (SWASV) was used
to assess Pb2+ in the water under the conditions of an amplitude of 20 mV, a step potential
of 4 mV, and a deposition potential of −0.8 V. The limit of detection (LoD) of the BDD
electrode was calculated using the formula 3N/S, where N is the electrode noise value and
S is the electrode sensitivity.

3. Results and Discussion
3.1. Structural Characterization of BDD Electrode

Figure 1a shows a physical view of the BDD electrode prepared in this work. As shown
in Figure 1a, the electrode surface was smooth, and there were no macroscopic defects such
as flaking and cracking, suggesting a good adhesion from the BDD film to the substrate.
Also, Raman scattering spectra were used to characterize the binding structures of the BDD
film. Figure 1b shows the Raman spectra of the prepared BDD electrode at both the surface
and interface. In Figure 1b, it can be seen that the diamond phase has a good quality at the
BDD surface and boron doping is achieved. For the interface of the BDD electrode, two
characteristic peaks can be observed at 1334 cm−1 and 1580 cm−1, corresponding to the D
(Diamond) band (sp3-C) and G (graphite) band (sp2-C), respectively [11]. The D band is
the first-order Raman characteristic peak of the diamond phase and can be used as direct
evidence to determine the diamond formation. The G band is attributed to the impurity
phase similar to amorphous carbon in the BDD. The significant G band at the interface
indicates a poor phase formation at the initial growth stage of the BDD film due to the
presence of a large amount of overlapped amorphous carbon.
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On the BDD electrode surface, the absence of a G peak at 1580 cm−1 indicates an
improvement in the diamond phase formation. In addition, the appearance of a new
characteristic peak at 491 cm−1 can be attributed to phonon scattering brought about by
lattice changes after doping boron [12]. Meanwhile, the D peak at the BDD surface has “blue-
shifted” appearing at 1330 cm−1 compared with that at the interface. This phenomenon
is due to the “Fano” effect caused by boron doping [13]. These two phenomena jointly
confirm that boron was successfully doped into the diamond lattice to form the BDD film.
The BDD film was mainly composed of the diamond phase and boron was doped. This
is favorable for reducing the electrode noise and widening the potential window. The
amorphous carbon phase at the interface can be used as a conductive medium to facilitate
the transmission of electrical signals. Such a structure of the BDD electrode can be expected
to achieve good electrochemical behavior and enhanced detection performance.

Subsequently, the microscopic morphology of the BDD electrode was observed using
SEM. Figure 1c,d show the SEM images of the electrode at two magnifications. As shown
in Figure 1c, the porous structure of the substrate was preserved after the deposition of
the BDD film. As shown in Figure 1d, the average size of the diamond grain was about
8 µm and the grain morphology was a regular tetrahedral structure. The tetrahedral
structure is a typical morphological feature of a diamond grain with a (111) crystal plane
and this indicates that the film has a preferred orientation along the (111) crystal plane [14].
The (111) crystal plane is the easily exposed surface of the B element, and the preferred
orientation is beneficial for increasing the active sites of the electrode and enhancing heavy
metal detection. In short, favorable microscopic morphology, good phase structure, and
preferred orientation of the film jointly facilitate a good electrochemical analysis capability.

3.2. Electrochemical Characterization of BDD Electrode

Good electrochemical behavior is a guarantee of efficient heavy metal detection of a
BDD electrode. Firstly, the potential window and background current of the BDD electrode
were measured by cyclic voltammetry, as shown in Figure 2a. As can be seen in Figure 2a,
the BDD electrode had no hydrogen evolution and oxygen absorption reactions in the
potential range of −1.2 V to +1.0 V and the electrode potential window was as high as
2.2 V. This wide potential window is attributed to the weak adsorption of sp3-C on the
BDD electrode to the reaction intermediates in the solution. The potential window of 2.2 V
can fully ensure the dissolution analysis of Pb2+ by the BDD electrode. In addition, the
electrode also showed a very low background current, which can suppress the electrode
noise and improve the signal ratio and sensitivity of the electrode. On the other hand, the
low background current of the electrode represents the low electric double layer capacitance,
indicating that there are fewer charge sites on the electrode surface, which may hinder the
charge transfer on the electrode surface [14].
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curves of BDD electrode in 0.1 M K3[Fe(CN)6] electrolyte at different scanning speeds; (c) Nyquist
diagram of BDD electrode in 0.1 M potassium ferricyanide solution.
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Subsequently, the electrochemical reaction kinetics of the BDD electrode were in-
vestigated using potassium ferricyanide as the redox pair. Figure 2b shows the cyclic
voltammetric characteristics of the BDD electrode at different scan rates. In Figure 2b,
obvious oxidation and reduction peaks can be observed at all six scan rates, indicating a
good electrochemical capability. The intensity of oxidation and reduction peaks increases
with an increase in the scan rate. A linear fit between the rate’s square root and the peak
current values reveals a good linear relationship. This means that the diffusion process
dominates the electrochemical reactions on the BDD electrode, and the electrochemical
reactions occurring on the electrode are quasi-reversible processes [15]. Moreover, the
active surface area reaches 4.38 cm2, calculated using the Randles–Sevcik equation [16].
The above results confirm that the BDD electrode had an active surface and facilitated a
favorable electrochemical behavior.

Furthermore, the charge transfer capability of the electrode was evaluated by an
impedance test. Figure 2c shows the Nyquist plot of the poles in the potassium ferricyanide
electrolyte. In Figure 2c, a semicircular shape occurs in the high-frequency range. This
is the embodiment of the charge transfer process and corresponds to the charge transfer
resistance labeled as Rct in the equivalent circuit diagram. The calculated value of Rct was
6.54 Ω. Such a value indicates that the electrode has a low charge transfer resistance and
can ensure the smooth progress of the electrochemical reaction. The Nyquist plot shows a
linear shape in the low-frequency region. This is the embodiment of the diffusion process
and is involved with the Warburg impedance in the equivalent circuit diagram. The linear
angle is about 45◦, indicating a stable diffusion process. In short, the BDD electrodes had a
lower charge transfer resistance and were beneficial for improving the signal response of
the electrode.

3.3. Determination of Trace Pb2+ in Water
3.3.1. Dissolution Parameter Optimization

In order to obtain a better signal response for the BDD electrode, two specially selected
experimental parameters enrichment time and scanning frequency were optimized in
turn at a Pb2+ concentration of 30 ppb. As an important factor affecting the dissolution
signal, the enrichment time is directly involved with the redox process of Pb2+. Figure 3a
shows the dissolution peak current values at four enrichment times. In Figure 3a, the
signal response shows a trend of enhancement followed by decay with the increase in the
enrichment time. The electrode exhibits the lowest signal response at an enrichment time of
50 s. This enrichment time is too short to drive a large amount of Pb2+ to participate in the
dissolution reaction. The extension of the enrichment time enhances the signal response.
Consequently, the electrode achieves the highest value of the dissolution peak current at
an enrichment time of 150 s and the electrode reaches the highest signal response. The
reason may be that more and more heavy metal ions to be measured were reduced on the
electrode surface with the extension of the enrichment time and the current signal intensity
gradually increased and reached the maximum value [17]. After that, the electrode signal
response deteriorated as the current value of the dissolved peak decayed slightly when
the enrichment time was extended to 200 s. This could have been due to the impurities
in the solution system. The impurity ions in the solution system gradually participated
in the dissolution process, interfering with the reduction in the ions to be measured on
the electrode and suppressing the current value. Thus, 150 s was selected as the preferred
enrichment time due to its highest signal response.

Scanning frequency is another important factor affecting the dissolution signal and the
scanning frequency affects the signal response of the ion to be measured by influencing the
input process of the voltage signal. To this end, the peak current values of Pb2+ dissolved at
four scanning frequencies (25 Hz, 50 Hz, 100 Hz, 125 Hz) were examined sequentially at an
enrichment time of 150 s. Figure 3b shows the dissolution peak current values at the four
scanning frequencies. In Figure 3b, it can be seen that the signal response exhibits a similar
trend of enhancement followed by decay with the increase in the scanning frequency, and
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the maximum value is obtained at 50 Hz. A low scan frequency leads to a poor signal
response (25 Hz). In this case, the interaction efficiency between the input voltage and the
ions to be measured was low, and it was difficult to oxidize the reduced heavy metal ions
by the reverse scan voltage, resulting in low dissolved peak current values. The signal
response enhanced with the increase in the scanning frequency and reached the optimum
at 50 Hz. The scanning frequency at this point could guarantee the full reduction and
oxidation of the ions to be measured and the peak current reached the maximum value.
Subsequently, the signal response slightly decreased with a further increase in the scanning
frequency to 100 and 125 Hz. This could have been due to the fact that the excessive
scanning frequency caused residual reduced metal substances on the electrode surface,
which suppressed the dissolved peak current value.
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In this way, an enrichment time of 150 s and a scanning frequency of 50 Hz were
selected as the optimized dissolution parameters for the following experiments.

3.3.2. Sensitivity Detection

The detection ability of electrodes is a unique performance indicator for evaluating
their adaptability to real water analysis. Drawing a standard curve is a reliable method
for obtaining the electrode sensitivity, detection limit, and linear range. The optimized
dissolution parameter combination was thus used to detect the concentration of Pb2+

in the solution with the gradient change, where the dissolution peak current value and
Pb2+ concentration were linearly fitted. Figure 4a shows the dissolution curves of the
BDD electrode for the five Pb2+ concentrations. In Figure 4a, the dissolution peak current
value gradually increases with the increase in the concentration and the dissolution peak
potential value has no obvious drift. Figure 4b shows the linear fitting curve between the
Pb2+ concentration and its dissolution peak current value. As shown in Figure 4b, the
concentration of Pb2+ maintains a linear relationship with the dissolution peak current
in the range of 5–30 ppb, and the linear correlation (R2) of the fitting curve is as high
as 0.994. The standard curve equation is y = 1.45x − 3.64 and the electrode sensitivity
is 1.45 µA L µg−1 cm−2, reflected by the slope of the standard curve. The electrode LoD
(3N/S) is further calculated as 2.62 ppb. The above results indicate that the prepared BDD
electrode can realize the sensitive detection of trace Pb2+ in water.

A comparative analysis was conducted to evaluate the detection performance of the
fabricated BDD electrodes with that of the relevant electrodes reported in the literatures, as
listed in Table 1. It can be seen in Table 1 that the BDD electrode exhibits a superior LoD in
a wider linear range compared with the other electrodes in the literatures. Consequently,
this comparative analysis demonstrates that the BDD electrode may be applicable for
determining trace Pb2+ in actual water.
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Figure 4. Detection performance of BDD for Pb2+. (a) Dissolution curves of five Pb2+ concentrations;
(b) Linear fitting curve between Pb2+ concentration and dissolution peak current; (c) Dissolution
peak current before and after addition of interfering ions.

Table 1. Performance comparison of the BDD electrode with the other electrodes.

Electrode Heavy Mental LoD Ref.

BiF4-CPE Cd2+, Pb2+ 54 and 93 ppb [18]
CNTsNafion-/CPE Cd2+, Pb2+ 19.6 and 11.9 ppb [19]

HgSPE Pb2+ 8.9 ppb [20]
BiRDE Cd2+, Pb2+ 5.64 and 5.85 ppb [21]
pBDD Pb2+ 3.6 ppb [22]
BDD Pb2+ 2.62 ppb This work

3.3.3. Anti-Interference Ability

The complex components of the actual body of water are a hindrance to the BDD
electrode for its practical application, and good anti-interference ability can guarantee
the electrode will conduct highly selective analyses to cope with the complex detection
environment. Cd2+, Cu2+, and Zn2+ were added to the solution system to be measured
for electrochemical analysis, and the anti-interference ability was evaluated by recording
the changes in the peak current values of the dissolved Pb2+. Cd2+, Cu2+, and Zn2+ were
added at the same concentration as Pb2+, all at 30 ppb. Figure 4c shows the dissolved
peak current values of the pure Pb2+ solution and the mixed solutions with the addition
of Cd2+, Cu2+, and Zn2+. As shown in Figure 4c, the pure Pb2+ solution has the highest
signal intensity, and the dissolution signal of Pb2+ does not change significantly after the
sequential addition of Cd2+, Cu2+, and Zn2+, and only a slight attenuation occurs. This
result clearly illustrates the good anti-interference ability of the BDD electrode and provides
direct evidence for its application potential in real water bodies of a wide range.

Complex components can affect the detection performance of a BDD electrode in
actual drinking water. Many researchers have made numerous efforts to explore the effects
of various components and their interactions in recent decades. The components can be
divided into three types, i.e., ions (heavy metals, transition metals, and counter ions);
inorganic components; and organic components. As for the ions, the impact of heavy metal
ions plays a leading role in the anti-interference ability and is described above. Apart
from transition metals, water can also contain corresponding counter ions such as sulfate
ions, sulfite ions, chloride ions, nitrate ions, nitrite ions, hydroxyl groups, etc. [23]. The
inorganic components include carbon monoxide and carbon dioxide, oxygen, industrial
dust, etc. [24]. The organic components include amines, mercaptans, phenols, arenes,
halogen-containing organic substances, etc. [25]. The presence of the components can affect
the detection process and results and their effects can vary from case to case. Consequently,
the complexity of the components, their interactions, and the uncertainty of unknown
structures are related to the electrode’s applications.
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4. Conclusions

In this work, a BDD film electrode was developed to detect trace amounts of Pb2+ in
water. Based on a systematical investigation of the microstructural and electrochemical
performance, the dissolution parameters of the BDD electrode were optimized, and heavy
metal detection of the electrode was also evaluated. The main conclusions are (1) the
diamond grains were arranged and submerged on the BDD electrode surface and featured a
high phase quality; (2) the electrode had a wide potential window (2.2 V), a low background
current, and a large electrochemical active area (4.38 cm2), and the low charge transfer
resistance (Rct = 6.54ω) could promote the dissolution reaction process of Pb2+; and (3) the
electrode showed excellent selectivity for Pb2+ of 1.45 µA L µg−1 cm−2 in a linear range of
5–30 ppb and a low detection limit of 2.62 ppb. The BDD electrode developed in this work
is expected to achieve the stable and reliable monitoring of Pb2+ content in drinking water.
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