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Abstract: In order to investigate the effect of Si content on the microstructures and properties of direc-
tionally solidified (DS) Fe-B alloy, a scanning electron microscope (SEM) with an energy dispersive
spectrum (EDS), and X-ray diffraction have been employed to investigate the as-cast microstructures
of DS Fe-B alloy. The results show that Si can strongly refine the columnar microstructures of the
DS Fe-B alloy, and the columnar grain thickness of the oriented Fe2B is reduced with the increase
of Si addition. In addition, Si is mainly distributed in the ferrite matrix, almost does not dissolve in
boride, and seems to segregate in the center of the columnar ferrite to cause a strong solid solution
strengthening and refinement effect on the matrix, thus raising the microhardness of the matrix and
bulk hardness of the DS Fe-B alloy.

Keywords: directionally solidified Fe-B alloy; microstructure; solid solution strengthening; silicon

1. Introduction

In many high-temperature manufacturing fields, the rollers and tools acting as forming
or molding equipment are of importance in the production of parts and components.
However, the corrosion and wear of mechanical equipment can cause great economic losses.
Therefore, in order to reduce these losses, the research of many excellent wear-resistant
and corrosion-resistant materials has been given high priority in the field of materials
science in recent years [1–3]. It is very important to develop new materials with low cost
and outstanding wear resistance for industrial applications [4]. High-speed steel, such
as M2 high-speed steel, has excellent hardness, wear resistance, and high temperature
performance, and is widely used in high-speed machining and cutting operations [5–8].
However, high-speed steel rolls contain a large amount of expensive alloying elements such
as tungsten, molybdenum, cobalt, vanadium, and niobium, which increases the production
cost and causes the application to be greatly limited [5,9,10].

Currently, boron is introduced into alloys as a new alloying method to form hard
phases in order to develop a new type of wear-resistant and fatigue-resistant high-speed
steel roll [11–14]. The Fe-B alloy possesses high hardness and wear resistance owing to the
alloyed borides with improved performances [15]. Nowdays, the improvement of Fe-B
alloy in wear resistance mainly depends on the unique microstructure of Fe-B-C alloy as a
new tool steel, and its property can be effectively and well controlled by B and C contents
to obtain suitable and desired properties [16–20]. In addition, the researchers found that
adding boron can also improve the wear resistance of other alloys such as ductile iron,
high-chromium cast iron, and high-strength steels [4,21–25].
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At present, the role of Si in high-speed steel has attracted more attention. Pan et al.,
found that with the increase of Si, the content of M2C carbides in the microstructures of
the steels decreased sharply, and the amount of M6C carbides increased rapidly [26]. The
addition of only small quantities of Si can alter the microstructure and carbide types in
steels, leading to significant enhancement in the mechanical properties of the material [27].
Bhadeshia and Cai et al. studied the role of Si in silicon steel and austenitic stainless steel,
which indicates that Si can promote segregation of other alloying elements, which in turn
increases material strength [28,29]. From the discussions mentioned above, it can be seen
that Si plays a crucial role in determining the microstructures and overall properties of
materials. Furthermore, the orientation and size of the hard phases in cast irons can strongly
determine the mechanical and wear-reisitant properties of the materials, which may depend
on the alloying elements and solidification rates to refine the microstructures [30,31]. Liu
et al. investigated the effect of Si on the corrosion resistance of DS Fe-B alloy in static liquid
zinc, and found that Si improves the corrosion resistance to liquid zinc [32]. Prince Setia
et al. found that ~4 wt.% Si addition into stainless steel can give rise to phase transformation
from a single-phase austennite to duplex microstructure of ferrite and austenite owing to
the ferrite stabilizer effect of Si, e.g., the increase in the activity of carbon and solid solution
strengthening of the Si addition [27].

However, there is little research on the influence of Si addition on the microstructure
and properties in the directionally solidified (DS) Fe-B alloy. Additionally, the influence
mechanism and refinement of Si on the DS Fe-B alloy is still unclear. Therefore, in the
present work, the as-cast DS Fe-B alloy with various Si contents is investigated and dis-
cussed to further reveal the effect of Si on the structures and properties of DS Fe-B alloy.

2. Materials and Methods
2.1. Sample Preparation

The chemical composition of the investigated DS Fe-B alloy containing Si is listed in
Table 1. The four samples with different Si contents were denoted as A1, A2, A3, and A4
samples of DS Fe-B alloy. The Fe-B alloy were prepared in a 10-kg intermediate frequency
induction melting furnace (Xi’an Yinhai Electric Furance Co., Ltd., Xi’an, China). Firstly,
the pure iron and pig iron were melted, and then, ferrochromium and ferrosilicon were
added into the furnace in sequence. When all the alloys were melted in the furnace, the
preheated raw ferroboron was added after deoxidizing it with a little pure aluminum. Once
the alloy was melted at 1450–1480 ◦C, it was poured into the specially designed mold to
solidify in one-way heat dissipation (i.e., opposite to the direction of crystal growth for the
Fe-B alloy), obtaining some Y-block ingots of the DS Fe-B alloy, as shown in Figure 1a. The
directional region near the chilled copper mold with the cooling of circulating water was
selected for analysis, where the sample with a solidification rate of approximately 15 ◦C/s
was measured by a thermocouple [33]. The various morphologies of the oriented Fe2B (e.g.,
black areas) and α-Fe (e.g., white areas) in the longitudinal and transverse sections of the
DS Fe-B alloy are schematically illustrated in Figure 1b,c (i.e., two-phase microstructure
of α-Fe and Fe2B in the DS Fe-B alloy), which indicates that the (002) orientation of Fe2B
along the longitudinal section is parallel to the growth direction of Fe2B crystal, whereas
the transverse section of the columanr Fe2B (i.e., Fe2B (002) crystal plane) is perpendicular
to the Fe2B growth direction (i.e., opposite to the heat dissipation) [34,35].

Table 1. Chemical compositions of cast DS Fe-B alloy by spark emission spectrometer (wt.%).

Samples B Cr Si C Fe

A1 3.51 0.52 0.00 0.11 Bal
A2 3.51 0.50 1.50 0.10 Bal
A3 3.49 0.50 2.50 0.12 Bal
A4 3.50 0.51 3.50 0.11 Bal



Materials 2022, 15, 5937 3 of 10
Materials 2022, 15, x FOR PEER REVIEW 3 of 11 
 

 

 
Figure 1. The schematic maps of directional solidification device and orientation plane of DS Fe-B 
alloy: (a) schematic device of DS (directionally solidified) cast Fe-B alloy (solidification rate of 
about 15 °C/s measured by a thermocouple), (b) the schematical morphology of the longitudinal 
section in DS Fe-B alloy, (c) the schematical morphology of the transverse section in DS Fe-B alloy. 

Table 1. Chemical compositions of cast DS Fe-B alloy by spark emission spectrometer (wt.%). 

Samples B Cr Si C Fe 
A1 3.51 0.52 0.00 0.11 Bal 
A2 3.51 0.50 1.50 0.10 Bal 
A3 3.49 0.50 2.50 0.12 Bal 
A4 3.50 0.51 3.50 0.11 Bal 

2.2. Characterization 
The cast samples of the DS Fe-B alloy with the dimension of 15 × 10 × 10 mm3 were 

cut from ingots by wire electrode cutting machine. All the tested samples were ground 
and polished, and then etched by 4 vol% (volume ratio) nitrate alcohol solution to 
observe the microstructures. The as-cast microstructures were observed by scanning 
electron microscopy (SEM, VEGAII, XMUINCA, TESCAN, Brno, Czech Republic) with 
an energy dispersive spectrum (EDS), and an X-ray diffraction (XRD, D/Max-2400X, 
Rigaku Corporation, Tokyo, Japan). The XRD was directly performed on the as-cast 
specimens using Cu-Kα radiation coupled with continuous scanning at 40 kV and 200 
mA as an X-ray source. The specimens for XRD were scanned in the angle 2θ, ranging 
from 20° to 100°, with a step size of 0.02° and a collection time of 10 s. The Image-pro 
plus software (Image-Pro Plus 6.0, Media Cybernetics, Maryland, USA) was used to 
measure the average thickness of the columnar borides (i.e., dFe2B) from the one edge to 
another. The bulk hardness of as-cast structure was measured on an HR-150A Rockwell 
hardness tester (Beijing Shidai Shangfeng Technology Co., Ltd., Beijing, China). The 
microhardness of boride and matrix in the DS Fe-B alloy was measured by using an 
HXD-type 1000 Vickers-hardness tester with a load of 100 gf. 

3. Results and Discussion 
3.1. As-Cast Microstructure of DS Fe-B Alloy with Various Si Additions 

Figure 2 shows the morphologies of the as-cast DS Fe-B alloy with different Si 
contents. From Figure 2a–d, it can be clearly seen that the microstructures of the four 
Si-containing specimens show good orientation effects, and it is apparent that micro-
structures consist of the oriented Fe2B phase with a typical faceted crystal growth as an 
intermetallic compound (e.g., where the growth direction of columnar boride opposite 

Figure 1. The schematic maps of directional solidification device and orientation plane of DS Fe-B
alloy: (a) schematic device of DS (directionally solidified) cast Fe-B alloy (solidification rate of about
15 ◦C/s measured by a thermocouple), (b) the schematical morphology of the longitudinal section in
DS Fe-B alloy, (c) the schematical morphology of the transverse section in DS Fe-B alloy.

2.2. Characterization

The cast samples of the DS Fe-B alloy with the dimension of 15 × 10 × 10 mm3 were cut
from ingots by wire electrode cutting machine. All the tested samples were ground and polished,
and then etched by 4 vol% (volume ratio) nitrate alcohol solution to observe the microstructures.
The as-cast microstructures were observed by scanning electron microscopy (SEM, VEGAII,
XMUINCA, TESCAN, Brno, Czech Republic) with an energy dispersive spectrum (EDS), and
an X-ray diffraction (XRD, D/Max-2400X, Rigaku Corporation, Tokyo, Japan). The XRD was
directly performed on the as-cast specimens using Cu-Kα radiation coupled with continuous
scanning at 40 kV and 200 mA as an X-ray source. The specimens for XRD were scanned in the
angle 2θ, ranging from 20◦ to 100◦, with a step size of 0.02◦ and a collection time of 10 s. The
Image-pro plus software (Image-Pro Plus 6.0, Media Cybernetics, Maryland, USA) was used to
measure the average thickness of the columnar borides (i.e., dFe2B) from the one edge to another.
The bulk hardness of as-cast structure was measured on an HR-150A Rockwell hardness tester
(Beijing Shidai Shangfeng Technology Co., Ltd., Beijing, China). The microhardness of boride
and matrix in the DS Fe-B alloy was measured by using an HXD-type 1000 Vickers-hardness
tester with a load of 100 gf.

3. Results and Discussion
3.1. As-Cast Microstructure of DS Fe-B Alloy with Various Si Additions

Figure 2 shows the morphologies of the as-cast DS Fe-B alloy with different Si contents.
From Figure 2a–d, it can be clearly seen that the microstructures of the four Si-containing
specimens show good orientation effects, and it is apparent that microstructures consist of
the oriented Fe2B phase with a typical faceted crystal growth as an intermetallic compound
(e.g., where the growth direction of columnar boride opposite to the heat dissipation
direction under the directional solidification condition) and α-Fe matrix, i.e., a typical
two-phase microstructure with a ductile phase and a hard phase [34,35]. The columnar
gray Fe2B borides are arranged in long rods, where the morphology of the oriented Fe2B
is greatly displayed as straight and tall. In addition, the gray-white α-Fe matrix as the
continuous toughening or ductile phase is distributed among the interlayer of the rod-like
Fe2B, which reveals the formation of the dual-phase oriented microstructures of the DS
Fe-B alloys. Especially, the exceeding regular laminated structure of Fe2B and α-Fe in DS
Fe-B alloy are greatly refined and dense with the increase of Si content [27], and the forked
growth phenomenon of oriented Fe2B intermetallic compound is reduced with the addition
of Si, which infers that Si may promote the strong directional growth of Fe2B.
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Figure 2. SE morphologies of as-cast DS Fe-B alloy: (a) A1, (b) A2, (c) A3, (d) A4.

Figure 3 shows the relationship between average thickness of the columnar Fe2B grain
(dFe2B) and Si contents. From Figure 3a, as schematically defined with the double-headed
arrow in it, the average thickness of the columnar borides dFe2B decreases rapildly when the
variation in Si content in Fe-B alloy increases from 0.00 wt.% to 2.50 wt.%, and decreases
slowly after the Si content exceeds 2.50 wt.%. It can be seen that with the increase of Si content,
the oriented eutectic boride becomes more thinner and smaller, which suggests that Si has a
dramatically refining effect on columnar hard-phase Fe2B in the DS Fe-B alloy [27,28].
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3.2. XRD Analysis and Hardness Tests of As-Cast DS Fe-B Alloy

Figure 4 shows the XRD patterns of the as-cast DS Fe-B alloy with different Si contents.
It can be seen that the as-cast microstructures of the longitudinal section of DS Fe-B
alloy are mainly composed of Fe2B (36-1332), α-Fe (06-0696) and/or some Fe-Cr (34-0396)
solution [34–36], whereas the peaks of the α-Fe matrix gradually move to the right when the
Si content exceeds 1.5 wt.% in the DS Fe-B alloy (Figure 4b). This indicates that the ferrite
matrix in the as-cast DS Fe-B is gradually transformed to a solid solution of ferrite, owing to
the dissolution of the small atomic radius Si into the matrix. Obviously, on one hand, Si may
promote the solid solution of Cr atoms in the matrix, resulting in more (Fe-Cr) substitutional
solid solutions, and on the other hand, Si is likely in favour of forming the depletion or
segregation at the ferrite/boride boundaries to refine the columnar structure of the DS Fe-B
alloy, which may be attribute to the constitutional supercooling effect and the outcome of
Cr substitutional solid solution caused by the role of Si [27–29]. Actually, phase boundary
segregation and matrix solution of Si may also adjust the Cr in the microstructures of Fe2B
and α-Fe to promote the replacement of Fe atoms by Cr atoms in borides, likely forming
some Cr-rich borides, as the changes of the boride peaks in XRD [37]. Obviously, the
detected peaks of the transverse section in the DS Fe-B alloy comprise the only (002) crystal
plane of the Fe2B and very strong (110) crystal plane of the α-Fe and both of these peaks
are relatively strong (Figure 4c), whereas more peaks of Fe2B in the longitudial section
appear (Figure 4a).
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Figure 5 shows the bulk hardness of the as-cast DS Fe-B alloy and the micro hardness of
oriented Fe2B in transverse and longitudinal sections. From Figure 5a, it is clear that the bulk
hardness of the transverse and longitudinal sections showed a continually upward trend
when the Si content increases from 0.00 wt.% to 3.50 wt.%. Meanwhile, the macrohardness
of the transverse section in the DS Fe-B alloy is higher than that of the longitudinal section.
It means that Si addition can refine the sizes of the oriented Fe2B hard phase and matrix, and
also strongly promote the facet growth of Fe2B (002) crystal plane and refinement owing
to the Si segregation, which increases of the bulk hardness [27–29]. The microhardness of
the Fe2B hard phase in the longitudinal and transverse section is shown in Figure 5b, the
microhardness of the oriented Fe2B in the transverse and longitudinal section shows small
fluctuations, and the microhardness of the hard phase of Fe2B in the transverse section
has higher values than that in the longitudinal section, which actually indicates that the
higher bonding energies of Fe-Fe and Fe-B covalent bonds in Fe2B crystal and Si addition
may reduce the crystal defects and vacancies in Fe2B crystal to improve its microhardness.
Obviously, the (002) crystal plane of the Fe2B hard phase can withstand larger loads and
stain, which plays a main role in wear resistance in the transverse DS Fe-B alloy [5].
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3.3. Element Distribution of As-Cast DS Fe-B Alloy

Figures 6 and 7 shows the EDS mapping of A1 and A3 DS Fe-B alloy. As shown in
Figures 6b,c and 7b,c, it can be observed that the distribution of Fe and Cr in the as-cast
structure is uniform, whereas the Si and B is concentrated and obviously segregated. Clearly,
the Si mainly exists in the matrix whereas it does not appear in the Fe2B phase, as shown
in Figures 6 and 7. However, the boron can strongly segregate and enrich in the boride to
form the Fe2B hard phase during directional solidification process. Combined with the line
scanning analysis of Figure 8, it can be clearly known that Si is mainly distributed in the
ferrite matrix, and almost insoluble in boride. In addition, there is a gradient distribution of
Si at the Fe/Fe2B interface. Meanwhile, the distribution of Cr in ferrite and Fe2B hard phase
is relatively uniform, and more concentration of Cr exists in the boride. Figure 9 shows the
compositional profiles of Si in matrix between neighboring borides (i.e., the concentration
of Si in the matrix), and it can be seen that the distribution of Si follows a parabolic law, and
it has the highest Si content in the middle of the ferrite matrix as a peak value, and a little Si
content at the phase boundary of the ferrite and borides. As the Si content increases, more
Si is enriched and distributed in the ferrite. This also further illustrates the strong solid
solution effect of Si in the ferrite matrix and refinement on the dendrite metal matrix [29],
which also further refine the interdendrite eutectic structure during the DS process largely
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beause of the constitutional supercooling and inhibiting growth of Si and Cr on borides in
some crystal orientations (e.g., inhibiting growth on the possible crystal orientation of Fe2B
virtical to the (002) orientation).
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4. Conclusions

In present study, as-cast DS Fe-B alloy with various Si contents were designed and
fabricated. The as-cast DS Fe-B alloy shows good orientation effects. The main conclusions
can be summarized as follows:

(1). The Si-containing structures of the four components all show good orientation effects,
and that the DS Fe-B alloy consists of a columnar Fe2B boride and α-Fe ferrite. The
columnar Fe2B borides display a preferential growth along the (002) orientation of
Fe2B, which makes the DS Fe-B alloy a dual-phase oriented microstructures.

(2). The columnar grain thickness of oriented Fe2B decreases sharply with the increase of Si
content, which is attributed to the segregation and refinement Si in the DS Fe-B alloy.

(3). The bulk hardness of the transverse and longitudinal section showed an upward
trend with the increase of Si content, whereas the microhardness of the oriented
Fe2B in the transverse section has little change, first increasing then decreasing in the
longitudinal section.

(4). The Si is mainly distributed in the ferrite matrix, and almost does not dissolve in
boride. As the Si content increases, more Si is segregated in the center of the columnar
ferrite distributed between the two columnar Fe2B borides, which results in the refine-
ment of the Fe2B hard phase and solid solution strengthening of the ferrite matrix.
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