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Abstract: The advancement in sustainable construction has stimulated wide-ranging investigation
of construction materials and practices globally. With exceptional thermal properties, fire resistance
performance, excellent strength, and outstanding durability, concrete is the utmost extensively utilized
construction material around the world. Taking into consideration the quantity of concrete necessary
for numerous constructions works, improving concrete sustainability would be an extremely attractive
potential. Lightweight foamed concrete (LFC) is tremendously permeable, and its mechanical
properties weaken with a growth in the volume of voids. Air-void segregation from solid cement
phases by means of aging, drainage, and merging of voids can trigger and reduce the stability and
consistency of the emitted pores, making the LFC less reliable for main utilization in load-bearing
components and structural elements. In turn, to augment LFC mechanical properties, the LFC
cementitious matrix can be adjusted by adding various nanoparticles. The influence of magnetite
nanoparticles (MNP) in LFC was not examined in the past; hence, there is some vagueness considering
the mechanism to which level the MNP can affect the LFC mechanical properties. Thus, the aim of
this study is to investigate the influences of MNP on the compressive, splitting tensile, and flexural
LFC of 1000 kg/m3 density. Six MNP weight fractions of 0.10%, 0.15%, 0.20%, 0.25%, 0.30%, and
0.35% were considered. The parameters accessed were compressive, splitting tensile and flexural
strengths. The correlation between strength parameters was established as well. The results indicated
that a 0.25% weight fraction of MNP gave the best performance in terms of compressive, flexural, and
splitting tensile strengths. The presence of MNP in the LFC matrix enhances the viscosity and yield
stress of the mixture as well as an augmented utilization of LFC cementitious binder content, which
can sustain the integrity of the wet networks hence preventing further amalgamation and aging of
the voids.

Keywords: lightweight foamed concrete; magnetite nanoparticles; compressive strength; flexural

1. Introduction

Rapid development has allowed the construction industry to continue thriving, but
the challenges associated with the management of construction turn gradually more se-
vere [1,2]. With the rising environmental challenges, it is vital that sustainable materials
are explored for a broader range of applications to offer practical options alongside con-
ventional materials. Additionally, with the fast expansion of the construction industry, the
production of cement has risen promptly [3]; natural resources, for instance, the river sand,
have plunged into scarcity [4]; and the use of energy and emissions of carbon dioxide have
skyrocketed [5,6]. Hence, viable green building materials are considered necessary in the
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construction industry as an option [7]. Among a variety of choices, the use of lightweight
foamed concrete (LFC) as building materials is deemed to be a prime approach. The ex-
tensive employment of LFC for roof insulation screed, load-bearing and non-load-bearing
walls, floor slabs, trench reinstatement, ground stabilization, void filling, bridge abutments,
and even a decorative panel has boosted the demand for cement production [8]. Due to
the growth in infrastructure developments, the urging for concrete will rise in the near
future [9]. With the ongoing development of housing and infrastructure projects, specifi-
cally the developing countries, the rate of utilization of cement and concrete is destined
to expand further [10]. It is anticipated that the world cement fabrication will grow to
about 4.8 billion tons per annum by the year 2040, causing an equal expansion in concrete
production [11].

LFC is a cellular concrete with entrapped air by means of a suitable surfactant (foaming
agent) that has increasingly become extensive because of its unique attributes such as wide
ranges of density, free from coarse aggregates, and outstanding thermal performance [12].
LFC is generally self-leveling and self-compacting, and it can be pumped. It is made
through blending, molding, maintaining, and hardening processes. Compared with other
types of concrete, LFC contains a considerably higher pore volume, up to 80%, which
substantially influences its insulation properties. The LFC cellular structure is created by
combining suitable foaming agents that can be either protein or synthetic based [13]. The
manufacturing of LFC is nontoxic, and the product does not produce toxic gases when it
is exposed to fire. By properly controlling the foaming agent amount, LFC with densities
ranging from 550 kg/m3 to 1850 kg/m3 can be achieved [14]. Additionally, the reduction
in structural dead load due to its reduced density can aid in reining in the construction
activity. As a reduced content of aggregate is used in the production of LFC, the total
quantity of binder materials is usually greater than those used in normal concrete [15]. LFC
is appropriate for constructing partition panels as filling materials and has been employed
widely in the construction industry these days [16]. With the rapid development of the
industrialized building system, it has a massive potential to adopt LFC for manufacturing
partition walls for buildings. One of the drawbacks of the deployment of LFC in building
construction is the low strength due to its porous matrix [17]. When LFC is used to precast
building components, it needs a longer time to achieve the anticipated compressive strength
compared to normal concrete [18].

To improve the stability and firmness of the created air bubbles, former investigations
by Hou et al. [19] and Huang et al. [20] have demonstrated that growth in LFC viscosity by
the inclusion of nano-size raw materials may keep the reliability of the wet networks in the
cementitious composite. Lots of study works were carried out to enhance the cementitious
matrix in LFC by augmenting the inventions of cement paste, such as the inclusion of
natural and synthetic fibers, resins, fuel ash, and other types of additives [21]. Augmented
void shape, uniformly dispersed air voids and their sizes, enhanced permeability [22], and
reduced void sizes are all good approaches to enhancing the properties of LFC [23].

Nanotechnology incorporates exploitation of the structure at the nanoscale to create
an invention of multifunctional and customized cementitious composites with outstanding
durability and mechanical properties. Prospective unique properties of these materials
comprise high ductileness, ability to control cracks formation, self-healing, minimal electri-
cal resistance, self-detection, and self-cleaning. Nanoparticles are those with at least one
dimension of less than 100 nm [23]. These days, nanoparticles have been receiving consider-
ation and have been employed in many areas to produce advanced building materials with
innovative purposes due to their exclusive chemical, durability, and physical properties.
Nanoparticles can perform as a very dynamic artificial pozzolanic material to augment the
performance of cement-based materials. The inclusion of nanoparticles in concrete may
significantly enhance their compressive, flexural, and tensile strength strengths. Nanoparti-
cles can serve as diverse nuclei for the cement paste, further speeding up the hydration of
cement hydration owing to their superior reactivity as nano-fortification, densifying the
concrete microstructure [24].
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The application of nanoparticles in concrete is one of the few evolving areas. Titanium
dioxide (TiO2), iron oxide (Fe3O4), aluminum oxide (Al2O3), carbon nanotubes, zirconium
dioxide (ZrO2), and carbon nanofibers are the most frequently used nanoparticles in
research [25]. These particles have shown a remarkable impact on the hydration of concrete
due to a nucleation process in the cement matrix. They behave as a source for the hydration
of calcium silicate hydrate [26]. Higher the rate of hydration, earlier is the strength gained
in concrete. Same materials perform inversely with the reduction in the size of particles.
Research has demonstrated that the addition of chemically inert nanoparticles, such as
titanium dioxide (TiO2) and magnetite (Fe3O4), speeds up the early hydration by providing
supplementary nucleation sites, higher rate peaks, and greater total heat of hydration [27].
Nanoparticles govern the atomic level matters, which deal with an atom size that is less
than 100 nm [28,29].

2. Materials
2.1. Ordinary Portland Cement (OPC)

For this research, OPC with the label of CEM I 52.5 R, with a surface area and specific
gravity of 3325 cm2/g and 3.09 correspondingly, has been employed as a binder to formulate
the LFC. Table 1 reveals the physico-chemical properties of OPC utilized in this research.
This OPC follows BS12-1996 [30].

Table 1. Physico-chemical properties of OPC.

Elements Percentage (%)

CaO 65.15
SiO2 15.81

Al2O3 4.03
MgO 1.23
SO3 3.85

Fe2O3 6.87
Na2O 0.49

Insoluble residue 1.22
LOI 1.35

Setting time (Initial/Final) 170/215
Specific surface area (cm2/g) 3325

Specific gravity 3.09
28 days Compressive Strength (N/mm2) 51.8

2.2. Fine Sand

Fine river sand with additional sieving to eliminate particles larger than 2.36 mm
was utilized in the LFC mix to enhance the LFC flowability and stability as described in
BS12620-2013 [31], a 60–90% passage through a sieve of 600-micron. The fine sand was
provided by a local distributor. Figure 1 indicates the sieve analysis chart of fine sand
employed in this research.
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Figure 1. Fine sand particle size distribution.

2.3. Surfactant

A protein foaming surfactant called Noraite PA1 was employed in this laboratory-
based appraisal. The properties of this surfactant are presented in Table 2. The protein
foaming surfactant was diluted with water at a proportion of 1:34 by volume. Next, a
foam maker was utilized along with the air compressor to generate stable foams. The air
pressure was maintained between 400 and 450 kPa, which was employed to create stable
foam density between 70 and 80 g/L.

Table 2. Properties of synthetic-based surfactant.

Elements Properties

Density (g/cm3) 1.18
Appearance Light brown

pH 6.2
Specific gravity 1.09
Dilution ratio 1:34
Molar mass 265 g/mol

2.4. Water

The laboratory works utilized clean tap water, which was free from organic elements or
detritus. The water-cement proportion was kept constant at 0.45 because it gave reasonable
workability. The tap water was utilized to make the mortar slurry, LFC mixing, and curing
purposes.

2.5. Magnetite Nanoparticles

Magnetite (Fe3O4) nanoparticles with grain sizes of 40–60 nm were employed, which
had a purity of more than 99% and were supplied by DRN Technologies Sdn Bhd. There
were 6 different weight fractions of MNP were employed which were 0.10%, 0.15%, 0.20%,
0.25%, 0.30% and 0.35%. Figure 2 illustrates the X-ray diffraction patterns for magnetite
nanoparticles (MNP) used in this study. Six maximum peaks at 2θ of 31◦, 37◦, 44◦, 54◦,
58◦, and 64◦ with narrow and well-defined peaks can be attributed to the spacing of
crystal planes of the typical cubic MNP. From the diffraction patterns, a sequence of
characteristic peaks (215), (306), (396), (418), (505), and (437) were detected, which is similar
to the typical MNP diffraction spectrum (JCPDS file no: 19-0629) which acknowledged the
crystallographic system of cubic structure [32]. A vast disparity can be obviously noticed in
that the XRD patterns of maghemite comprise many peaks, unlike magnetite, which only
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entails a few peaks. Figure 3 demonstrates the morphology of pure MNP utilized in this
study.
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Figure 3. Morphology of pure MNP.

Figure 4 demonstrates the elemental composition of MNP, which was determined via
Energy Dispersive Spectrometry (EDS). Table 3 summarizes the elemental compositions
of MNP. The existence of an extreme peak of Fe confirms the formation of magnetite
nanoparticles.

Table 3. Elemental compositions of MNP.

Elements MNP Weight (%)

Iron 65.85
Carbon 28.22
Oxygen 5.93

Next, the FTIR spectroscopy procedure was executed to determine the functionaliza-
tion of the MNP. Table 4 demonstrates the FTIR peaks of MNP. It can be seen that a thick
peak around 498 cm−1 reflects the ferrous oxide (Fe-O) bond absorption. This validates
the existence of the magnetic core, and therefore, it is more prominent in the bare MNP.
The band around 2897 cm−1 is designated for stretching and vibration of –CH2 groups,
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signifying the existence of oleic acid. Hence, the FTIR results verify the functionalization
of the MNP. The band at about 1591 cm−1 signifies the stretching and vibration of the
H–C=O backbone. The absorption peak around 3389 cm−1 is discovered, which may be
originated from hydroxyls (OH) appearing in water and signaling the existence of the
polysaccharide shell.
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Table 4. FTIR peaks of MNP.

Types of Bond Wavenumber (cm−1) Remarks

OH stretching 3389
The presence of hydroxyls

(OH) in water and
polysaccharides shell

–CH2 stretching and vibration 2897 The presence of oleic acid

H–C=O stretching and
vibration 1591 Extending of H–C=O

backbone

Fe-O stretching 498 Ferrous oxide bond
absorption

3. Mix Design and Specimen Preparation

There were seven LFC mixtures of 1000 kg/m3 density were manufactured. The
MNP weight fractions utilized in this investigation was 0.10%, 0.15%, 0.20%, 0.25%, 0.30%,
and 0.35%. Sand-cement proportion of 1:1.5 was employed, while a 0.45 water-cement
proportion remained constant at 0.45 for the entire mixture. The mix design of LFC is
displayed in Table 5.

Table 5. LFC mix design.

Sample Code Dry Density
(kg/m3)

MNP Weight
Fraction (%)

MNP
(kg)

Cement
(kg)

Fine Sand
(kg)

Water
(kg)

C 1000 0.00 0.000 37.47 56.20 16.86
FC10 1000 0.10 0.114 37.47 56.20 16.86
FC15 1000 0.15 0.170 37.47 56.20 16.86
FC20 1000 0.20 0.227 37.47 56.20 16.86
FC25 1000 0.25 0.284 37.47 56.20 16.86
FC30 1000 0.30 0.341 37.47 56.20 16.86
FC35 1000 0.35 0.398 37.47 56.20 16.86
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4. Test Methods
4.1. Compression Test

The compression test was performed in conformity with BS-EN12390-3 [33] on a
100 × 100 × 100 mm cube. Figure 5 shows the schematic diagram of the compression
test setup. In each case, the results quoted are the average of three specimens. An axial
compressive load with a constant pace of 0.025 mm/s was employed on the LFC cubic
samples. The LFC compressive strength is established using the subsequent formula:

Compressive strength = P/A (1)

where

P = upper limit load incurred by the LFC sample (N)
A = LFC sample cross-sectional area (mm2).
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Figure 5. Schematic diagram of the compression test setup.

4.2. Flexural Test

The flexural test was executed conforming with BS EN 12390-5 [34] on a prism speci-
men with a size of 100 × 100 × 500 mm. Flexural strength tests for LFCs were performed
in triplicate, but only the average readings were stated. The test was accomplished with
center-point loading (Figure 6). A focused load, P in terms of a stroke at the constant rate
of 0.085 mm/s, was imposed at the mid-span. During this period, the force that instigated
fracture was concurrently observed. The flexural strength of the LFC prism specimen is
determined using the following equation.

Flexural strength = 3PL/2bd2 (2)

where

P = maximum load sustained by the LFC specimen (N)
L = span length (mm)
b = width of tested prism (mm)
d = depth of tested prism (mm).
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4.3. Splitting Tensile Test

The splitting tensile strength test in this research was accomplished in line with BS
EN 12390-6 [35]. A cylinder LFC sample of 100 mm in diameter and 200 mm in height was
employed for this test. Figure 7 indicates the schematic diagram of the splitting tensile
strength test. The splitting tensile strength is established using the following equation:

Splitting tensile strength = 2P/ΠDL (3)

where

P = maximum load sustained by the LFC sample (N)
D = diameter of test cylinder(mm)
L = length of the test cylinder (mm).
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5. Results and Discussion
5.1. Compressive Strength

Figure 8 illustrates the compressive strengths of all the LFC specimens at the ages
of 7, 28, and 56 days. Based on Figure 8, it is obvious that the presence of MNP in LFC
had increased the compressive strength for entire mixes and testing ages compared to
specimen C (control sample). The optimal compressive strength was obtained with the
presence of 0.25% MNP in the LFC mix (specimen FC25), which gave an improvement of
64.0%, 57.7%, and 54.6% at curing ages 7, 28, and 56 days correspondingly in comparison
to the control sample (Specimen C). There were two reasons that may be responsible for the
encouraging impact of MNP inclusion on the compressive strength of the LFC. Primarily,
it is recognized that the MNP fine unit size in LFC cementitious matrix can substantially
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alter the kinetics of hydration of the matrix [36]. Thus, MNP fine particle size will play
an important role in accelerating the cement hydration process due to their high level of
activity. They provide significant reactive surfaces, which may act as a nucleation site, thus
stimulating the nucleation responses of hydration phases nuclei on their surface. As the
accelerating effects of these particles are produced by surface reactions, the surface area
or the size of the particles, respectively, are the main factors for the particle’s effectiveness
in controlling the cement hydration kinetics. The other possibility to quicken cement
hydration is the addition of MNP, which themselves are the nuclei of hydration phases
such as C-S-H seeds. In this case, the composition of the nuclei has to be the same as
the demanded hydration phase. By the addition of these particles, the time-consuming
nucleation reactions, which are necessary for further crystal growth, can be prevented,
and the inactive period of cement hydration is reduced. As the C-S-H growth during the
acceleration period is autocatalytic, the formation of C-S-H in this period should be boosted
considerably due to the presence of the added C-S-H particles.
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Figure 9 shows the morphology of LFC and MNP–LFC composites. The inclusion
of MNP had an effective role in creating additional interlocked CSHs needles, which
strengthened the microstructure of LFC. This was explained by Amin et al. [37], where
a small volume fraction of nanoparticles of 0.3% was employed. While the hydration
process occurs, the hydrate products dispersed and encircled the MNP, behaving as the
grain. Secondly, owing to their fine size, the MNP fills the voids, leading to the further
compacting of the LFC microstructure [38]. If the volume fraction of the nanoparticles
is optimal, the crystallization will be regulated, and the expansion of calcium hydroxide
crystals will be inhibited by the MNP. Khoshakhlagh et al. [39] performed a study on high-
strength concrete to observe the consequences of Fe2O3 on the strength and permeability
properties. The research implemented numerous tests such as compression, flexural,
and water permeability tests. It was shown that the compressive strength and water
permeability expanded with the presence of 4% Fe2O3 nanoparticles.
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Nevertheless, when the volume fraction of magnetite nanoparticles surpasses the
necessary limit, calcium hydroxide crystals cannot rise up sufficiently due to the restricted
space in the cementitious matrix. The reduced proportion of the crystals to the fortifying
gel leads to an expansion of creep and shrinkage in the LFC cementitious matrix. Accord-
ingly, the pore form of the LFC matrix is loose [40]. These two main reasons led to the
enhancement of the LFC microstructure by decreasing the number of voids, expanding the
connection between the fine filler (sand) and the cement matrix, and boosting the density of
the LFC. The decrease in compressive strength with a further increase in the MNP weight
fractions from 0.30% to 0.35% was ascribed to the accumulation of MNP at higher weight
fractions which had an adverse effect on the hydration process and the bonding strength of
LFC. Overall, the inclusion of MNP increases the pore structure of LFC [41].

5.2. Flexural Strength

Figure 10 validates the flexural strengths of all the LFC specimens at the ages of 7, 28,
and 56 days. According to Figure 10, it can be seen that the existence of MNP in LFC had
enhanced the flexural strength for entire mixes and testing ages compared to specimen
C (control sample). The optimal flexural strength was accomplished with the presence of
0.25% MNP in the LFC mix (specimen FC25), which gave an enhancement of 60.3%, 55.2%,
and 53.3% at curing ages 7, 28, and 56 days, respectively, in comparison to the control
sample. The greater flexural strength attained with the inclusion of MNP was due to the
prompt utilization of crystalline calcium hydroxide, which immediately arises throughout
the hydration of cement, specifically at an early age because of the high reactivity of MNP.

Subsequently, the hydration of cement is augmented, and greater volumes of reaction
products are created [42]. Likewise, MNP recuperates the LFC packing density, leading to a
decreased volume of greater pores. Additionally, the enhancement in LFC flexural strength
was due to further hydration of cement as MNP has high reactivity by behaving as a core
for cement segments. Moreover, it also acts as a nano-fortification element and accordingly
densifies the LFC microstructure and interferential transition zone, reducing the porosity
and filling the voids to boost the LFC flexural strength.

Nazari et al. [43] studied the impact of the integration of ferric oxide (Fe2O3) nanopar-
ticles up to a maximum replacement of 2% on flexural and tensile strengths of concrete, and
they found that nano-Fe2O3 particle’s presence in concrete had significantly led to higher
flexural strength and reduced setting time compared to the control specimen. Additionally,
the flexural strength improved with a rise in the volume fraction of Fe2O3 nanoparticles.
Fe2O3 nanoparticles reduce the total porosity of the concrete, alter the pore structure of the
cement matrix, and substantially diminish the permeability of LFC [44].

As discussed in the previous section, the improvement in the flexural strength of LFC
with an increase in the MNP weight fraction up to 0.25% was because of the reinforcement
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effect of MNP together with their uniform spreading in the cement matrix, which results in
a more compact microstructure compared to that of control specimen. However, at an MNP
weight fraction higher than 0.25%, the magnetite nanoparticles were agglomerated with
inadequate distribution, which adversely impacted the bonding strength of the composite.
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5.3. Splitting Tensile Strength

Figure 11 demonstrates the splitting tensile strengths of all the LFC at the ages of 7,
28, and 56 days. It was discovered that the splitting tensile strength of LFC improved with
augmented weight fraction of MNP, as seen in Figure 10, signifying that the existence of
nanoparticles in a cementitious matrix of LFC plays a vital role in accelerating the process
of hydration in comparison to control LFC samples. These atoms are extremely active and
volatile, causing a speedier hydration process. The optimal splitting tensile strength was
accomplished with the presence of 0.25% MNP in the LFC mix (specimen FC25), which gave
an enhancement of 51.4%, 52.5%, and 51.1% at curing ages 7, 28, and 56 days, respectively,
in comparison to the control sample.

The remarkably small surface area of MNP permeates the cavities in the hydrated
cementitious matrix, which amasses to a greater density and consequently results in greater
splitting tensile strength of LFC. The mechanism by which the MNP addition in LFC
improves the pore structure of cement matrix was evenly scattered in LFC, and each
particle is enclosed in a cube pattern; thus, the gap between MNP can be revealed [45].
Once the hydration commences, hydrate products are disseminated and encase MNP as
kernels.

If the MNP content and the distance between them are appropriate, the crystallization
will be regulated by impeding the expansion of calcium hydroxide crystals by MNP. Subse-
quently, the pore structure of the LFC is obviously enhanced, such as the LFC containing
an MNP of 0.25% by weight fraction. The decrease in splitting tensile strength by adding
more than 0.25% weight fraction of MNP was because the quantity of MNP appearing in
LFC is greater than the quantity necessary to merge with the cementitious matrix [46,47].
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5.4. Performance Index (PI)

The LFC compressive strength and density have a correlated relationship. Theoret-
ically, the greater the density of LFC, the greater will be the compressive strength. The
density of LFC for this research was controlled at 1000 kg/m3. As the density for each
specimen was slightly varied with the addition of MNP, the performance index of LFC
was evaluated to boost the accuracy of the results accomplished through the laboratory
investigation. Figure 12 shows the PI calculated and charted. A similar trend was acquired
by the PI, in which the PI is precisely comparative to the specimen’s curing age. The highest
56-day PI was achieved by LFC blended with a 0.25% weight fraction of MNP, which is
4.98 N/mm2 per 1000 kg/m3. It is acknowledged that the fine particle of MNP can substan-
tially modify the hydration process of mortar slurry.
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Due to their stiffer electrostatic forces and outstanding specific surface area, a quicker
setting time and hardening of the LFC composites can be achieved. Hence, MNP fine
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particle size will play a major role in accelerating cement hydration owing to their high level
of activity. When the hydration process began to appear, the hydrate products scattered
and encompassed the MNP acting as the grain [48]. Furthermore, due to MNP’s fine size,
the MNP fills the cavities, leading to the additional packing of the LFC microstructure [49].
When the volume fraction of the magnetite nanoparticles added into LFC mixes is ideal,
the crystallization will be synchronized [50], and the growth of calcium hydroxide crystals
will be impeded by the MNP.

5.5. Relationship between Compressive and Flexural Strengths

Figure 13 demonstrates the possible association between the compressive strength and
the flexural strengths of LFC with the inclusion of MNP. Compressive strength was plotted
against flexural strength. According to Figure 13, the distribution of data confirms that a
decent connection between compressive strength and flexural does exist. A strong linear
correlation is evident with a high regression value (0.9938). For the control specimen (plain
LFC), the flexural strength was about 20% of the compressive strength of the LFC. The
flexural strength compounded up to an average of 29% of the compressive strength with
the ideal weight fraction of 0.25% MNP. The reason for this increase in flexural strength
is associated with the pozzolanic activity of the LFC cementitious matrix as well as their
filling effects with the presence of MNP [51]. It enhanced the microstructure of cement
paste through their reaction with CH and the production of secondary CSH as MNP has
superior reactivity by acting as a nucleus for cement portions [52]. MNP recaptures the
LFC particle filling density [53], consequently diminishing the number of pores in the
cementitious composite [54].
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5.6. Relationship between Compressive and Splitting Tensile Strengths

Figure 14 visualizes the association between compressive and splitting tensile strengths
of LFC. It evidently revealed that a direct increasing pattern can be recognized in splitting
tensile strength versus compressive strength, with an R-squared value in the order of
0.9926. The connection explains that splitting tensile strength increases with increasing
compressive strength. The mechanism by which the MNP inclusion in LFC enhances the
pore structure of the cementitious matrix was uniformly dispersed, and each particle was
confined in a cube pattern; thus, the disparity between MNP can be discovered. As soon
as the hydration initiates, hydrate products are distributed and enclosed in the MNP as
kernels. Additionally, the MNP presence in the LFC matrix as kernels can help to stimulate
cement hydration due to their high responsiveness [55].
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6. Conclusions

In this investigation, LFC was incorporated with 0.10–0.35% MNPs by weight fraction.
Mechanical properties such as splitting tensile strength, compressive strength, and flexural
strength were assessed. Based on the studies, the following conclusions are drawn.

1. MNP has an excellent potential to be incorporated with LFC for mechanical properties
enhancement due to its distinctive properties, such as high ductileness and the ability
to control crack growth. The inclusion of MNP in LFC enhanced the compressive,
splitting tensile and flexural strengths significantly. The optimal results for these three
mechanical properties were attained with specimen FC25.

2. The optimal compressive strength was obtained with specimen FC25, which gave an
improvement of 64.0%, 57.7%, and 54.6% at curing ages 7, 28, and 56 days, respectively,
compared to the control specimen. The inclusion of MNP had an effective role in
creating additional interlocked CSHs needles, which strengthened the microstructure
of LFC.

3. The highest flexural strength was accomplished with specimen FC25, which gave an
enhancement of 60.3%, 55.2%, and 53.3% at curing ages 7, 28, and 56 days, respectively,
in comparison to the control sample. The greater flexural strength attained with the
inclusion of MNP was due to the prompt utilization of crystalline calcium hydroxide,
which immediately arises throughout the hydration of cement, specifically at an early
age because of the high reactivity of MNP.

4. The ideal flexural strength was achieved with specimen FC25 which gave an im-
provement of 51.4%, 52.5%, and 51.1% at curing ages 7, 28, and 56 days, respectively,
in comparison to the control specimen. The remarkably small surface area of MNP
permeates the cavities in the hydrated cementitious matrix, which amasses to a greater
density and consequently results in greater splitting tensile strength.

5. The reduction of compressive, flexural, and splitting tensile strengths with a further
rise in the MNP weight fractions from 0.30% to 0.35% was attributed to the accretion
of MNP at higher weight fractions, which had an inauspicious result on the hydration
process and the LFC bonding strength.

6. Owing to MNP’s fine size, the MNP fills the cavities, leading to the additional packing
of the LFC microstructure. When the volume fraction of the MNP added into LFC
mixes is ideal, the crystallization will be synchronized, and the growth of calcium
hydroxide crystals will be impeded by the MNP.
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