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Abstract: This study aimed to determine how radiation attenuation would change when the thickness,
density, and compressive strength of clay bricks, modified with partial replacement of clay by fly
ash, iron slag, and wood ash. To conduct this investigation, four distinct types of bricks—normal,
fly ash-, iron slag-, and wood ash-incorporated bricks were prepared by replacing clay content with
their variable percentages. Additionally, models for predicting the radiation-shielding ability of
bricks were created using gene expression programming (GEP) and artificial neural networks (ANN).
The addition of iron slag improved the density and compressive strength of bricks, thus increasing
shielding capability against gamma radiation. In contrast, fly ash and wood ash decreased the
density and compressive strength of burnt clay bricks, leading to low radiation shielding capability.
Concerning the performance of the Artificial Intelligence models, the root mean square error (RMSE)
was determined as 0.1166 and 0.1876 nC for the training and validation data of ANN, respectively.
The training set values for the GEP model manifested an RMSE equal to 0.2949 nC, whereas the
validation data produced RMSE = 0.3507 nC. According to the statistical analysis, the generated
models showed strong concordance between experimental and projected findings. The ANN model,
in contrast, outperformed the GEP model in terms of accuracy, producing the lowest values of RMSE.
Moreover, the variables contributing towards shielding characteristics of bricks were studied using
parametric and sensitivity analyses, which showed that the thickness and density of bricks are the
most influential parameters. In addition, the mathematical equation generated from the GEP model
denotes its significance such that it can be used to estimate the radiation shielding of burnt clay bricks
in the future with ease.

Keywords: fired clay bricks; radiation shielding; compressive strength; artificial neural network;
gene expression programming; parametric and sensitivity analysis

1. Introduction

The application of radioactive materials in agriculture research, medicine, and power
generation plays a vital role in the economic and technological development of a country.
Major applications of nuclear technology include diagnosis and treatment of a variety of
diseases, generation of electricity, archaeology, pollution mitigation, etc. [1–9]. Nuclear
technology uses different radioactive rays, such as gamma rays, X-rays, and neutrons,
that have the potential to cause serious health and environmental problems [10–13]. Due
to the increase in the application of nuclear technology in the modern world, protecting
humans and the whole living environment from the adverse effects of radiation represents
vital and affirming protection against their harmful actions [14]. The hazardous effect of
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nuclear technology increases the global concern about providing shielding against radiation
or controlling the use of radioactive materials. Most nuclear activities are carried out in
an enclosed built environment. Thus, material selection for construction of the enclosed
built environment is one of the major challenges in the field of nuclear technology. The
literature has revealed that the shielding capability of materials against radiation depends
on the density and thickness of the material [15]. Higher shielding against radiation can
be achieved with materials that have a relatively high density such as barite, goethite,
magnetite, hematite, serpentine, lead, heavy-metal oxide, steel slag, steel shot, and coleman-
ite [16–23]. Higher-density materials have a significant impact on the reduction of thickness
of structural members while providing remarkable performance against radiation [24–31].
In general, concrete is most widely used for building important radiation-containing struc-
tures such as radiation therapy chambers in hospitals, nuclear power stations, and particle
accelerators to provide radiation shielding due to its higher relative density [32,33]. Nu-
merous studies conducted on dense concrete show significant improvement of concrete
performance against radiation and many other inherent advantages as compared to other
materials [14,15,32–35]. On the other hand, denser materials may have adverse effects
on the other properties of concrete, such as affecting compressive and tensile strengths,
along with reduction in the elastic modulus [15,35]. Bricks are also used worldwide in the
construction of different facilities, not limited to partitions and loading-bearing walls [25].
Brick walls provide better insulation properties than other building materials, which are
also cost-effective, easy to obtain and use, and made of eco-friendly natural materials.
Due to their mechanical and thermal properties, bricks can be a good alternative for ra-
diation protection applications. Besides other characteristics, bricks have enough density
and strength, which contributes to their radiation shielding feature [36]. Numerous re-
searchers have experimentally investigated the shielding performance of different types
of bricks [37–41], as listed in Table 1. For instance, Mann et al. [37] studied the response
of bricks against radiation with different fly ash compositions at different photon ener-
gies. The results suggested that fly ash brick can be used for medium-energy photon
attenuation. Mann et al. [42] investigated the usage of burnt clay brick for surface storage
facilities subjected to 0.001–15 MeV gamma ray photon energies. The result suggested
that clay bricks are suitable materials that provide environmentally safe storage facilities
against radioactive emission at given photon energies. Kiatwattanacharoen et al. [43]
studied the behavior of bricks consisting of barium sulphate against X-ray radiation. It
was found in the results that the values of the half-value layer for barium sulphate bricks
were lower compared to other types of bricks and concrete. Sayyed et al. [38] studied the
shielding ability of various types of bricks against gamma rays and found that steel-slag
brick considerably lowers the energy of gamma ray photons and thus provides a better
shield against gamma rays. Escalera-Velasco et al. [40] recommended that artisanal bricks
with high density provided more effective shielding capability for low-energy photons
in comparison with gypsum. Velasco et al. [44] concluded that bricks can be used safely
for the construction of medical facilities containing less than 30 keV mammography units.
Durak et al. [36] determined that rising the level of Cobalt metal added improves the
gamma- and neutron-shielding capacity of the brick samples. Sidhu et al. [45] reported
that, based on his research work, that fly ash–lime–Gypsum bricks possess satisfactory
radiation shielding properties and can be used as environmentally safe storage facilities
for low levels of nuclear waste. Echeweozo et al. [46] studied Granite–Kaolin Composite
Bricks and determined that brick samples prepared with Granite–Kaolin Composite were
thermally stable, good in gamma radiation shielding, and efficient in liquid radioactive
waste immobilization. El-khatib et al. [47] reported that clay materials would be good
applicants for use in civil engineering construction as well as in the fabrication of building
materials used in medical and nuclear facilities.
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Table 1. Summary of the previous literature concerning the use of bricks against radiation shielding.

Reference Brick Type Composition Property Investigated

Mann et al. 2016 [37] Clay–fly ash brick Clay partially replaced with
fly ash Radiation shielding of brick

Mann, K.S. et al. 2016 [42] Clay brick
Burnt clay brick collected
from local brick factories in
Punjab, India

Burnt clay bricks were
investigated for surface
storage facilities subjected to
0.001–15 MeV gamma ray
photon energies

Escalera-Velasco, L.A. et al.
2020 [40] Mexican artisanal bricks Red clay bricks, yellow bricks,

and bricks without cooking

Shielding behavior of
artisanal bricks against
ionizing photons

Kiatwattanacharoen et al.
2020 [43] Barium sulphate bricks Clay brick consists of

barium sulphate

Clay bricks containing barium
sulphate were investigated
against X-ray radiation

Durak et al. 2022 [36] Red and yellow
clay-based bricks

Red and yellow clay-based
bricks containing different
amounts of Cobalt metal

Gamma and neutron
shielding capacity of the brick

Velasco et al. 2022 [44] Mexican artisanal bricks Red clay bricks, yellow bricks
and bricks without cooking

Radiation shielding
parameters of bricks were
investigated and compared
with NBS concrete

Sidhu et al. 2022 [45] Fly ash–lime–Gypsum (FaLG)
FaLG bricks are unfired
compressed bricks consisting
of flay ash, lime, and gypum

Shielding behavior of FaLG
bricks was investigated

It is revealed from experimental studies that the radiation shielding capability of any
material depends on its density and thickness. The radiation shielding phenomenon is a
highly non-linear complex problem that may be related to material properties other than
density and thickness. The already established relation for radiation shielding has an
experimental dependency. This study aims to identify the most influential properties of
shielding materials and to develop a reliable correlation considering mechanical properties
of the shielding material. ANN and GEP are used in the study to consider the high
nonlinearity of the problem [15,20,36,38,48–52]. It is also inferred that many experimental
studies are available on the radiation shielding capabilities of fired clay bricks. However, no
machine learning model exists on this topic. Moreover, AI techniques are widely used for
solving engineering problems owing to their efficiency in avoiding laborious experimental
work. Kavya et al. [53] developed an artificial neural network (ANN) model for predicting
the strengths of concrete containing glass and basalt fibers. The results have shown that
ANN has great potential to predict the compressive, split tensile, and flexural strengths of
glass fiber-reinforced concrete and basalt fiber-reinforced concrete. Almashaqbeh et al. [54]
predicted the post-heating mechanical properties of cementitious composites reinforced
with multi-scale additives using an Artificial Neural Network (ANN) approach. The results
showed that ANN models have strong potential to predict the mechanical properties of
cementitious composites. Amin et al. [23] developed artificial intelligence computational
models for concrete radiation ability using ANN and GEP approaches. The statistical
evaluation revealed that AI models show close agreement between the experimental and
predicted results. However, the ANN model yielded better accuracy than the GEP model,
showing higher R and lower MAE and RMSE values. Khan et al. developed an AI model
for the estimation of flexural strength capacity of FRP reinforced beams using Random
Forest and Artificial Neural Network approaches. Both models showed acceptable results;
however, the ANN model showed superior accuracy and performance compared to the
Random Forest model. Yadollahi et al. [55] used an artificial neural network to predict the
optimal mixture for radiation-shielding concrete. ANN was found to be better at achieving
reliable results. It was determined with the help of ANN that the optimum mixture of
radiation-shielding concrete has a water–cement ratio of 0.45, cement quantity of 390 kg, a
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volume fraction of lead slag aggregate of 60%, and a silica fume–cement ratio of 0.15. ANNs
are generally considered to be robust prediction models in comparison to other AI models;
however, it has a black box nature. GEP extracts nonlinear correlation among the variables
in the form of simple mathematical equations [23,56,57]. Therefore, this study compared
a black box model (ANN) with the easily determined mathematical equation-generating
model (GEP) to identify the most influential properties of the shielding material and to
develop a reliable correlation for the calculation of radiation shielding of bricks in terms of
their mechanical properties.

2. Methodology

This section describes the details of the materials used; specimen preparation; and
experimental setup for physical, mechanical, and radiation-shielding properties. A brief in-
troduction to artificial intelligence is also part of this section. As shown in Figure 1, samples
were prepared for investigating their physical, mechanical, and radiation properties. Those
properties were fed into the ANN and GEP models for developing prediction models. The
statistical evaluation assessed the performance of the models to select the best model. The
selected model was used to validate the findings using parametric analysis.

Figure 1. Flow diagram of the undertaken research.

2.1. Specimen Description

Four types of bricks—(1) conventional fired clay bricks, (2) clay–fly ash bricks, (3) clay–iron
slag bricks, and (4) clay–wood ash bricks—were investigated in the study to evaluate for
their radiation-shielding ability. The fly ash, wood ash, and iron slag samples are shown
in Figure 2. The bricks studied were manufactured as per the standard practice of ASTM
C-67. Wood ash used in the study was collected locally as a byproduct of domestic and
commercial wood burning. Fly ash and iron slag were obtained from the local market. The
percentage replacements of the added materials are listed in Table 2. All materials were
added as a replacement of clay by weight. The physical properties (ASTM D7263-21/ASTM
D 854-02), chemical composition (ASTM-D4326), and grain size distribution (ASTM D
422-63/ASTM D7928-21) of the constituent materials are listed in Tables 3–5, respectively.
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Figure 2. (a) Iron slag added to clay. (b) Fly ash sample. (c) Wood ash sample.

Table 2. Brick types and percentage addition of fly ash, wood ash, and iron slag.

S. No. Brick Type Material Added Percentage Addition as a Replacement of Clay

1 Conventional Bricks (1) No additional material -
2 Clay–Fly Ash Bricks (2) Fly ash 5%, 10%, 15%,
3 Clay–Wood Ash Bricks (4) Wood ash 5%, 10%,15%, 20%
4 Clay–Iron Slag Brick (3) Iron Slag 5%, 10%, 15%, 20%, 25%

Table 3. Physical properties of the constituent materials.

Material Property Bulk Density (kg/m3) Particle Specific Gravity Color Water Absorption

Clay 1680 2.35 Dark brown -
Fly ash 1348 1.9 Black -
Wood ash 1100 1.51 Light grey -
Iron slag 2500 3.2 Dark grey 1.3
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Table 4. Chemical composition of the constituent materials using XRF Analysis.

Chemical Composition Clay Fly Ash Wood Ash Iron Slag

SiO2 57% 41% 30.8% 27.56%
Al2O3 31% 22% 29% 4.24%
Fe2O3 7% 29% 2.34% 59.7%
MgO 3.5% 1% 8.98% 1.87%
CaO 1.5% 2% 11.23% -
K2O - 1.5% 12.13% -

Na2O - 1.81% 5.50% -
MnO - - - 2.23%
P2O5 - - - 2.45%
SO3 - 1.61% - 1.90%
TiO2 - - - -

Table 5. Grain size distribution of constituent materials.

Particle Type
Percent Finer

<20 µm <50 µm <75 µm <100 µm <150 µm

Clay 30 40 45 90 100
Fly ash 12 56 - 86 100
Wood ash 9 43 66 89 100
Iron slag 2 15 40 63 90

2.2. Specimen Preparation

Brick specimens were prepared as per the standard practice of ASTM C 62. Brick
specimens were prepared in standard dimensions (4.5 cm × 9 cm × 9 cm) for the deter-
mination of mechanical and physical properties. In comparison, square brick specimens
(10 cm × 10 cm) were prepared for radiation shielding, with thicknesses of 2, 4, 6, 8, and
10 cm. Figure 3 presents the specimen and mold for the experimental setup.

Figure 3. (a) Mold of radiation specimen. (b) Radiation brick specimen preparation. (c) Radiation
brick specimen. (d) Normal brick specimen.
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2.3. Test Conducted on Brick Specimens

Brick specimens were subjected to different tests for the determination of physical,
mechanical, and radiation-shielding properties.

2.3.1. Density Determination

The density of the bricks was determined as per ASTM C20. This test method is
the preferred choice for quality control and research purposes. Specimens are first oven
dried and weighted (D). Then, the samples are immersed in water and boiled for 2 h.
The specimens are cooled to room temperature while still immersed in water, and the
suspended weights (S) of specimens are determined. The specimens are brought into a
saturated surface dry state, and saturated weight (W) is determined. The bulk density (B)
is calculated using the following equation:

B =
D
V

where V = W − D

2.3.2. Compressive Strength Test

Standard brick specimens were subjected to a compressive strength test as per ASTM
C67. The test specimens consisted of half brick units that had been dried and cooled with
full width and height. The test specimens are subjected to compressive force till failure in
the universal test machine, i.e., the crushing of bricks as shown in Figure 4. The crushing
load (P) is divided by the half brick area (A) to calculate the compressive strength of
the bricks.

Figure 4. Compressive strength in universal testing machine.

2.3.3. Radiation Testing of Bricks

The Linear attenuation coefficient, which is a measure of radiation shielding ability,
was measured to find the radiation ability of brick specimens. The test was performed in a
Theratron Phoenix machine as per ASTM C1831/C1831M-17, in a cancer treatment hospital
(IRNUM Hospital Peshawar, Pakistan) using Cobalt-60 as a Gamma-ray source. The test
setup consisted of the following steps:

• Measuring of Gamma ray intensity (No) by the detector when no brick specimens were
placed between the source and detector.

• Measuring of Gamma ray intensity (N) by the detector when brick specimens were
placed between the source and detector.
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The linear attenuation coefficient was then measured using the following equation.

µ =
1
x

ln
No

N

where

µ = Linear attenuation coefficient
x = material thickness in cm

2.4. Algorithms Adopted for the Development of AI Models

To evaluate the radiation shielding ability of fired clay bricks, this study was de-
signed to use artificial neural networks (ANNs) and gene expression programming (GEP).
This section provides an overview of the machine learning modelling strategies used in
this study.

2.4.1. Artificial Neutral Network Modelling

ANNs are inspired by the human brain and works similarly to biological neuron
signals [58–60]. Neural networks depend on training data to learn and improve their
performance and accuracy over time. Once these algorithms are fine-tuned, they can
then be used for accurate prediction of a phenomenon. ANNs are considered simple
mathematical models for enhancing existing data analysis technologies. ANNs are a
mathematical and computational method employed to simulate the interdependencies
between the input and output variable(s). The most commonly used type of ANN is the
multilayer perceptron (MLP), which consists of an input layer, hidden layers (maybe more
than one), and output layers. A neuron in a single layer has many parameters, but these
parameters have no relation. The number of neurons required for the input and output
layer depends on the variables in the input and output layer [61]. It is the hidden layer
where computation takes place, and the number of neurons is required to be known for a
suitable response to be achieved. To train the model, data is introduced into the input and
output layer, and an appropriate model is created. The weights and biases of the model are
adjusted to achieve the minimum error by calculating the difference between the output
predicted values and actual values [62]. An optimized ANN model is obtained by changing
the number of neurons in the hidden layer. The Lavenberg–Marquardt function was used to
optimize the weights and performance of the network because it is considered to be the best
function for the training of supervised algorithms [63]. Purelin and tan-sigmoid functions
were used for activation both in the output and input layers, respectively. For statistical
evaluation, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), coefficient of
correlation (R), and coefficient of determination (R2) were calculated following previous
studies [64–67].

The experimental database employed for the ANN model is presented in Tables 6 and 7.
Four types of bricks—type 1 (conventional brick), type II (clay–fly ash bricks), type III (clay–
iron slag bricks), and type IV (clay–wood ash bricks)—were used in the study. Appendix A
contains ANN code used in modelling.

2.4.2. GEP Modelling

GEP is a modern evolutionary algorithm for the development of AI models. GEP
models can learn and adapt, much like living organisms, by changing their shape, size, and
composition. Gene Expression Programming (GEP) is capable of automatically creating
computer programs. These computer programs can be conventional mathematical models,
decision trees, non-linear regression models, logistic regression models, and so on. Despite
their complex nature, all GEP models are encoded in very simple linear structures. These
chromosomes can mutate and reproduce the best one to create better programs. The chro-
mosome that produces the greatest outcomes is passed down to the succeeding generations,
and the process continues until an acceptable fitness level is achieved [68]. GEP has been
used in several engineering applications to develop the prediction of different concrete
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properties for different types of concrete. GEP is a powerful and valuable technique for the
development of prediction models. [23,57,69].

Table 6. Training dataset for model development.

Input Variables Output Variable

Brick Type
Percentage

Replacement
Thickness Density Compressive

Strength
Gamma Ray
Absorption

(cm) (g/cm3) (MPa) (nC)

2 5 2 1.68 34.42 3.0925
2 5 6 1.68 34.42 6.3425
2 5 8 1.68 34.42 7.3125
2 10 2 1.62 33.12 3.03
2 10 4 1.62 33.12 4.36
2 10 6 1.62 33.12 6.13
2 10 8 1.62 33.12 7.03
2 15 4 1.57 30.79 4.0725
2 15 6 1.57 30.79 5.9325
2 15 8 1.57 30.79 6.8725
2 15 10 1.57 30.79 7.1225
3 5 4 1.91 39.03 4.7925
3 5 6 1.91 39.03 6.9125
3 5 8 1.91 39.03 7.3925
3 5 10 1.91 39.03 7.6125
3 10 4 1.98 40.27 5.0225
3 10 6 1.98 40.27 7.2625
3 10 8 1.98 40.27 7.9225
3 10 10 1.98 40.27 8.1225
3 15 2 2.08 40.94 3.4325
3 15 4 2.08 40.94 5.9025
3 15 10 2.08 40.94 8.4195
3 20 4 2.14 41.2 6.13
3 20 6 2.14 41.2 8.05
3 20 8 2.14 41.2 8.51
3 25 2 2.23 42.1 3.92
3 25 6 2.23 42.1 8.14
1 0 2 1.76 36.8 3.14
1 0 8 1.76 36.8 7.35
1 0 10 1.76 36.8 7.48
4 5 4 1.51 29.32 3.1072
4 5 6 1.51 29.32 4.2427
4 10 4 1.47 26.4 2.8625
4 10 6 1.47 26.4 3.9625
4 10 8 1.47 26.4 4.9525
4 15 2 1.43 24.75 1.391
4 15 6 1.43 24.75 3.8125
4 15 8 1.43 24.75 4.7725
4 15 10 1.43 24.75 5.4625
4 20 2 1.38 21.6 1.31
4 20 4 1.38 21.6 2.57
4 20 6 1.38 21.6 3.66
4 20 8 1.38 21.6 4.7
4 20 10 1.38 21.6 5.33
4 5 8 1.51 29.32 5.3325
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Table 7. Validation dataset for model development.

Brick Type
Percentage

Replacement
Thickness Density Compressive

Strength
Gamma Ray
Absorption

(cm) (g/cm3) (MPa) (nC)

2 5 4 1.68 34.42 4.4625
2 5 10 1.68 34.42 7.4125
2 10 10 1.62 33.12 7.26
2 15 2 1.57 30.79 2.9146
3 5 2 1.91 39.03 3.2325
3 10 2 1.98 40.27 3.2325
3 15 6 2.08 40.94 7.8325
3 15 8 2.08 40.94 8.2225
3 20 2 2.14 41.2 3.66
3 20 10 2.14 41.2 8.66
3 25 4 2.23 42.1 6.22
3 25 8 2.23 42.1 8.71
3 25 10 2.23 42.1 8.93
1 0 4 1.76 36.8 4.63
1 0 6 1.76 36.8 6.52
4 5 2 1.51 29.32 1.4111
4 5 10 1.51 29.32 6.0025
4 10 2 1.47 26.4 1.3895
4 10 10 1.47 26.4 5.6725
4 15 4 1.43 24.75 2.8225

The experimental data shown in Tables 6 and 7 were used as training and validation in
GeneXprotools. The purpose of using GEP was to develop a mathematical model that can be
used later for computation purposes of radiation-shielding ability. The schematic diagram
for GEP modelling is shown in Figure 5. Trials were carried out on setting parameters such
as gene and chromosome numbers and head size, and finally, 3 genes, 30 chromosomes,
and 10 head sizes were selected as hyperparameters, as they resulted in the best model.

Figure 5. Schematics of GEP modelling.
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3. Results and Discussion
3.1. Experimental Results

Results of compressive strength tests are presented in Figure 6a. The addition of iron
slag as a replacement for clay has positive effects on compressive strength compared to the
conventional brick. The compressive strength for clay-iron slag bricks shows an increase in
compressive strength with an increase in percentage addition of iron slag. Compressive
strength varies linearly with the addition of iron slag. Adding both fly ash and wood ash
reduced the compressive strength of bricks compared to conventional brick. Compressive
strength decreases linearly with an increase in the percentage of fly ash and wood ash. The
density results are presented in Figure 6b. The addition of iron slag makes brick denser
compared to conventional bricks, while the addition of fly ash and wood ash makes brick
lighter. Radiation shielding of bricks is measured in term of ray absorption and linear
attenuation coefficients, as presented in Figure 6c–f. It is evident from the results that iron
slag is more effective in enhancing the ability of bricks to provide a shield against gamma
radiation owing to its high density. On the other hand, addition of fly ash or wood ash
has an adverse effect on the radiation-shielding ability of bricks. The linear attenuation
coefficient varies linearly with the percentage addition of iron slag, wood ash, and fly ash.
For all brick samples, higher shielding was observed for iron slug bricks at 25% replacement
and lowest shielding was obtained for wood ash bricks at 20% replacement (Figure 6g).
Figure 6h presents the relationship between density and linear attenuation coefficient. As
evident from the available literature, a linear relationship is observed for linear attenuation
and density in all specimens [15,24]. Because iron slag makes the brick denser, it enhances
the shielding ability compared to conventional bricks. In contrast, fly ash and wood ash
bricks have reduced shielding ability due to their lighter nature than normal bricks. It is
evident that density is an essential factor of a material’s shielding ability against nuclear
radiation. Shielding ability was also measured at different thicknesses, and a linear relation
was observed. Shielding ability increases linearly with an increase in thickness. Gamma
ray absorption followed an exponential trend, showing that a directly exposed surface
contributes more by reducing the intensity of gamma rays.

3.2. Performance Evaluation of AI Models

The developed AI models were evaluated using statistical indices such as correlation
coefficient (R), coefficient of determination (R2), mean absolute error (MAE), and root
mean square error (RMSE) in accordance with the available literature [64–72]. R values
obtained for the ANN model were 0.9985 and 0.9970 for the training and validation data,
respectively. The values of R2 were observed as 0.99702 for the training set and 0.994005
for the validation sets of the ANN model (Figure 7a). The R values for the GEP model
were observed as 0.9886 and 0.9775, with R2 values of 0.9896 and 0.9793, for the training
and validation data, respectively (Figure 7b). MAE values of 0.09555 and 0.1592 nC for the
ANN model and 0.2393 and 0.2867 nC for the GEP model were observed for training and
validation data, respectively. Similarly, the observed values of RMSE were 0.116539 and
0.187575 for the ANN model and 0.2949 and 0.3507 for the GEP model for training and
validation, respectively (Figure 7a,b). It is evident from the results that the R and R2 values
are very close for the ANN and GEP models, which shows close agreement of experimental
and predicted values. However, the error observed in the GEP model is greater compared
to the error observed in the ANN model, which shows that ANN models show more robust
performance than GEP models.
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Figure 6. Experimental test results.
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Figure 7. Comparison of experimental versus predicted results in the form of regression slopes and
statistical indices: (a) ANN model, (b) GEP model.

The performance of models was also measured in terms of regression slope because
many researchers in the past have used the slope of the regression line for statistical
evaluation [23,66]. To perform the regression analysis, the experimental results were
plotted on the x-axis while the predicted results were plotted on the y-axis. Previous studies
suggested that a regression slope of more than 0.80 indicates close agreement between
experimental and predicted results. For the current study, regression analysis of the ANN
model resulted in a slope of 0.9809 and 1.004 for training and validation data, respectively
(Figure 7a). Similarly, the slope for the GEP model is 0.9621 and 0.9581 for training and
validation data, respectively (Figure 7b). The regression analysis proves that the slope of
the regression line for both models is close to an ideal slope, for which the slope is equal to
1. Regression models also show that the ANN model is relatively more accurate compared
to the GEP model.

The statistical assessment of ANN and GEP models was further enhanced by perform-
ing error analysis and tracing of experimental results with predictions made by the models,
as presented in Figure 8a. The experimental results are traced very closely for both the
models; however, the predictions made by the ANN more closely trace the experimental
results compared to GEP. The error presented in Figure 8a,b ranges from 0 to 0.34 nC for the
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ANN model, while it ranges from 0 to 0.788 nC in the case of the GEP model. It is evident
from the error analysis that the data points mostly converge about the zero line, with a
maximum deviation of 0.34 and 0.788 nC in the ANN and GEP models, respectively.

Figure 8. Error analysis of the developed models: (a) tracing of experimental by predictions for ANN
model, (b) absolute error from ANN model, (c) tracing of experimental by predictions for GEP model,
and (d) absolute error from GEP model.

It is evident from the above discussion that the ANN model has better performance
compared to GEP; however, the GEP model has given acceptable results. GEP’s advantage
over ANN lies in the fact that it generates a simple mathematical result that can be used
for predicting a new dataset, unlike ANN, which has a black box nature. In the case of the
ANN model, given data must be retained to predict a new dataset. Equations obtained
from GEP modelling are given below as supplementary data in the form of a MATLAB
model, which can be used for the prediction of radiation absorption by the bricks for the
mentioned input variables.

3.3. Parametric Analysis

When it comes to AI-based modelling, it is crucial to carry out multiple assessments
to make sure that the models are reliable and effective with various data combinations.
Better training, validation, and testing results on current datasets are not a guarantee of
the models’ overall superiority. The previous literature has suggested using parametric
analysis, which is also used in the current study, to determine whether models are well
trained and not just a correlation of inputs and output attributes. The variation in the
output is plotted with the variation in one input variable over its entire range, while all
the input parameters are fixed at their average value. All the input variables are separately
repeated through the process.

Parametric analysis was performed to identify important variables affecting the target
variable the most and depict the trend of input variables in contributing toward the target.
A simulated dataset was developed by varying one input variable between its extreme
values and keeping the other input variables constant at their average values. The simulated
dataset was developed for clay-fly ash bricks (Type 2), clay-iron slag bricks (Type 3), and
clay-wood ash bricks (Type 4). The simulated dataset was tested using the ANN model
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due to its superior performance. The analysis results are shown in Figures 9–11 for the fly
ash, iron slag, and wood ash bricks, respectively.

Figure 9. Parametric analysis of ANN model for Type 2 bricks.

Figure 10. Parametric analysis of ANN model for Type 3 bricks.
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Figure 11. Parametric analysis of ANN model for Type 4 bricks.

The results also show that thickness and density are the most influential parameters
in enhancing the radiation-shielding ability in all types of bricks due to relatively greater
change in compressive strength by changing these parameters. Among thickness and
density, the thickness contributed more to enhancing the radiation shielding. Compressive
strength also enhances radiation shielding, but the contribution is lower compared to
thickness and density, as evident from Figure 9. The replacement percentage has no such
direct relation with radiation shielding. Still, as it is affecting the density of bricks, in the
case of iron slag, the percentage increase of iron slag enhances radiation shielding while the
percentage replacement of fly ash and wood ash adversely affects the radiation shielding
of bricks.

The parametric study further concluded that the maximum shielding of radiation
occurred for the clay–iron slag brick at 25% replacement. In comparison, both fly ash and
wood ash had reduced radiation shielding, and the minimum shielding was observed for
wood ash bricks at 20% replacement. Gamma ray absorption revealed polynomial and
linear variation with thickness and density, respectively. Compressive strength was also
found to affect radiation shielding. Maximum radiation shielding was observed for the
maximum compressive strength. From this research, we highly recommend considering
these input parameters in the design of radiation shielding, especially in the design of
radiation therapy chambers and nuclear power plants.

4. Conclusions

This study investigated the ability of modified clay bricks against the shielding ca-
pability against gamma rays. Conventional burnt clay bricks were modified using three
different additives, namely fly ash, iron slag, and wood ash, as partial replacement for clay.
The impact on radiation characteristics was studied at various thicknesses, densities, and
compressive strengths. Additionally, ANN and GEP models were created to forecast the
radiation resistance of bricks. The findings of this investigation were as follows:

• The two key elements that reduce the amount of gamma radiation are material density
and brick thickness. The brick’s capacity to block radiation is enhanced by increasing
its thickness and density. Among the investigated additives, it was observed that
the addition of iron slag significantly increased the density, thus leading to improved
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resistance against radiation. The maximum radiation shielding was observed at 25%
replacement of clay by iron slag. It was discovered that a rise in the compressive
strength also improved the radiation capability of the bricks.

• The addition of fly ash and wood ash considerably decreased the density and com-
pressive strength of modified clay bricks compared to the conventional bricks. The
worst radiation capability of clay bricks was obtained at the maximum replacement of
fly ash and wood ash investigated in the study.

• The AI models created for this study closely matched the outcomes of the experiments
and the predictions. The ANN model that was created to forecast radiation shielding
surpassed the GEP model. However, the GEP model’s importance may be seen in
the straightforward mathematical relationship it generated since it can be used in the
future to forecast how radiation shielding will affect fresh data without the use of a
computer program.

• The results of the parametric analysis agreed with those of the experiment. The most
important factors affecting the shielding capacity of concrete were discovered to be
the thickness and density of clay bricks.
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Appendix A The Code Developed for the ANN Model

x = ‘inputs’;
t = ‘RS’;
% Choose a training function
% For a list of all training functions type: help nntrain
% ‘trainlm’ is usually fastest.
% ‘trainbr’ takes longer but may be better for challenging problems.
% ‘trainscg’ uses less memory. Suitable in low memory situations.
trainFcn = ‘trainlm’; % Levenberg–Marquardt backpropagation.
% Create a fitting network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);
% Setup division of data for training, validation, testing
net.divideParam.trainRatio = 70/100;
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net.divideParam.valRatio = 30/100;
% Train the network
[net,tr] = train(net,x,t);
% Test the network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
% View the network
view(net)
% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotfit(net,x,t)

References
1. Du, W.; Zhang, L.; Li, X.; Ling, G.; Zhang, P. Nuclear Targeting Subcellular-delivery Nanosystems for Precise Cancer Treatment.

Int. J. Pharm. 2022, 619, 121735. [CrossRef] [PubMed]
2. Tanaka, S.; Hosokawa, M.; Tatsumi, A.; Asaumi, S.; Imai, R.; Ogawara, K.-I. Improvement of resistance to oxaliplatin by vorinostat

in human colorectal cancer cells through inhibition of Nrf2 nuclear translocation. Biochem. Biophys. Res. Commun. 2022, 607, 9–14.
[CrossRef] [PubMed]

3. Pinsky, R.; Sabharwall, P.; Hartvigsen, J.; O’Brien, J. Comparative review of hydrogen production technologies for nuclear hybrid
energy systems. Prog. Nucl. Energy 2020, 123, 103317. [CrossRef]

4. Parker, H.M.O.; Joyce, M.J. The use of ionising radiation to image nuclear fuel: A review. Prog. Nucl. Energy 2015, 85, 297–318. [CrossRef]
5. Christodouleas, J.P.; Forrest, R.D.; Ainsley, C.G.; Tochner, Z.; Hahn, S.M.; Glatstein, E. Short-Term and Long-Term Health Risks of

Nuclear-Power-Plant Accidents. N. Engl. J. Med. 2011, 364, 2334–2341. [CrossRef]
6. Brook, B.W.; Alonso, A.; Meneley, D.A.; Misak, J.; Blees, T.; van Erp, J.B. Why nuclear energy is sustainable and has to be part of

the energy mix. Sustain. Mater. Technol. 2014, 1, 8–16. [CrossRef]
7. Marcone, M.F.; Wang, S.; Albabish, W.; Nie, S.; Somnarain, D.; Hill, A. Diverse food-based applications of nuclear magnetic

resonance (NMR) technology. Food Res. Int. 2013, 51, 729–747. [CrossRef]
8. Taylor, R.E.; Bar-Yosef, O. Radiocarbon Dating: An Archaeological Perspective; Routledge: Hoboken, NJ, USA, 2016.
9. Tyagi, G.; Singhal, A.; Routroy, S.; Bhunia, D.; Lahoti, M. Radiation Shielding Concrete with alternate constituents: An approach

to address multiple hazards. J. Hazard. Mater. 2020, 404, 124201. [CrossRef]
10. Sadiq, M.; Wen, F.; Dagestani, A.A. Environmental footprint impacts of nuclear energy consumption: The role of environmental

technology and globalization in ten largest ecological footprint countries. Nucl. Eng. Technol. 2022. [CrossRef]
11. Golden, A.P.; Cohen, S.S.; Chen, H.; Ellis, E.D.; Boice, J.D., Jr. Evaluation of statistical modeling approaches for epidemiologic

studies of low-dose radiation health effects. Int. J. Radiat. Biol. 2022, 98, 572–579. [CrossRef]
12. Hasegawa, A.; Tanigawa, K.; Ohtsuru, A.; Yabe, H.; Maeda, M.; Shigemura, J.; Ohira, T.; Tominaga, T.; Akashi, M.; Hirohashi,

N.; et al. Health effects of radiation and other health problems in the aftermath of nuclear accidents, with an emphasis on
Fukushima. Lancet 2015, 386, 479–488. [CrossRef]

13. Desouky, O.; Ding, N.; Zhou, G. Targeted and non-targeted effects of ionizing radiation. J. Radiat. Res. Appl. Sci. 2015, 8,
247–254. [CrossRef]

14. Akkurt, I.; Akyildirim, H.; Mavi, B.; Kilincarslan, S.; Basyigit, C. Gamma-ray shielding properties of concrete including barite at
different energies. Prog. Nucl. Energy 2010, 52, 620–623. [CrossRef]

15. Ahmad, I.; Shahzada, K.; Ahmad, M.I.; Khan, F.; Badrashi, Y.I.; Khan, S.W.; Muhammad, N.; Ahmad, H. Densification of Concrete
using Barite as Fine Aggregate and its Effect on Concrete Mechanical and Radiation Shielding Properties. J. Eng. Res. 2019, 7, 81–95.

16. Maslehuddin, M.; Naqvi, A.; Ibrahim, M.; Kalakada, Z. Radiation shielding properties of concrete with electric arc furnace slag
aggregates and steel shots. Ann. Nucl. Energy 2013, 53, 192–196. [CrossRef]

17. González-Ortega, M.; Cavalaro, S.H.P.; Aguado, A. Influence of barite aggregate friability on mixing process and mechanical
properties of concrete. Constr. Build. Mater. 2014, 74, 169–175. [CrossRef]

18. Saidani, K.; Ajam, L.; Ben Ouezdou, M. Barite powder as sand substitution in concrete: Effect on some mechanical properties.
Constr. Build. Mater. 2015, 95, 287–295. [CrossRef]

19. Osman, G.; Witold, B.; Cengiz, O.; Muuml, F. An investigation on the concrete properties containing colemanite. Int. J. Phys. Sci.
2010, 5, 216–225.

http://doi.org/10.1016/j.ijpharm.2022.121735
http://www.ncbi.nlm.nih.gov/pubmed/35405280
http://doi.org/10.1016/j.bbrc.2022.03.070
http://www.ncbi.nlm.nih.gov/pubmed/35358872
http://doi.org/10.1016/j.pnucene.2020.103317
http://doi.org/10.1016/j.pnucene.2015.06.006
http://doi.org/10.1056/NEJMra1103676
http://doi.org/10.1016/j.susmat.2014.11.001
http://doi.org/10.1016/j.foodres.2012.12.046
http://doi.org/10.1016/j.jhazmat.2020.124201
http://doi.org/10.1016/j.net.2022.05.016
http://doi.org/10.1080/09553002.2018.1554924
http://doi.org/10.1016/S0140-6736(15)61106-0
http://doi.org/10.1016/j.jrras.2015.03.003
http://doi.org/10.1016/j.pnucene.2010.04.006
http://doi.org/10.1016/j.anucene.2012.09.006
http://doi.org/10.1016/j.conbuildmat.2014.10.040
http://doi.org/10.1016/j.conbuildmat.2015.07.140


Materials 2022, 15, 5908 19 of 20

20. Lv, Y.; Qin, Y.; Wang, J.; Li, G.; Zhang, P.; Liao, D.; Xi, Z.; Yang, L. Effect of incorporating hematite on the properties of ultra-high
performance concrete including nuclear radiation resistance. Constr. Build. Mater. 2022, 327, 126950. [CrossRef]

21. Ibrahim, A.M.; Mohamed, A.R.; El-Khatib, A.M.; Alabsy, M.T.; Elsalamawy, M. Effect of hematite and iron slag as aggregate
replacement on thermal, mechanical, and gamma-radiation shielding properties of concrete. Constr. Build. Mater. 2021, 310,
125225. [CrossRef]

22. Isfahani, H.S.; Abtahi, S.M.; Roshanzamir, M.A.; Shirani, A.; Hejazi, S.M. Permeability and Gamma-Ray Shielding Efficiency of
Clay Modified by Barite Powder. Geotech. Geol. Eng. 2018, 37, 845–855. [CrossRef]

23. Amin, M.N.; Ahmad, I.; Iqbal, M.; Abbas, A.; Khan, K.; Faraz, M.I.; Alabdullah, A.A.; Ullah, S. Computational AI Models for
Investigating the Radiation Shielding Potential of High-Density Concrete. Materials 2022, 15, 4573. [CrossRef] [PubMed]

24. Daungwilailuk, T.; Yenchai, C.; Rungjaroenkiti, W.; Pheinsusom, P.; Panwisawas, C.; Pansuk, W. Use of barite concrete for
radiation shielding against gamma-rays and neutrons. Constr. Build. Mater. 2022, 326, 126838. [CrossRef]

25. Öz, A.; Bayrak, B.; Kavaz, E.; Kaplan, G.; Çelebi, O.; Alcan, H.G.; Aydın, A.C. The radiation shielding and microstructure
properties of quartzic and metakaolin based geopolymer concrete. Constr. Build. Mater. 2022, 342, 127923. [CrossRef]

26. Libeesh, N.; Naseer, K.; Arivazhagan, S.; El-Rehim, A.A.; Almisned, G.; Tekin, H. Characterization of Ultramafic–Alkaline–
Carbonatite complex for radiation shielding competencies: An experimental and Monte Carlo study with lithological mapping.
Ore Geol. Rev. 2022, 142, 104735. [CrossRef]

27. Abdalla, A.M.; Al-Naggar, T.I.; Bashiri, A.; Alsareii, S.A. Radiation shielding performance for local granites. Prog. Nucl. Energy
2022, 150, 104294. [CrossRef]

28. Esen, Y.; Doğan, Z.M. Evaluation of physical and mechanical characteristics of siderite concrete to be used as heavy-weight
concrete. Cem. Concr. Compos. 2017, 82, 117–127. [CrossRef]

29. Ban, C.C.; Khalaf, M.A.; Ramli, M.; Ahmed, N.M.; Ahmad, M.S.; Ali, A.M.A.; Dawood, E.T.; Ameri, F. Modern heavyweight
concrete shielding: Principles, industrial applications and future challenges. A review. J. Build. Eng. 2021, 39, 102290. [CrossRef]

30. Azeez, M.; Ahmad, S.; Al-Dulaijan, S.U.; Maslehuddin, M.; Naqvi, A.A. Radiation shielding performance of heavy-weight
concrete mixtures. Constr. Build. Mater. 2019, 224, 284–291. [CrossRef]

31. Demir, I.; Gümüş, M.; Gökçe, H. Gamma ray and neutron shielding characteristics of polypropylene fiber-reinforced heavyweight
concrete exposed to high temperatures. Constr. Build. Mater. 2020, 257, 119596. [CrossRef]

32. Akkurt, S.; Tayfur, G.; Can, S. Fuzzy logic model for the prediction of cement compressive strength. Cem. Concr. Res. 2004, 34,
1429–1433. [CrossRef]

33. Ouda, A.S. Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding. Prog.
Nucl. Energy 2015, 79, 48–55. [CrossRef]

34. Mostofinejad, D.; Reisi, M.; Shirani, A. Mix design effective parameters on γ-ray attenuation coefficient and strength of normal
and heavyweight concrete. Constr. Build. Mater. 2012, 28, 224–229. [CrossRef]
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