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Abstract: Stanene, composed of tin atoms, is a member of 2D-Xenes, two-dimensional single element
materials. The properties of the stanene can be changed and improved by applying deformation, and
it is important to know the range of in-plane deformation that the stanene can withstand. Using the
Tersoff interatomic potential for calculation of phonon frequencies, the range of stability of planar
stanene under uniform in-plane deformation is analyzed and compared with the known data for
graphene. Unlike atomically flat graphene, stanene has a certain thickness (buckling height). It is
shown that as the tensile strain increases, the thickness of the buckled stanene decreases, and when
a certain tensile strain is reached, the stanene becomes absolutely flat, like graphene. Postcritical
behaviour of stanene depends on the type of applied strain: critical tensile strain leads to breaking
of interatomic bonds and critical in-plane compressive strain leads to rippling of stanene. It is
demonstrated that application of shear strain reduces the range of stability of stanene. The existence
of two energetically equivalent states of stanene is shown, and consequently, the possibility of the
formation of domains separated by domain walls in the stanene is predicted.

Keywords: stanene; graphene; elastic strain; stability; phase transition; molecular dynamics

1. Introduction

In addition to graphene [1], other single-element two-dimensional materials with a
similar hexagonal structure have been obtained and studied. These are group IV elements,
such as silicene, germanene, and stanene (2D-Xenes). In the past few years, they have at-
tracted the attention of researchers due to a combination of electronic and optical properties
that can be used in nanotechnology [2–5].

Unlike atomically flat graphene, all two-dimensional group IV materials (silicene,
germanene, and stanene) are buckled and have a certain thickness (buckling height [6,7]).
The free-standing stanene has a thickness of h = 0.85 ÷ 0.90 Å according to density
functional theory (DFT) calculations [8,9]. Stanene grown on a substrate may be thinner or
thicker than a free-standing stanene.

The first successful attempt to synthesize stanene was made on the Bi2Te3(111) surface
in 2015 [10] and later on many other substrates using the epitaxial methods of growth [4,11].
The thickness of stanene on Bi2Te3(111) is reported to be h = 1.2 Å [10], which is larger than
that of free-standing stanene. From the DFT calculations, the structure of the stanene with
dumbbell units with a thickness of 3.41 Å was predicted [12]. Large area stanene can be
epitaxially grown on Ag(111) with h = 0.12 Å [13,14]. A nearly flat stanene-like honeycomb
structure with three Sn atoms per unit cell was epitaxially grown on an Au(111) surface [15],
and ultraflat stanene (h = 0) was epitaxially grown on a Cu(111) surface [16]. Strain-free
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stanene with h = 0.20 Å was grown on a Pd(111) surface terminated by a Pd2Sn(111)
surface alloy [17]. In this study, it will be shown that when stretched, a free-standing
stanene, modelled by the Tersoff potential, can transform into a flat configuration (h = 0).

Stanene-based gas sensors are described in the review [18]. The adsorption energies of
small molecules on stanene were calculated using the ab initio methods [19]. The biaxial
strain of the stanene increases the adsorption energy of NO2 molecules, thereby improving
the sensitivity to the hazardous gas [20]. The absorption of toxic molecules SO2 and H2S on
the stanene can be improved with the help of defects and dopants [21]. The B-doped stanene
better absorbs O3 and SO3 molecules [22]. The stable configurations, adsorption energies,
electronic properties, and charge transfer of toxic NO2, SO2, and NH3 and non-toxic CO2
molecules on stanane are reported in the work [23].

Elastic strain engineering is a powerful technique for modifying the properties of nano-
materials because, compared to conventional materials, they can withstand much higher
stresses and deform elastically up to large strains [24–26]. At large elastic deformations,
the lattice symmetry changes, and accordingly, the electronic structure changes, which
leads to new physical, chemical, and mechanical properties of the material [27]. Changes
in the bond length and bond angle as the functions of tensile strain along the zigzag or
armchair direction, as well as the G-mode splitting with strain, were discussed for graphene
in [28].

As mentioned above, stretched stanene adsorbs NO2 molecules better [20]. Biaxial
strain can effectively tune the bandgap of stanene nanomeshes [27]. Ferroelectric and
ferroelastic properties of monolayer group IV monochalcogenides can be effectively modu-
lated by elastic strain engineering [29]. The electronic properties of nanomembranes of the
topological crystalline insulators SnTe and Pb1−xSnx(Se,Te) are easily tuned using elastic
strain engineering, which makes it possible to tune band gap and obtain giant piezoconduc-
tivity [30]. Elastic strain engineering can be used to tailor single photon emission properties
of wrinkled WSe2 monolayers [31]. Biaxial tension applied to silicene, germanene and
stanene hardens long wavelength out-of-plane acoustic phonons, which leads to an in-
crease in thermal conductivity [32]. A similar effect was also described for twisted carbon
nanoribbons [33].

It is now generally accepted that numerical methods are very useful in the study of
structure and properties of nanomaterials [34–36].

Flat as well as buckled stanene under tension along the zigzag and armchair directions
was modelled by calculating the second, third, fourth, and fifth order elastic moduli
tensors by using first principles calculations [6]. It was shown that the buckling height of
buckled stanene decreases with tension but does not vanish within the stability range of
the material. The ideal strength in the armchair and zigzag directions for flat and buckled
stanene was also analysed, and it was found that the calculated critical strain is about 0.23
for both directions.

The effect of strain on the electronic and mechanical properties of stanene was con-
sidered in the work [37]. The density functional theory and molecular mechanic models
were used to find the in-plane stiffness of stanene to be 40 N/m. Tension of 2% reduced the
buckling height by about 4% from the initial value of h = 0.86 Å. Ideal strength is defined as
the maximum stress that a defect-free material can withstand [38]. In a theoretical work [39],
using DFT simulations, it was shown that the ideal strength of 2D stanene reaches E/7.4,
where E is Young’s modulus in tension. This value exceeds Griffith’s estimate of the theo-
retical strength E/9. This inconsistency can be explained by the too small thickness used by
the authors to estimate Young’s modulus [7]. The effect of temperature and strain rate on
mechanical properties of stanene under uniaxial and biaxial strain was addressed in [40]
using the molecular dynamics method. The failure of the stanene was observed at a strain
of about 20% and a stress of 3 GPa under biaxial tension and tension along the zigzag
direction at a strain rate of 107 s−1 with slightly lower critical values for tension along the
armchair direction.
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Elastic properties and crack propagation in single and bilayer stanene were analyzed
based on molecular dynamics simulations using Tersoff bond order potential [41]. At the
strain rate of 108 s−1, failure of stanene was observed at about 38% strain, and 15 GPs stress
for tension along the armchair direction and lower critical values were found for tension
along the zigzag direction (33% strain and 14 GPa stress). A comparative analysis of the
mechanical properties of 2D-Xenes suggests that stanene is the weakest and softest member
of this family [42].

Formulas for the shear modulus of hexagonal nanostructures were derived based on a
physically motivated model [43]. In the works [44–46], concrete examples of materials with
unusual properties are considered, and the origin of these properties at the discrete level is
described. Electronic properties of bilayer stanene can be improved via modulating the
stacking order and angle of the bilayers [47].

In order to take full advantage of the possibilities of elastic strain engineering, it
is necessary to know the stability region of the stanene in the space of the strain tensor
components εxx, εyy, and εxy. For graphene, this problem was solved in [48] using the
potentials developed by Savin [49]. This problem is difficult to solve experimentally
because it is not easy to apply high enough stress to break a defect-free stanene. In such
circumstances, theoretical studies make it possible to shed light on many properties of two-
dimensional structures, the study of which by experimental methods is difficult. However,
theoretical studies also encounter certain difficulties. For example, ab initio methods, due
to the high demands on computer resources, consider a small number of atoms in short
periods of time [6,50–52], and the molecular dynamics method gives results that depend
on the interatomic potentials [53–56]. Despite this, modeling allows at least a qualitative
characterization of many important properties of nanomaterials.

In this work, we aim to calculate the range of stability of plane stanene modelled with
the Tersoff potential in the space of the strain tensor components εxx, εyy, and εxy.

2. Materials and Methods

Molecular dynamics is used to simulate the stability of stanene.

2.1. Structure of Stanene

A free-standing, infinitely large, defect-free, single-sheet stanene is considered. Ac-
cording to theoretical and experimental data [57–61], undeformed, free-standing stanene
has a hexagonal buckled structure. A primitive translational cell of stanene defined by the
translation vectors a1 and a2, is shown in Figure 1a projected onto the XY plane. The X
and Y axes of the Cartesian coordinate system are oriented in the zigzag and armchair
directions, respectively. Atoms 1 and 2 represent two triangular sublattices colored black
and red; generally speaking, they have different Z-coordinates. Figure 1b shows three
valence bonds, 1, 2 and 3, and six valence angles, ϕi, and τi, i = 1, 2, 3. These structural
parameters will be analyzed for homogeneously deformed stanene.

Figure 1c shows the side views of buckled stanene having thickness h projected onto
the XZ and YZ planes. In Figure 1d, similar side views are shown for the absolutely
flat stanene.
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Figure 1. (a) The structure of the stanene shown in projection onto the XY plane with the X and
Y axes oriented in the zigzag and armchair directions, respectively. A primitive translational cell
containing two Sn atoms is defined by the translation vectors a1 and a2. The atoms of the two
sublattices are colored black and red and can have different Z-coordinates. (b) Valence bonds and
angles that will be analyzed when the stanene is deformed. Panels (c) and (d) show the stanene
projected onto the XZ and YZ planes for the buckled structure having thickness h and absolutely flat
structure, respectively.

2.2. Structure Generation and Homogeneous Deformation Application

The structure of stanene is generated by translation of a pair of atoms by the vectors
a1 = a(1, 0, 0) and a2 = (a/2)(1,

√
3, 0), where a is the lattice parameter (see Figure 1a).

The length of the translation vectors |a1| = |a2| = a can be obtained by projecting the equi-
librium bond length ρ0 onto the XY plane. The radius–vectors of Sn atoms in unstrained
structure are R0

m,n,k = ma1 + na2 + sk, where the integers m, n define the primitive cell
number, and k = 1, 2 is the number of atoms in a primitive translational cell. The vectors
sk, k = 1, 2, in unstrained stanene are taken as s1 = (0, 0, 0), s2 = (a/2, a/2

√
3, h), where h

is the structure thickness depicted in Figure 1c.
Stanene is considered under homogeneous plain stress conditions achieved by ap-

plication of in-plane strain with the components εxx, εyy, εxy. The equilibrium positions
of atoms in homogeneously strained stanene are Rs

m,n,k = mp1 + np2 + qk, where vectors
p1 = a1 + a1T, p2 = a2 + a2T are defined through the matrix

T =

(
εxx εxy/2

εxy/2 εyy

)
. (1)

Vectors qk describe the position of atoms in a primitive cell after deformation. By the
rigid shift of the structure in space, one can always take q1 = (0, 0, 0). On the other hand,
the equilibrium position of atom 2 in the primitive cell, q2, must be obtained by relaxation of
the structure. As a result of relaxation, the equilibrium thickness of the deformed structure
will also be determined.

The relaxation is performed by the steepest descent method using self-made code
written in the C++ algorithmic language. Relaxation stops when the value of the maximum
force acting on the atoms becomes less than 10−8 eV/Å.



Materials 2022, 15, 5900 5 of 17

2.3. Tersoff Potential

The many-body Tersoff potential [62] is used to describe interactions between tin
atoms in stanene. In Tersoff’s models, the potential energy of the system is taken as

Us =
1
2 ∑

i
∑
j 6=i

fc(rij)[aij fr(rij) + bij fa(rij)], (2)

where rij = |Ri − Rj| is the distance between atoms i, and j (Ri is the radius-vector of atom
i). The function fc(rij) limits the range of interaction to the nearest neighbors. This function
is taken in the form

fc(r) =


1, r < R− D;
1
2 −

1
2 sin π(r−R)

2D , R− D ≤ r < R + D;
0, r ≥ R + D.

(3)

where R and D are the constants describing the cut-off radius of the potential.
The potential energy (2) includes the embeddings of repulsive and attractive forces,

fr(rij) = Ae−λ1rij , fa(rij) = −Be−λ2rij , (4)

where A, B, λ1, and λ2 are the potential parameters describing the dimer strength and
Pauling constants [63,64].

The component aij for the repulsive force is taken equal to 1 [65].
The bij term in (2) describes the weakening of the bond between atoms i and j due to

the presence of another bond between atoms i and k. This term describes the energy of
valence angles,

bij = (1 + βNζN
ij )

−1
2N , (5)

ζn
ij = ∑

k 6=i,j
fc(rik)g(θijk)e

[λM
3 (rij−rik)

M ], (6)

g(θijk) = γ
(

1 +
c2

d2 −
c2

d2 + (cos θijk − δ)2

)
. (7)

Parameters β, N, λ3, c, d, and δ are adjustable, while M = 3.0 and γ = 1.0 are constants.

In this work, a more symmetrical form of the potential is used in which bij =
bij+bji

2 .
Parameters of the Tersoff potential are listed in Table 1.
The Hamiltonian of the system (total energy of the computational cell is)

H = Us +
M
2 ∑

i

(dRi
dt

)2
, (8)

where Us is the potential energy of the system defined by Equation (2), and the second
term on the right-hand side of the Hamiltonian gives the kinetic energy (M is the mass of
the stanene atom). The equations of motion are derived from the Hamiltonian Equation (8)
using the Hamilton’s principle.

Let the computational cell include Nx × Ny primitive translational cells, each of which
contains two atoms. Atoms are conveniently numbered with three indices m = 1, ..., Nx,
n = 1, ..., Ny, and k = 1, 2, as described in Section 2.2.
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Table 1. Parameters of the Tersoff potential [66].

M 3.0
γ 1.0

λ3 (Å−1) 0.198543
c 501643.0
d 155.4496
δ −0.321475
N 1.423982
β 0.006901

λ2 (Å−1) 0.221467
B (eV) 4.534091
R (Å) 3.59983
D (Å) 0.723836

λ1 (Å−1) 2.824898
A (eV) 638.6396

2.4. Check for Stability of Strained Stanene

For strained stanene, we check its stability by calculating the frequency of phonon
modes. To do so we write down the equations of motion for the two atoms of the (m, n)th
translational cell

M
d2um,n,k

dt2 = − ∂Pm,n

∂um,n,k
, k = 1, 2. (9)

Then we linearize these equations and look for their solutions in the form

um,n,k(t) = e exp[i(qxm + qyn−ωt)], k = 1, 2. (10)

In Equations (9) and (10), um,n,k is the displacement vector of (m, n, k)th atom from
equilibrium position, and it is assumed that |um,n,k| � ρ0; M is the mass of tin atom; Pm,n is
the potential energy of (m, n)th primitive cell. Six components of the displacement vectors
um,n,1 and um,n,2 define positions of two atoms in a primitive translational cell; e is the
normalized six component eigenvector (e, e) = 1; i is an imaginary unit; 0 ≤ qx, qy < 2π
are the components of the wavevector; ω is the phonon frequency.

Substitution of Equation (10) into linearized equations of motion results in the eigen-
problem whose solution gives eigenvalues ω2

j and corresponding eigenvectors ej, j = 1, ..., 6.

A flat stanene is stable if all eigenvalues ω2
j in the entire first Brillouin zone in the phonon

spectrum are positive. The first Brillouin zone is scanned with ∆qx and ∆qy steps equal
to π/100. The eigenvalue problem mentioned above is solved at each point, and if all ω2

j ,
j = 1, ..., 6 are all positive, then the flat structure is stable. If the spectrum has negative
eigenvalues, then the planar state is unstable.

The calculation of dispersion curves and stability analysis for stanene are performed
using a home-made C++ code that implements the solution of the eigenvalue problem
based on the iterative Jacobi algorithm for calculating the eigenvalues and eigenvectors of
a real symmetric matrix. The iterations stop when the maximum off-diagonal element of
the stiffness matrix becomes less than 10−5 eV/Å2.

3. Results and Discussion

Let us present the numerical results obtained for the equilibrium structure of stanene
and its stability.

3.1. Equilibrium State of Stanene

Before applying deformation, it is necessary to find the equilibrium state of the struc-
ture relative to which deformation will be applied. To do this, we change the lattice
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parameter a and independently the height of the structure h in order to find the state of
minimum energy. The process of finding this state is illustrated in Figure 2.

Figure 2. Dependence of (a) stanene height h and (b) potential energy per atom U on the lattice
parameter a during relaxation with preservation of the hexagonal structure to find the equilibrium
state. The red lines indicate the equilibrium state of the stanene structure.

The equilibrium state of stanene is characterized by the equilibrium bond length
ρ0 ≈ 2.88 Å, structure height h = 0.99 Å, potential energy per atom U ≈ −3.31 eV, and
the lattice parameter a = 2.70 Å. Recall that according to the DFT calculations [8,9], the
free-standing stanene has somewhat smaller thickness of h = 0.85÷ 0.90 Å.

Let us estimate the Poisson’s ratio of the undeformed mill. To do this, we calculate the
energy of elastic deformation per atom for three deformation states:

Let us estimate the Poisson’s ratio of the undeformed stanene. To do this, we calculate
the elastic strain energy per atom for the three strain states, state 1: εxx = ε, εyy = 0; state 2:
εxx = 0, εyy = ε; and state 3: εxx = εyy = ε, with εxy = 0 in all cases. The elastic energy
density for the plain stress conditions can be expressed through the elastic constants and
strain components as follows

U =
E

2(1− ν2)

(
ε2

xx + ε2
yy + 2νεxxεyy +

1− ν

2
ε2

xy

)
, (11)

where E and ν are the Young modulus and Poisson’s ratio. Substituting the values of strain
for the three considered strain states and eliminating E, one finds

ν =
U3

2U1
− 1 =

U3

2U2
− 1. (12)

The result for ε = 10−3 is U1 = 3.87× 10−6, U2 = 3.86× 10−6, and U3 = 9.61× 10−6 eV.
The almost equal values of U1 and U2 confirm that the stanene is elastically isotropic at small
strains. Substituting the values of energy into Equation (12), one finds ν ≈ 0.242 ≈ 0.245. DFT
results give larger values of Poisson’s ratio. In the work [67], νzigzag = 0.42, νarmchair = 0.36,
and in [68], ν = 0.395.

It should be noted that in molecular dynamics calculations, Poisson’s ratio is often
found with a larger uncertainty than Young’s modulus. For example, in the review [69],
dozens of papers on the elastic properties of graphene are analyzed, and the follow-
ing ranges of calculated Young’s modulus E = 312 ÷ 384 N/m and Poisson’s ratio
ν = 0.16÷ 0.46 are indicated.

3.2. Phonon Dispersion Curves

Our stability analysis is based on the calculation of the frequencies of small-amplitude
oscillations of stanene. It is useful to calculate the phonon dispersion curves of undeformed
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stanene and compare them with the available results. Our results for the Tersoff potential
are shown in Figure 3 and can be compared with the DFT-based results reported in [32],
see Figure 1(c) of their work. There are three acoustic and three optic branches of the
dispersion curves. We note a reasonably good agreement of the results. The maximum
phonon frequency is 6.2 THz for the Tersoff potential and about 6.0 THz from ab initio
calculations [32]. The ZA and ZO modes with out-of-plane displacements of atoms have
the lowest acoustic and optical frequencies, respectively. Longitudinal phonons (LA and
LO) have frequencies higher than transverse phonons (TA and TO, respectively) because
the shear modulus is less than the tensile modulus.

0

1

2

3

4

5

6

7

LO

TO

ZO

LA

TA

,  
TH

z

ZA

Figure 3. Phonon dispersion curves of unstrained stanene.

3.3. Stability Region of Planar Stanene under In-Plane Tensile and Compressive Strain

Figure 4 shows the stability region of a planar stanene subjected to biaxial normal
strain εxx and εyy at εxy = 0. A flat stanene is stable inside the region shown by the solid
line ABCDEFA and unstable outside this region. The postcritical behavior depends on
which boundary of the stability region is crossed when leaving the stability region. When
the CD line is crossed, atomic bonds of type 1 and 3 are broken, shown in Figure 1a. If the
DE line is crossed, then the type 2 bonds break as they are most loaded in this case. If line
ABC is crossed, then the stanene sheet experiences planar compression along the Y axis;
hence ripples are formed that are elongated along the X axis as the planar configuration
becomes unstable. Similarly, when crossing the AFE line, ripples oriented along the Y axis
appear in the stanene compressed along the X axis.

Interestingly, within the region of stability, stanene exists in two different states.
For relatively small tensile strain, stanene is buckled (h > 0), and it becomes absolutely
flat (h = 0) under sufficiently large tensile strain. These two regions are separated by the
dashed line εyy = −1.03εxx + 0.272 in Figure 4.

The change in the height of stanene in the range of stability of the planar stanene is
shown in Figure 5a. It can be seen that h decreases with increasing tensile strain εxx and εyy
and is equal to zero in the BCDEFB region.

Possible values of stanene height along the line εxx = εyy are shown in Figure 5b.
The negative value of h means that the red and black sublattices shown in Figure 1 change
the sign of the Z coordinate, Z → −Z. Suppose we have obtained an absolutely flat stanene
with a sufficiently large tensile strain. Then a decrease in the tensile strain will lead to an
approach to the bifurcation point in which the system has two energetically equivalent
paths of development. In the region of nonzero h, atoms belonging to the red and black
sublattices can have coordinates Z > 0 and Z < 0, respectively, or vice versa. In the first
case, h > 0, and in the second case, h < 0. The red dashed line in Figure 5b shows an
absolutely flat stanene, which is unstable after crossing the bifurcation point as the tensile
strain decreases.
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The fact of the existence of two energetically equivalent states implies the possibility
of the existence in stanene of domains separated by domain walls.

Figure 4. Stability region of planar stanene under normal strain components εxx and εyy at εxy = 0.
Inside the region ABCDEFA, planar stanene is stable. Dotted line separates the regions of buckled
stanene (h > 0) and absolutely flat stanene (h = 0). The transition line is εyy = −1.03εxx + 0.272.

Figure 5. (a) Stanene height change in the planar stanene stability region. In the ABFA region, stanene
is buckled (h > 0), and in the CDEC region, it is absolutely flat (h = 0); (b) bifurcation diagram
showing a possible change in the height of the stanen along the line εxx = εyy.

3.4. Comparison of the Stability Regions of Stanene and Graphene

In the literature, the stability regions of graphene were described [48,70] using the
Savin potential [49] and the modified Brenner potential [65,71], and here we compare our
results for stanene with existing results for graphene. Note that the accuracy of various
interatomic potentials for graphene have been assessed in the work [54]. It was proved that
the Savin potential reproduces many properties of carbon structures well [72–75].

A comparison of the stability regions of stanene and graphene is shown in Figure 6.
At first glance, the stability regions of stanene and graphene are similar, but there are
some important differences between them. The most striking difference is that stanene
exists in a buckled and absolutely flat configuration, while graphene is flat throughout its
stability range.
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Figure 6. Comparison of stability regions of planar stanene (St, black line) and graphene obtained
using Savin’s potential [49] (GrSav, red line) and Brenner’s potential (GrBr, blue line) [65,71].

Another important difference is that buckled stanene allows very little negative strain,
unlike graphene, which remains flat in a range of negative values of εxx at large positive
values of εyy and in a range of negative values of εyy for large positive εxx. Note that
absolutely flat stanene, like graphene, has regions of stability under negative strains. Based
on this, it can be concluded that absolutely flat stanene has similar properties to graphene,
while buckled stanene behaves differently. This can be explained by the difference in
Poisson’s ratio of buckled stanene and graphene.

The fact that the stanene is stable under greater biaxial tension with εxx = εyy can be
explained by stanene stretching due to flattening.

3.5. Region of Stability of Planar Stanene and Graphene in the Presence of Shear Strain

The effect of shear strain on the stability regions of graphene and stanene is presented
in Figure 7a and Figure 7b, respectively. The borders of stability regions of planar structures
are shown as black, red, and blue lines for εxy = 0.0, 0.15 and 0.3, respectively.

Both graphene and stanene stretched along the armchair direction (i.e., along the
Y axis) retain greater stability when shear strain is applied. However, as εxy increases,
the stability region of graphene narrows along the strain component εxx and shrinks
towards the center, while the stability region of stanene reduces from the right and from
the bottom.

It is also interesting to look at the structure of strained stanene; for this, two points, A and
B, shown in Figure 7b were chosen. Point A corresponds to biaxial strain εxx = εyy = 0.118
and point B to uniaxial strain εxx = 0, εyy = 0.3. The effect of addition of shear strain εxy on
the stanene structure will be analyzed.

In Figure 8a, it can be observed that the structure at εxy = 0 retains the hexagonal
symmetry under biaxial tension. This symmetry is lost after application of shear stain, see
(c) and (e). Figure 8 also shows that the height of the structure decreases with increasing
shear strain, cf. (b) with (d) and (f).
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Figure 7. The effect of shear strain on the stability region of planar graphene (a); and stanene (b).
Results for εxy = 0.0, 0.15 and 0.3 are plotted by the black, red, and blue lines, respectively. Panel (b)
also shows the points A and B chosen for the analysis of the stanene structure.

In Figure 9a, it can be seen that under tension along the armchair direction with zero
shear strain the hexagons are elongated along the Y axis. In (c) and (e), in the presence
of the shear strain component, the elongated hexagons are tilted. In point B, stanene is
absolutely flat for any value of the shear strain, see (b), (d), and (f).

Parameters of the structures at points A and B marked in Figure 7b are presented in
Table 2 for different values of shear strain. Valence bonds and valence angles are defined
in Figure 1b. It can be seen that at point A for εxy = 0 all valence angles are equal and
all valence bonds have the same length. The equality disappears when a shear strain is
applied. At point B at εxy = 0 all three bond angles are different, and all three bonds have
different lengths.

The penultimate column of Table 2 shows that the potential energy per one atom is
greater for stanene at point B compared to point A. The last column of Table 2 shows the
thickness of the stanene for all considered strain states. In point B, stanene is absolutely flat
for all three considered strain states.
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Figure 8. The structure of stanene at point A shown in Figure 7b for the three values of shear
strain: (a,b) for εxy = 0; (c,d) for εxy = 0.15, and (e,f) for εxy = 0.3. Other components of strain are
εxx = εyy = 0.118.

Table 2. Parameters of the structures at points A and B marked in Figure 7b. Valence bonds and
valence angles are defined in Figure 1b. The potential energy per atom U and the height of stanene h
are also given.

Point εxy
Angles in Degrees Bond Length in Å

U (eV) h (Å)
ϕ1 = τ3 ϕ2 = τ1 ϕ3 = τ2 1 2 3

A

0.0 119.20 119.20 119.20 3.027 3.027 3.027 −3.11 0.32

0.15 119.01 128.44 110.12 3.108 3.038 2.973 −3.06 0.27

0.3 119.02 138.71 102.27 3.208 3.039 2.911 −2.88 0.0

B

0.0 101.66 130.19 112.15 3.043 3.360 2.989 −2.73 0.0

0.15 101.37 138.98 119.65 3.090 3.366 2.970 −2.72 0.0

0.3 100.66 148.08 111.26 3.215 3.381 2.924 −2.60 0.0
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Figure 9. The structure of stanene at point B shown in Figure 7b for the three values of shear strain:
(a,b) for εxy = 0; (c,d) for εxy = 0.15, and (e,f) for εxy = 0.3. Other components of strain are εxx = 0.0,
εyy = 0.3.

4. Conclusions and Future Work

By finding the vibration frequencies of tin atoms in equilibrium stanene, the stability
region of a planar structure was found in the space of strain components εxx, εyy, and εxy,
see Figures 4 and 7b. The results were compared to the stability region of homogeneously
strained graphene reported in [48,70], see Figures 6 and 7a. Stanene was simulated with
the use of the Tersoff potential [62] and graphene with the Savin [49] and Brenner [65,71]
potentials. The accuracy of the potentials was discussed in [54,72–75]. The accuracy of
the potential at not very large atomic displacements can be estimated by comparing the
phonon dispersion curves shown in Figure 3 with those calculated on the basis of the DFT
theory [32]. As already mentioned, the agreement between the dispersion curves calculated
using the Tersoff potential and those calculated ab initio is quite good. The accuracy of the
Tersoff potential at large values of strain may not be as good because the dispersion curves
are calculated for the linearized equations of motion.

It was demonstrated that the stanene is buckled, has a nonzero thickness h under
a small stretch, and becomes absolutely flat under a sufficiently large stretch, namely,
for εyy > −1.03εxx + 0.272, see Figure 4. Stanene height as the function of εxx and εyy is
presented in Figure 5. Actually, Figure 5b shows the bifurcation diagram where negative
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h means that the red and black sublattices shown in Figure 1 change the sign of the Z
coordinate, Z → −Z. The fact of the existence of two energetically equivalent states (with
positive and negative h) implies the possibility of the existence in stanene of domains
separated by domain walls.

In a future work, the combined effect of deformation and temperature on the stability
of stanene will be analyzed (in this work, the temperature effect was neglected). The struc-
ture and energy of domain walls, the existence of which was predicted in this work, will be
investigated. Postcritical ripples in stanene under in-plane compression will be studied
in accordance with the works [36,70,76]. Of interest are also the mechanical properties
of stanene nanotubes and nanotube bundles similar to their carbon counterparts [77–79].
The propagation of a shock wave in stanene may have interesting features due to the
nonzero thickness [80].
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