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Abstract: In this work, the electrical parameters of the polycrystalline diamonds’ p-PCD/n-Si het-
erojunction were investigated using temperature-dependent current–voltage (I-V) characteristics.
In the temperature range of 80–280 K, the ideality factor (n) and energy barrier height (ϕb) were
found to be strongly temperature dependent. The ϕb increases with temperature rise, while the n
value decreases. The observed dependencies are due to imperfections at the interface region of a
heterojunction and the non-homogeneous distribution of the potential barrier heights. Values of the
ϕb were calculated from I-V characteristics using the thermionic emission theory (TE). The plot of
ϕb versus 1/2 kT revealed two distinct linear regions with different slopes in temperature regions
of 80–170 K and 170–280 K. This indicates the existence of a double Gaussian distribution (DGD) in
heterojunctions. Parameters such as mean barrier heights ϕb and standard deviations σwere obtained
from the plots linearization and read out from intercepts and slopes. They take values ϕb = 1.06 eV,
σ = 0.43 eV, respectively. The modified Richardson plot is drawn to show the linear behavior in these
two temperature ranges, disclosing different values of the effective Richardson constants (A*).

Keywords: Raman spectroscopy; XRD; polycrystalline diamond film; p-PCD/n-Si heterojunction;
I-V characteristics; energy barrier height; ideality factor

1. Introduction

The polycrystalline diamond layers obtained by the chemical vapor deposition meth-
ods (CVD) are attractive materials for the development of high-temperature, high-frequency,
and high-power electronic devices, due to their significant properties, such as wide bandgap
(5.45 eV at room temperature), high breakdown field (5–10 × 106 V/cm), and high electron
saturation velocity (vs = 1.5–2.7 × 107 cm·s−1) [1].

These bulk properties of diamond make it interesting for high-power and high-
frequency electronic applications. Unipolar electronic devices, such as diodes or transistors,
are of great interest, but their electronic performance is sensitive, among others, to surface
terminations. Up to now, H- and O-terminated surfaces are the most frequently used for
diamond power devices [2–5].

Although diamond exhibits several intriguing physical properties, due to a polycrys-
talline structure, the performance of CVD diamond-based devices may be hampered by
a high concentration of structural defects and admixture of the non-diamond phase. We
believe that the electrical conductivity of diamond layers will depend on a graphite-like
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admixture located mainly on the surface of microcrystallites and therefore on the size of
the microcrystallites themselves. Additionally, the diamond layers obtained by CVD meth-
ods are generally highly hydrogenated, which also has a large impact on their electrical
conductivity as well [6–8]. It is now well established that a hydrogen-terminated diamond
surface exhibits p-type conduction in a subsurface layer without doping [8], with carrier
density around 1010–1013 cm–2 [9]. H-terminated diamond has been extensively used,
among others, for Schottky diodes construction. For the latter, H-diamond-based diodes
have been demonstrated to have lower Schottky barrier height values in comparison to
O-diamond-based Schottky diodes [10]. The electrical characteristics of the polycrystalline
diamonds (PCD) p-PCD/n-Si heterojunction are determined by the energy barrier height
at the interface and can depend on the surface preparation before the diamond synthesis
process. An imperfect surface interface could cause heterogeneity, leading to non-ideal
diode behavior [11,12]. This non-ideality includes the measurement of diode ideality factors
(n) and barrier heights (BHs) at different temperatures.

The analysis of I-V-T characteristics of heterojunction shows an increase in barrier
height and a decrease in the ideality factor, with a temperature increase [13]. The nature
of such behavior has been successfully explained based on thermionic emission, (TE)
theory with the assumption of a Gaussian distribution (GD) of barrier heights [14,15]. Such
a distribution can be caused by inhomogeneities of the BHs at the p-PCD diamond/n-
Si interface and can be explained by structural imperfection and by surface states. At
lower temperatures, the current predominantly flows through regions with the lower BH,
increasing the ideality factor, and at higher temperatures, region carriers can overpass a
higher barrier, and the n tends to lower values.

Due to the modesty of scientific reports on the properties of n-Si/diamond heterojunc-
tions based on undoped polycrystalline, we decided to undertake this type of research.
In the present study, the forward bias I-V characteristics of p-PCD/n-Si heterojunction
were measured in the temperature range of 80–280 K. The temperature-dependent barrier
height and modified Richardson plot offer good straight lines in two temperature ranges,
i.e., 80–170 K and 170–280 K. The resultant temperature dependences have been explained
based on the existence of Gaussian distributions of the barrier heights around mean val-
ues due to the p-PCD/n-Si interface. The parameters of Gaussian distribution functions,
i.e., mean value of barrier heights ϕb and σwere calculated based on I-V-T characteristics.
The novelty of the present research is that it concerns the research on the properties of
diamond/silicon heterojunctions based on undoped polycrystalline diamond layers, which
act as a p-type semiconductor. The p-type electrical properties of this material result from
the termination of diamond microcrystallites with hydrogen.

2. Materials and Methods

The undoped polycrystalline diamonds have been synthesized by using the hot fil-
ament chemical vapor deposition (HF CVD) method. The mixture of CH3OH/H2 was
applied as a working gas. The films were synthesized on (111) oriented n-type Si substrate
with a resistivity of 3.5 Ω cm. The apparatus’s reaction chamber consisted of a stainless steel
tube with an internal diameter of 50 cm and was cooled by water. A tungsten filament with
2 mm distance from the substrate, heated up to 2100 ◦C, was used for thermal activation
of the working gas mixture of methanol and hydrogen (CH3OH/H2 = 1 vol.%). The pa-
rameters of the growth process were as follows: the total pressure in the reaction chamber
of p = 80 mbar, the substrate temperature of 1000 K, and the working gas flow rate of
100 sccm. The 99.99 purity methane and hydrogen gases were supplied by The Linde Gaz
Group company. Before starting the diamond microcrystal growth process, the Si substrate
was washed in acetone and then ethanol in an ultrasonic bath. To grow the continuous
diamond layer, the substrate was mechanically polished to create surface defects, working
as diamond nucleation centers, allowing the growth of a continuous polycrystalline layer.

The morphology of obtained diamond layers was studied by scanning electron mi-
croscopy (SEM) (JEOL JSM-820), Akishima, Japan. In turn, the phase purity was character-
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ized by Raman spectroscopy. The Raman spectra were recorded at room temperature in
backscattering geometry using Renishaw inVia Raman spectrometer (Renishaw confocal
imaging systems), Great Britany, UK. The 488 nm argon laser line was used for excitation.
The Raman measurements were made with an accuracy of 1 cm−1. The J-V-T measurements
were performed in a configuration of the p-diamond/n-Si heterojunction. The electrical
contacts were formed by depositing gold dots of 5 mm in diameter by thermal evaporation
on the diamond surface and back of the Si substrate. More details can be found in our
earlier paper [6].

3. Results
3.1. Surface Morphology Analysis

The SEM images of the studied diamond film are shown in Figure 1. At the bottom of
the cross-section of diamond (Figure 1a), one can notice that there are distinct individual
nanocrystallites that function as nucleation centers. After the nucleation stage, diamonds
start to grow in the vertical direction along the fastest growing planes prevalent among
the crystals. The resultant as-grown surface has remarkably high roughness due to the
difference in heights of the growing columns, Figure 1b. The surface morphology shows an
octahedral character. The cross section shown in Figure 1c discloses the PCD layer thickness
and substrate as well. The scheme of the developed device is presented in Figure 1d.
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Figure 1. SEM images analysis of (a) cross-section of the diamond layer, (b) the surface morphology,
(c) cross section of p-PCD/n-Si heterojunction, and (d) a two-dimensional schematic cross section of
the heterojunction.

3.2. Raman Spectroscopy and XRD

The Raman and XRD spectra of the diamond layer are shown in Figure 2. Figure 2a
shows a strong diamond line peaked at 1332 cm−1, i.e., close to the theoretical value for the
sp3-hybridized diamond carbon phase. The full width at half of the maximum (FWHM)
for a well-crystallized diamond sample is 7.8 cm−1. This is an indication of the excellent
quality of the diamond layer. Figure 2b shows the Raman’s map of the FWHM on an area
of 100 µm2. There is a generally accepted convention that the value of the FWHM greater
than 12 cm−1 means a poor quality diamond, and a value lower than 12 cm−1 of a diamond
layer is considered good quality [16]. The Raman spectrum displays also a broad band
peaked at 1544 cm−1 corresponding to the non-diamond carbon form with the predominant
sp2-hybridization. As can be seen from Figure 2a, the Raman lines are superimposed on a
broad luminescent background, indicating that the diamond layer is hydrogenated. The
hydrogen in diamond layers is responsible for its p-type surface conductivity [17]. The
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purity of the diamond layers was estimated according to the procedure described in our
earlier paper [18] and was equal to 98.8%. It means that diamond quality is superb because
the sp2 admixture is below 1.2%.
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Figure 2. The structural analysis of diamond layers, (a) the Raman spectrum, in the insert, details of
the diamond peak, (b) Raman’s mapping of the FWHM, (c) XRD diffractogram of the investigated
diamond, and (d) details of the two most prominent diffraction peaks.

The final morphology of the PCD layer depends on the preferential growth direction
of microcrystals in the diamond layers. It is known that in different crystallographic
orientations, the density of defects generated during the growth process depends on the
growth direction [19]. The XRD diffraction pattern shows three main reflections from (111),
(220), and (331) crystal planes. The diffraction patterns were compared with the JCPDS No.
6-0675 file. As can be seen in Figure 2d, the diffraction peaks are narrow. The FWHM is
lower than 0.15 degrees. This confirms the good quality of the diamond layers. The texture
analysis allows us to estimate the texture coefficients, which are as follows: 6%, 81.3%, and
12.7%, respectively, for Tc(111) Tc(220), and Tc(331). It means that our diamond layers have
(220) preferential orientation.

3.3. Diodes Characteristics

The I-V characteristics of the p-PCD/n-Si heterojunction were measured in the tem-
perature range from 80 to 280 K. They are shown in Figure 3. At 280 K, the heterojunctions
showed a rectifying character. The rectification ratio is approximately about two orders of
magnitude at bias voltages of ±3 V, and confirms that a p-n diode is formed at the interface
of the p-PCD/n-Si. According to the TE theory, the forward current is a function of the
voltage and temperature according to the equation

J = A∗T2 exp
(
− qϕb

kT

)[
exp
(

qV
nkT

)
− 1
]

, (1)
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Figure 3. I-V-T characteristics of p-PCD/n-Si heterojunction.

This equation can be simplified by removing the term (−1) which is justified when
V � 3 kT/q, i.e., for V in the range of 0.1–0.4 V, which gives [20]

J = J0

[
exp
(

qV
nkT

)]
(2)

where A∗ is the Richardson constant, T is the temperature, q is the electronic charge, ϕb is
the effective barrier height, k is the Boltzmann constant, V is the bias, and n is the ideality
factor (for the ideal device n = 1), which is a dimensionless value. From the linear part of
the plot of ln(J)–V usually in the range of 0–0.4 V, one can estimate the saturation current J0
and the ideality factor n,

n =
q

kT
dV

d(lnJ)
(3)

The value of the ideality coefficient is usually greater than one and may reach values
even greater than 20 [21]. This is attributed to the presence of structural defects in the
interfacial part of the heterojunction or series resistance, which influence the charges
localization effect. Higher values reflect how much the energy of the biasing electric field
has to be reduced in comparison to the thermal energy. However, a good and important
explanation can be barrier inhomogeneities as well [22]. In particular, the large ideality
factors already attracted attention very early [23,24] and are still being discussed. Previous
explanations of high ideality factor values were based on trap-assisted tunneling or field-
enhanced recombination via isolated point defect levels [25].

The ideality factor and saturation current versus inverse temperature are shown in
Figure 4a,b, respectively. As it is seen the ideality factor, n increases with decreasing
temperature, while the reverse saturation current decreases. It is generally assumed that
if the n is equal to one, the carriers freely cross the junction using the thermal diffusion
process [26]. However, at a lower temperature, the process can be disturbed by the stronger
localization effect on the defects, and this is reflected by the n rise. Figure 4b clearly shows
the existence of two different values of the slopes of the graph J0 vs. 1/2 kT in the range of
lower (80–170 K) and higher (170–280 K) temperatures. This may indicate the occurrence of
at least two types of interface states in the heterojunction [27].
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Figure 4. The temperature dependence of the experimental (a) ideality factor n, and (b) the reverse
saturation current of the diode for Au/p-PCD/n-Si/Au structure.

The saturation current, J0(T) is given by the formula [26,28]:

J0 = A∗T2 exp
(
− ϕb

kT

)
. (4)

From the slope of Richardson’s plot, i.e., versus 1000/T presented in Figure 5, one
can estimate the so-called zero-bias barrier height ϕb0. As seen, the plot reveals behavior
that the entire range of measured temperatures can be divided into two different regions:
linear in higher temperature ranges and region where the dependence deviates from
linearity assumed by the TE theory. Such discrepancy is associated with the potential
barriers’ inhomogeneities. The interface is not atomically flat but rough, with the result
of spatial fluctuations. Thus, it cannot be described by classical TE theory assuming the
existence of a single potential barrier. However, it can be explained by the model proposed
by Werner et al. [11]. The deviation of the Richardson plot from linearity indicates the
temperature dependence of the BH and its inhomogeneity caused by potential fluctuations
at the interface [29–31].
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Solving Equation (4), the barrier heights can be derived from the relation [30]:

ϕb =
kT
q

ln
(

A∗T2

J0

)
. (5)

The calculated values of ϕb as a function of 1/2 kT are presented in Figure 6. The
observed relation suggests the existence of two different barrier height distributions [32].
The increase in ϕb, with the temperature rise, is related to the presence of trap states
in the interfacial layer. Due to the negative value of electrons’ affinity for the diamond
structure [31], thermally emitted charges from the n-Si surface create a depletion layer
with higher potential. According to Sullivan et al. [33], the barriers consist of laterally
inhomogeneous patches of different barrier heights. The patches with lower barrier height
yield a larger ideality factor and vice versa. There is indicated the temperature dependence
of a density of interface states [6]. The inhomogeneity due to potential fluctuations can be
described using the Gaussian distribution function of the barrier height around an average
value. Hence, the total saturation current J0 can be expressed by the formula [13]

J0 = A∗T2
∫ ∞

0
A(ϕb) exp

(
− qϕb

kT

)
dϕb (6)

where A(ϕb) is a distribution function that describes the Schottky barrier inhomogeneities.
Taking into account that the barrier variability can be approximated with two lines, in
Figure 6, the distribution function can be assumed to be the sum of two Gaussians as is
described in the following relation:

A(ϕb) =
A1

σ1
√2π

exp

[
− (ϕb − ϕb1)

2

2σ2
1

]
+

A2

σ2
√2π

exp

[
− (ϕb − ϕb2)

2

2σ2
2

]
. (7)
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The parameters ϕbi and σ2
i (i = 1,2) of distribution functions can be obtained using the

formula [22]

ϕb = ϕbi −
qσ2

i
2kT

. (8)

The plot of ϕb shown in Figure 6 allows estimating two parameters of the distribution
function, average values ϕbi of the BH and the standard deviation σi. They are as follows:
BHs 0.6 eV and 1.06 eV and σ 0.0762 eV and 0.43 eV for lower 80 K–170 K and higher
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170 K–280 K temperature ranges, respectively. The good fit of the experimental points by
straight lines presented in Figure 6 confirms the hypothesis of the DGD of potential BHs.

Combining Equations (4) and (8), we obtain

ln
(

J0

T2

)
−

q2σ2
i

2k2T2 = ln(AA∗)−
ϕbi
kT

. (9)

This equation called the modified Richardson’s relation allows the estimation of the
Richardson’s constant A* and amplitudes of the double Gaussian distribution function as
well. Its plot versus inverse temperature produces again the straight line with the slope
of the average barrier’s height. Yet, the intercept at the ordinate designates the A* value.
Using Equation (9) to both temperature ranges gives the A* as 6.7 × 10−3 A cm−2 K−2 and
2.3 × 10−3 A cm−2 K−2, respectively, to higher and lower temperature ranges. Results are
shown in Figure 7. Two different values of the Richardson constants result from the fact
that, depending on the temperature range, we have two different Gaussian barrier potential
distributions. The obtained values of Richardson’s constants are much smaller than the
theoretical one of 90 A cm−2 K−2 [34]. The values of the Richardson’s constants reported
in the literature [4,35–37] are in the wide range of 1.0995–1.9 × 10−9 A cm−2 K−2. To date,
the problem of the measured Richardson’s constant values for several types of junctions
has not been properly explained. However, to obtain a good fit, the Gaussian amplitudes
need to be arbitrarily chosen. They undergo the normalization condition A1(ϕb1) + A2(ϕb2)
= 1. Finally, estimated values are 0.64 and 0.36, respectively, for both Gaussian functions at
higher and lower temperature ranges.
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Figure 7. The modified Richardson’s plot.

Based on the research carried out, it can be said that the ideality factor increases
with the temperature decrease, while the height of the potential barrier decreases. At the
higher temperature range, where the n is close to one, charges are subjected to a thermally
diffusive process with a higher value of average potential and emission Richardson’s
constant as well. A gradual temperature decrease results in parameter change, presumably
due to the charges localization effect at interstitial defects. In the case of this study, it
was found a 170 K temperature for the abrupt parameters change. Below and above this
temperature, the averaging needs to be calculated around other values due to the impact of
the stronger influence of the localization effect at lower temperatures. Localized charges
have an influence on each aspect of current carriers’ transport through the heterojunction:
the ideality factor, barrier’s height, and barrier homogeneity, as well as the series resistance
Rs [6,7].
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4. Conclusions

In the present work, the heterojunctions of p-type PCD/n-Si were developed. PCD
film was grown by the HF CVD method, while the n-type Si substrate is a commercially
available single crystal. The structural properties of the diamond layer were character-
ized by SEM, Raman spectroscopy, and XRD. The J-V-T characteristics were measured
in the temperature range of 80–280 K. From the J-V-T curves, the junction parameters,
i.e., the ideality factor n and the height of the potential barrier ϕb, were computed using
the TE theory. Through the TE theory, the value for the n varies from 2.7 at 280 K to
8.7 at 80 K, while ϕb increases with temperature. Due to the assumed inhomogeneity of
the heights of the potential barriers, the range of the temperature changes was divided
into two ranges. The obtained average values of ϕb in lower 80 K–170 K, and higher
170 K–280 K temperature ranges are 0.6 eV and 1.06 eV, respectively. The averaging was
performed by the double Gaussian distribution function. Its parameters are as follows:
amplitudes of 0.64 and 0.36 and standard deviations of 0.43 eV and 0.0762 eV, respectively,
to higher and lower temperature ranges. This procedure allows the linearization of the
modified Richardson’s relation and the estimation of Richardson’s constant A*. They
take values of 6.7 × 10−3 A cm−2 K−2 and 2.3 × 10−3 A cm−2 K−2, respectively, to higher
and lower temperature ranges. In our opinion, the division in two temperature ranges is
caused by the charge localization influence on interfacial defects. This effect is stronger at
lower temperatures.
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8. Łoś, S.; Paprocki, K.; Fabisiak, K.; Szybowicz, M. The influence of the space charge on The Ohm’s law conservation in CVD

diamond layers. Carbon 2019, 143, 413–418. [CrossRef]
9. Hayashi, K.; Yamanaka, S.; Okushi, H.; Kajimura, K. Study of the effect of hydrogen on transport properties in chemical vapor

deposited diamond films by Hall measurements. Appl. Phys. Lett. 1998, 68, 376. [CrossRef]
10. Baumann, P.K.; Nemanich, R.J. Electron affinity and Schottky barrier height of metal–diamond (100), (111), and (110) interfaces. J.

Appl. Phys. 1998, 83, 2072. [CrossRef]
11. Werner, J.H.; Güttler, H.H. Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 1991, 69, 1522–1533. [CrossRef]
12. Iucolano, F.; Roccaforte, F.; Giannazzo, F.; Raineri, V. Barrier inhomogeneity and electrical properties of Pt/GaN Schottky contacts.

J. Appl. Phys. 2007, 102, 113701. [CrossRef]

http://doi.org/10.1016/S1369-7021(07)70349-8
http://doi.org/10.1016/j.diamond.2004.12.043
http://doi.org/10.1016/j.tsf.2006.07.179
http://doi.org/10.1063/1.4864060
http://doi.org/10.1063/1.2643374
http://doi.org/10.3390/s21186113
http://doi.org/10.3390/ma14216615
http://doi.org/10.1016/j.carbon.2018.11.043
http://doi.org/10.1063/1.116690
http://doi.org/10.1063/1.366940
http://doi.org/10.1063/1.347243
http://doi.org/10.1063/1.2817647


Materials 2022, 15, 5895 10 of 10

13. Güçlü, Ç.; Özdemir, A.F.; Altindal, Ş. Double exponential I–V characteristics and double Gaussian distribution of barrier heights
in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range. Appl. Phys. A Mater. Sci. Process. 2016,
122, 1032. [CrossRef]
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