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Abstract: This paper deals with the adsorption of heavy metal ions on the surface of carbonaceous
materials obtained via the chemical activation of biomass. Waste plum stones, pine sawdust and
horsetail herb were used as the precursors of carbonaceous adsorbents. The effect of the precursor
type and preparation procedure on the physicochemical properties of activated biocarbons and their
sorption abilities towards Pb(II) and Cu(II) ions have been checked. The obtained micro-mesoporous
activated biocarbons were characterized by determination of elemental composition and ash content,
the number of surface functional groups and pH of water extracts as well as textural study based on
low temperature nitrogen adsorption/desorption and scanning electron microscopy. Additionally,
the electrokinetic studies including solid surface charge density and zeta potential determination
were performed. Moreover, the adsorption data modelling (equilibrium and kinetics), XPS results
analysis and comparison of parameters characterizing electrical double layer formed at the solid-liquid
interface enabled the specification of the mechanism of heavy metals binding with the activated
biocarbons surface. The maximum adsorption capacity towards copper and lead ions (177.5 and
178.1 mg/g, respectively) was found for plum stone-based activated biocarbon. For all carbonaceous
materials, better fit to the experimental data was achieved with a Langmuir isotherm than a Freundlich
one. In turn, a better fit of the kinetics data was obtained using the pseudo-second order model.

Keywords: activated biocarbons; chemical activation; waste biomass utilization; heavy metal ions
removal; Pb(II) and Cu(II) adsorption; physicochemical and electrokinetic properties

1. Introduction

Environmental pollution and degradation are some of the most serious problems all
over the world. New methods of wastewater treatment and recycling should be found in
order to limit the impact of human activity on the natural environment. Searching for new,
renewable materials useful for industry and science is necessary because of the depleting
resources of raw materials. Waste biomass pyrolysis and/or activation are the processes
which make all the above possible and have a positive influence on the environment.
Decreasing the greenhouse gas emissions as the result of decay process and reducing
the amount of stored waste are the result of biomass processing. Bio-oil, biochar and
pyrolytic gas are useful products formed during this process [1]. In this way, we can reduce
the storage or incineration of such waste as fruit stones, nut shells, sawdust, corn cobs,
sunflower husks, straw or herbal herbs [2–4].

Biochars (the main products of biomass pyrolysis) are widely used as adsorbents of
different inorganic and organic impurities from liquid phase. Additionally, the ease of
their activation and modification allows for the significant development of their porous
structure and functionalisation of the surface. Metal ions, synthetic dyes, phenols, amines
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or pharmaceuticals are commonly adsorbed on the biochars, activated biocarbons (prod-
ucts of physical and chemical activation of biomass) or different kinds of carbon-based
nanocomposites [5–13]. These materials are low-cost adsorbents and they can be easily
regenerated. Moreover, due to their natural origin, they are environmentally friendly
adsorbents and their disposal is not troublesome.

Lead is one of the most dangerous inorganic pollutants present in water and soil. It is
slightly soluble in water, but it is well adsorbed on the surface of soil and sludge, which
causes its high availability for living organisms. Lead serves no useful biological function
in human body. The metal enters it through ingestion, inhalation or skin contact. The
biochemical basis for lead toxicity is its ability to bind the biologically-important molecules,
thereby interfering with their function by various mechanisms [14]. Many remediation
techniques are being developed for the lead ions extraction from water and soil, however
adsorption seems to be the highest effective and economically justified method. Two
mechanisms of lead adsorption are possible-ion exchange and complexation [15]. Many
adsorbents could be used in this process including biochars and activated biocarbons.

Copper is an essential element for life; however its high concentration can be toxic. It
is used in jewellery, medicine, cosmetics and the metallurgical industry. Copper is applied
as a feed additive due to its growth-promoting effect [16]. Due to these properties, copper
should not get into the environment in an uncontrolled manner. One of the most effective
ways of its removal from aqueous solution is adsorption on the carbon-based materials
surface [17,18].

Therefore, the conducted research was aimed at the synthesis of three types of acti-
vated biocarbons and their application in the process of Cu(II) and Pb(II) ions removal
from aqueous solutions. Different precursors of activated biocarbons were applied, namely
domestic plum stones, pine sawdust and horsetail herb. The activated biocarbons obtained
via chemical activation were characterized in terms of their texture, elemental composition
and acidic-basic properties. The mechanism of heavy metals ions adsorption was deter-
mined on the basis of a collective analysis of the adsorption results (including modeling
of isotherms and process kinetics), XPS data, as well as electrokinetic results including
determination of surface charge density and zeta potential of the examined solids.

2. Materials and Methods
2.1. Materials

The precursors of the activated biocarbons were: plum stones (Prunus domestica)
crushed to a size of 1.0 mm, pine sawdust (Pinus sylvestris L.) with a particle size of 5 mm
and horsetail herb (Equisetum arvense) cut into pieces with a length of 10 mm. All of the
materials came from the Wielkopolska region (Poland). For each of the starting materials,
a slightly different activation procedure was applied: (1) Plum stones (P) were firstly
subjected to pyrolysis process at 500 ◦C for 60 min under nitrogen atmosphere (flow rate
of 10 dm3/h). Next, the obtained char was physically mixed with the freshly ground
potassium hydroxide (POCh) at the weight ratio of 4:1 and subjected to heat treatment at
700 ◦C for 30 min under a stream of nitrogen with a flow rate of 20 dm3/h. (2) Pine sawdust
(S) were at the beginning impregnated with a solution of urea (Chempur) at the weight ratio
of 1:1, dried to constant mass at 110 ◦C and then subjected to pyrolysis step at 700 ◦C for
60 min (nitrogen flow of 10 dm3/h). The char obtained was impregnated with potassium
carbonate (POCh) at the weight ratio of 2:1, dried to constant mass at 110 ◦C and finally
subjected to thermal treatment at 700 ◦C for 45 min, under nitrogen atmosphere (flow
rate of 20 dm3/h). (3) In turn, the horsetail herb (H) was directly subjected to a chemical
activation process, that is, without the pyrolysis stage. The precursor was impregnated
with potassium carbonate solution (POCh) at the weight ratio of 2:1, dried to constant
mass at 110 ◦C and subjected to thermal treatment at 800 ◦C for 30 min, under nitrogen
atmosphere (flow rate of 20 dm3/h). The products of activation were subjected to two-
steps washing procedure, firstly with hot 5% solution of hydrochloric acid (Chempur)
and later with hot demineralised water until it became free of chloride ions. The washed
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activated biocarbons were dried at 110 ◦C to constant mass and labelled as PAC, SAC
and HAC, respectively.

The salts Pb(NO3)2 (Sigma-Aldrich, St. Louis, MO, USA) and CuSO4·5H2O (POCh)
were used as a source of metal ions. The stock solutions with a concentration of 1000 ppm
were obtained by dissolving these salts in redistilled water using 1 dm3 flasks and stored in
a fridge. The NaCl solution (POCh) with concentration 0.001 mol/dm3 was used as the
basic electrolyte. The HCl (Chempur) and NaOH (POCh) solutions with concentrations
ranging from 0.01 to 1 mol/dm3 were used to the adjustment of the solution pH. The
PAR reagent (4-(2-pyridylazo) resorcinol) and ammonium buffer (pH = 10) from Sigma-
Aldrich were applied for the determination of Pb(II) ions concentration, whereas in case
of Cu(II) ions 25% ammonia solution (Sigma-Aldrich) was used. All reagents were of
analytical grade.

2.2. Adsorption Experiments

In order to obtain calibration curves, solutions with final concentrations of lead(II) and
copper(II) ions changing in the range of 1–200 mg/dm3 were prepared. The appropriate
volume of the initial Pb(II) or Cu(II) solution and the NaCl basic electrolyte (with initial
concentration 0.1 mol/dm3) were added to each solution and next they were filled to the
required volume with redistilled water.

For the determination of lead(II) concentration in the solution, a spectrophotometric
method was used, based on the reaction of Pb(II) cations with 4-(2-pyridylazo) resorcinol
(PAR) in an alkaline environment. As a result of this reaction, a stable red chelate complex
is formed, the intensity of which is proportional to the content of lead(II) cations in the
solution [19]. According to this procedure, 5 cm3 of the obtained lead(II) solution was
introduced into 25 cm3 flask, next 4 cm3 of PAR reagent and 10 cm3 of ammonium buffer
(pH = 10) were added and made up to the mark with redistilled water. Then its absorbance
was measured at λ = 520 nm using a Varian UV/VIS Cary 100 spectrophotometer (Palo
Alto, CA, USA) coupled with a computer.

The content of copper(II) ions was determined using the reaction between Cu2+ cations
and ammonia, the product of which is a complex compound [Cu(NH3)4]2+ with an intense
blue color [20]. In order to determine these ions concentration, 10 cm3 of the obtained Cu(II)
solution was placed into 25 cm3 flasks and 1 cm3 of 25% ammonia solution was added.
Such prepared solution was made up to the mark with redistilled water. The absorbance of
the samples was measured at λ = 608 nm.

For the determination of adsorbed amounts of heavy metal ions and kinetics of
their adsorption the analogous procedures were applied. These experiments were per-
formed at pH 5 at 25 ◦C in the heavy metal ions concentration changing in the range
1–200 mg/dm3 using the following weights of activated biocarbons: 0.012 g of PAC, 0.02 g
of SAC and 0.024 g of HAC (per 20 cm3 of the solution). The prepared suspensions
were shaken in a OLS 200 shaking water bath (Grant Instruments, Cambridge, UK). Af-
ter 24 h of adsorption, the solids were centrifuged using the MPW 233e type centrifuge
(MPW Med. Instruments, Warsaw, Poland) and then the clear filtrates were collected for
spectrophotometric analysis. Based on the difference in the initial concentrations of the ex-
amined ions and their concentrations after the adsorption process, their adsorbed amounts
were calculated:

qe =
(C0 − Ce)

m
· V (1)

where: C0 and Ce—heavy metal ions concentrations in the solution before adsorption
and at the equilibrium state, respectively [mg/dm3], V—volume of the solution [dm3],
m—mass of the solid [g].

For the modeling of adsorption isotherms [21,22], the Langmuir and Freundlich
equations were used:

qe =
qmKLCe

1 + KLCe
(2)
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qe = KFC1/n
e (3)

where: qe—equilibrium adsorbed amount [mg/g], qm—maximal adsorbed amount
(monolayer capacity) [mg/g], KL—Langmuir constant [dm3/mg], Ce—equilibrium concen-
tration of metal ions [mg/dm3], KF—Freundlich constant [mg/g (mg/dm3)1/n],
n—Freundlich parameter.

The adsorption kinetics of Pb(II) and Cu(II) ions on the surface of activated biocar-
bons was determined at pH 5 using the measurement procedure described above. The
spectrophotometric measurements of the examined systems were performed at specific
time intervals—after 5, 10, 15, 30, 60, 90, 120, 180 min. The starting concentration of both
metals ions was 200 mg/dm3.

Two models of adsorption kinetics [23] were selected: the pseudo-first-order proposed
by Lagergren and the pseudo-second-order proposed by Ho and McKay, represented by
the equations:

dqt
dt

= k1
(
qe − qt

)
(4)

dqt
dt

= k2
(
qe − qt

)2 (5)

where: qt—amount of metal ions adsorbed after time t [mg/g], k1 [1/min] and
k2 [g/mg·min]—equilibrium rate constants [mg/g].

The possibility of activated biocarbons regeneration was investigated on the example
of more toxic lead(II) ions, using HCl and NaOH solutions with concentration 0.1 mol/dm3.

2.3. Analytical Procedures

The elemental analysis (C, H, N, S) of the starting plum stones, pine sawdust, horsetail
herb as well as each activated biocarbon samples was performed using a Vario EL III ele-
mental analyzer (Elementar Analysensysteme GmbH, Langenselbold, Germany). The total
mineral matter (ash) content was determined by burning the carbonaceous materials in a
microwave muffle furnace (Phoenix, CEM Corporation, Matthews, IL, USA) at temperature
of 815 ◦C for 60 min, according to the DNS ISO 1171:2002.

The textural characterization of the activated biocarbons was based on nitrogen
adsorption-desorption isotherms measured at −196 ◦C on sorptometer ASAP 2020 man-
ufactured by Micrometrics Instrument Corporation (Norcross, GA, USA). Prior to the
isotherm measurements, the carbonaceous samples were out-gassed at 300 ◦C for 12 h, in
order to remove all pre-adsorbed species. BET specific surface area (SBET) was evaluated in
the range of relative pressures p/p0 of 0.05–0.30. Total pore volume (Vt) was calculated by
converting the amount adsorbed at p/p0~0.99 to the volume of liquid adsorbate. Average
pore diameter was calculated (D) from equation D = 4Vt/SBET. The commonly known t-plot
method was applied to determine the micropore volume and area. Pore size distribution
was estimated by the Density Functional Theory (Model: N2 @ 77K on carbon, slit pores,
method: non-negative regularization; no smoothing).

The content of the surface functional groups of acidic and basic nature was evaluated
according to the Boehm method, described in detail in our earlier paper [24]. Volumetric
standards of 0.1 mol/dm3 NaOH (POCh) and 0.1 mol/dm3 HCl (Chempur) were used as
the titrants.

The pH of each activated biocarbon sample was determined according to the following
procedure: a portion of 0.5 g of each carbonaceous material in a powder form was mixed
with 25 cm3 of distilled water and then the suspension was magnetically stirred overnight
to reach equilibrium. After that the pH of the suspension was measured (upon continuous
stirring) using a CP-401 pH-meter (ELMETRON, Zabrze, Poland) equipped with an EPS-1
combination glass electrode, calibrated with standards solutions of pH 3, 7 and 10.

The morphology of the activated biocarbons was analyzed using high-resolution
environmental scanning electron microscope Quanta 250 FEG provided by FEI Company
(Hillsboro, OR, USA).
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The XPS (X-ray photoelectron spectroscopy) apparatus (Gammadata Scienta, Uppsala,
Sweden) was used to determine elemental composition of the solids and adsorbed forms of
heavy metals.

2.4. Electrokinetic Measurements

Potentiometric titration was carried out using a set consisting of the following devices
and elements: water-thermostated Teflon vessel, thermostat (Lauda RE 204, Delran, NJ,
USA), electrodes: glass and calomel (Beckman Instruments, Brea, CA, USA), pH-meter
PHM 240 (Radiometer, Copenhagen, Denmark), laboratory stirrer, automatic micro-burette
Dosimat 765 (Methrom, Herisau, Switzerland), computer with Titr_v3 software authored
by W. Janusz [25]. Firstly, 50 cm3 of the basic electrolyte solution was introduced into
a Teflon vessel. An appropriate amount of HCl solution (0.01 moL/cm3) was added to
obtain an initial pH in the range of 3–3.5. The system was titrated with NaOH solution
with concentration 0.1 mol/dm3. In this way, a reference curve was obtained—it shows the
relationship between the solution pH and the volume of added base. Then, in an analogous
manner, the potentiometric titration of the suspensions containing activated biocarbon was
carried out with and without the addition of Pb(II) or Cu(II) cations (with concentrations of
10 mg/dm3). The weights of adsorbents used were as follows: 0.007 g of PAC, 0.02 g of
SAC and HAC. The solid surface charge (σ0, [µC/cm2]) was calculated from the formula:

σ0 =
∆VCbF

mS
(6)

where: Cb—base (NaOH) concentration [mol/dm3], F—Faraday constant [C/mol],
m—solid mass in the suspension (g), S—specific surface area of the solid [m2/g],
∆V—difference in the volume of base which must be added to obtain the pH of suspension
and reference solution (basic electrolyte) to the specified value [dm3].

The Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern, UK) was used to measure
the electrophoretic mobility (Ue, [m2/Vs]) of examined suspensions, applying the immer-
sion cell. Before measurements, the tested suspensions were subjected to ultrasounds using
sonicator XL 2020 (Beckman Instruments).

The Henry equation [26] was used to obtain the zeta potential (ζ, [mV]) value:

Ue =
2ε0εζ

3η
f(κa) (7)

where: ε—dielectric constant of liquid medium, ε0 is—electric permeability of vacuum
[F/m], η—viscosity of liquid medium [Pa·s], f(κa)—the Henry function (a—solid particle
radius [nm], 1/κ—thickness of the electric double layer [nm]).

The activated biocarbon suspensions were prepared by mixing the appropriate vol-
umes of the basic electrolyte and heavy metal ions to ensure their concentrations of
0.001 mol/dm3 and 10 mg/dm3 (per 100 cm3 of the solution), respectively, and adding the
appropriate portions of activated carbons (0.013 g of PAC, 0.02 g of SAC and HAC). Each
suspension was sonicated for three minutes and divided into five portions. Then, in each
of them, the appropriate pH value was adjusted, varying by one unit in the range from
3 to 7. The samples were placed in a quartz cuvette and measured manually using a dip
cell. Before each measurement, the cell was rinsed twice with the examined suspension.

3. Results
3.1. Elemental Composition of the Precursors and Activated Biocarbons Prepared

According to the data presented in Table 1, each of the used starting materials contains
about 45% wt. of elemental carbon in the structure, which indicates their potential suitability
for the production of activated biocarbons. Importantly, two of them, i.e., plum stones and
pine sawdust, are characterized by a very low content of mineral admixtures, which is
a desirable feature as mineral matter adversely affects the physicochemical and sorption



Materials 2022, 15, 5856 6 of 16

parameters of the activation products—it is just an unnecessary ballast. The precursors
used for the research differ also significantly in terms of the content of heteroatoms, such
as nitrogen, sulphur and oxygen. The greatest contribution of non-carbon admixtures (as
in case of the ash) is found in the structure of the horsetail herb.

Table 1. Elemental composition of the precursors and activated biocarbons prepared as well as the
yield of the chemical activation process (wt.%).

Sample Ash Cdaf 1 Hdaf Ndaf Sdaf Odiff 2 Yield

P 0.5 46.1 5.4 0.1 0.1 48.3 -
S 0.6 46.6 7.0 1.3 1.0 44.1 -
H 6.8 44.9 5.6 3.0 1.5 45.0 -

PAC 1.2 92.3 0.7 0.1 0.0 6.9 57
SAC 2.3 93.0 1.0 0.8 0.3 4.9 49
HAC 8.7 90.5 2.1 1.4 0.0 6.0 41

1 dry-ash-free basis; 2 calculated by difference.

As follows from the further analysis of the data presented in Table 1, chemical acti-
vation process (irrespective on the procedure) caused significant changes in the structure
of the initial materials. First of all, samples PAC, SAC and HAC show more than twice
the content of elemental carbon than the corresponding precursors. With increasing con-
tribution of Cdaf, a considerable decrease in the contents of hydrogen, nitrogen, sulphur
and especially oxygen is noted in the activated biocarbons obtained. These changes are
induced by the acting of very reactive activating agents—KOH or K2CO3 as well as the
high temperature of the activation process, as a result of which the least stable fragments
of the carbonaceous structure are decomposed. Thermochemical treatment of the waste
biomass leads also to an increase in the contribution of mineral admixtures in the structure
of activation products.

3.2. Acidic-Basic Properties of the Activated Biocarbons Prepared from Waste Biomass

In order to establish the chemical nature of surface of the activated biocarbons pre-
pared, the pH value of water extracts was measured and the content of surface functional
groups of acidic and basic character was determined. The data presented in Table 2 imply
that the biocarbons studied show quite diverse acidic-basic properties, which is evidenced
by the content of surface functional species ranging from 1.13 to 1.94 mmol per gram and
pH value varying from 6.52 to 7.66. The greatest amount of the functional groups was
found on the surface of sample PAC obtained via chemical activation of plum stones with
potassium hydroxide, whereas the least functionalized surface is found in the sample SAC
obtained from pine sawdust. According to the data from Table 2, the activated biocarbons
prepared differ also significantly in terms of the content of acidic and basic groups. The
PAC and HAC samples obtained by activation of plum stones and horsetail herb show
the prevalence of acidic groups—they contain almost 2 times more acidic groups than
basic ones. The distinct situation is observed in case of SAC sample obtained via nitrogen
enrichment and chemical activation of sawdust by potassium carbonate, which exhibits a
slight predominance of basic functional species. This difference is probably the result of
nitrogen functional groups incorporation into the carbon matrix during the pyrolysis step.

Table 2. Acidic-basic properties of the activated biocarbons obtained.

Sample pH
Basic Groups

Content
[mmol/g]

Acidic Groups
Content

[mmol/g]

Total Content of
Surface Groups

[mmol/g]

PAC 6.52 0.65 1.29 1.94
SAC 6.88 0.67 0.46 1.13
HAC 7.66 0.54 1.01 1.55
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3.3. Textural Parameters and Morphology of the Activated Biocarbons Prepared from
Waste Biomass

The potential application of carbonaceous adsorbents is determined by the degree of
their surface area development and the type of their porous structure. According to the data
presented in Table 3 and in Figures 1 and 2, all the samples obtained have well-developed
surface area and porous structure with dominant of micropores. Textural parameters of the
activated biocarbon samples depend significantly on the type of precursor used and the
procedure of its thermochemical processing. The most developed surface area (2759 m2/g)
was found in the PAC sample activated by KOH, which is the consequence of its high
reactivity as an activating agent. In case of samples activated with potassium carbonate
(HAC and SAC) the specific surface area is much smaller and varies in the range from
955 m2/g to 1266 m2/g. A highly probable reason for the less favourable textural param-
eters of the HAC sample is a high content of mineral matter in the precursor structure
(Table 1), that hinders the access of activator to the carbon matrix upon direct activation and
thus prevents the effective development of the porous structure and surface area. Moreover,
the mineral substance can act as a ballast filling the porous structure of the final products
and causing poorer results of low-temperature nitrogen adsorption/desorption.

Table 3. Textural parameters of the activated biocarbons obtained.

Sample Surface
Area [m2/g]

Total Pore
Volume [cm3/g]

Micropore
Contribution [%]

Average Pore
Diameter [nm]

PAC 2759 1.332 84 1.931
SAC 1266 0.565 82 1.787
HAC 955 0.705 61 2.954
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Heat treatment of the waste biomass in the presence of potassium hydroxide or
carbonate leads to materials with a micro-mesoporous structure, which is indicated by a
low value of average pore diameter (Table 3) as well as pore size distribution presented in
Figure 3. The highest contribution of micropores of 84% is found in PAC sample obtained
by chemical activation of plum stones. Significant contribution of micropores in the porous
structure of all activated biocarbons under investigation is also confirmed by the course
of the low-temperature nitrogen adsorption/desorption isotherms presented in Figure 2.
According to the IUPAC organization classification, these isotherms are close to the type I,
characteristic of microporous and mesoporous materials with the pore size close to the
micropores range. In case of HAC sample, a clear hysteresis loop is observed, the presence
of which indicates a greater contribution of mesopores in the porous structure. It is similar
to the H4 type loop, which is characteristic of materials containing narrow slit-like pores.
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Textural and morphological diversity of the prepared activated biocarbons is con-
firmed by SEM photomicrographs presented in Figure 3. As can be seen, depending
on the precursor type and the preparation procedure applied the samples differ signifi-
cantly in terms of the shape, size as well as number and arrangement of pores and slits.
The SEM images confirm also that the PAC sample obtained as a result of chemical ac-
tivation of plum stones with KOH has the most developed porous structure among the
tested carbonaceous materials. Slightly brighter fragments visible on each of the micro-
graphs may be a consequence of the mineral matter presence in the structure of activated
biocarbons prepared.

3.4. Adsorption of Cu(II) and Pb(II) Ions on the Activated Biocarbons Surface

Figure 4 presents the kinetic results of heavy metal ions adsorption on the activated
biocarbons surface. Their analysis clearly shows that after approximately one hour, the
system reaches equilibrium and the amount of adsorbed ions remains constant. The
parameters of adsorption kinetics modeling presented in Table 4 indicate that a better fit
is observed when the pseudo-second-order model is used (the obtained R2 coefficients
for all tested systems exceed the value of 0.98). This indicates that the binding process of
the examined heavy metal ions is primarily the result of their chemisorption on the solid
surface. It consists in the sharing or exchange of electrons between ions and active surface
groups of the adsorbent [27].

The adsorption isotherms of Pb(II) and Cu(II) ions on the surface of three examined
activated biocarbons are shown in Figure 5, whereas Figure 6 presents a comparison of
the adsorbed amounts of both ions. A similar dependence of the amount of the adsorbed
metal cations on the size of the specific surface area of the samples is observed. The
highest adsorption of Pb(II) and Cu(II) occurs on the surface of the PAC activated biocarbon
with the most developed specific surface area (2759 m2/g), and the lowest in case of
HAC sample, whose SBET is only 955 m2/g. The larger the specific surface area and the
greater participation of micropores in the adsorbent structure, the greater the amount of
heavy metal ions can penetrate into these spaces and can be adsorbed. The best fit of
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the adsorption data was obtained for the Langmuir model (Table 5). This indicates that
the lead(II) and copper(II) ions interacting with the solid surface form an energetically
homogeneous monolayer [28].
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Figure 4. Adsorption kinetics of Pb(II) and Cu(II) ions on the examined solids surface;
C0 = 200 mg/dm3, pH 5.

Table 4. Kinetic parameters obtained for modelling of heavy metal ions adsorption on the examined
solids surface; C0 = 200 mg/dm3 ppm, pH 5.

Adsorbed Ions

Kinetic Parameters of Pseudo-First Order Model

qe [mg/g] k1 [1/Min] R2

PAC SAC HAC PAC SAC HAC PAC SAC HAC

Pb(II) 96.60 44.60 5.58 0.1199 0.1068 0.0308 0.7136 0.707 0.1664
Cu(II) 156.05 76.24 46.17 0.1128 0.1202 0.1107 0.7300 0.7292 0.7067

Adsorbed Ions

Kinetic Parameters of Pseudo-Second Order Model

qe [mg/g] k2 [g/(mg·min)] R2

PAC SAC HAC PAC SAC HAC PAC SAC HAC

Pb(II) 166.66 105.26 100.00 0.00045 0.00053 0.00014 0.9877 0.9847 0.9807
Cu(II) 181.81 144.92 111.11 0.00235 0.00035 0.00058 0.9999 0.9857 0.9883
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Figure 5. Adsorption isotherms of Pb(II) and Cu(II) ions on the examined solids.
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Table 5. Adsorption parameters obtained for modelling of heavy metal ions isotherms on the
examined solids surface; pH 5.

Adsorbed Ions

Adsorption Parameters of Langmuir Model

qm [mg/g] KL [dm3/mg] R2

PAC SAC HAC PAC SAC HAC PAC SAC HAC

Pb(II) 235.77 231.25 174.65 0.01996 0.00123 0.00123 0.991 0.970 0.997
Cu(II) 198.83 183.91 160.94 0.00033 0.00114 0.00115 0.994 0.965 0.993

Adsorbed Ions

Adsorption Parameters of Freundlich Model

n KF [mg/g·(mg/dm3)1/n] R2

PAC SAC HAC PAC SAC HAC PAC SAC HAC

Pb(II) 0.678 0.669 0.606 0.00309 0.00713 0.00529 0.904 0.836 0.821
Cu(II) 0.553 0.617 0.518 0.00177 0.00221 0.00275 0.643 0.829 0.880

Lead and copper cations adsorb in similar amounts on the surfaces of PAC and HAC
activated carbons at pH 5 (Figure 6). A significant difference is visible in case of SAC solid,
which is characterized by the smallest pore size-copper(II) adsorption is about 40 mg/g
higher than that of lead(II). It can be the result of different metal species presented in the
solution within the acidic range of pH values and their different size. In the solutions of pH
lower than 6, the dominant species of copper are Cu2+ cations [29], whereas in case of lead
the hydrated forms (mainly PbOH+) also exists besides Pb2+ ones. Due to the hydration of
Pb(II) its diameter increases, which limits their penetration into the adsorbent pores. As
a consequence, the adsorption of Pb(II) ions on the SAC surface is noticeably lower than
Cu(II) ions.

The hydrochloric acid proved to be more effective desorbing agent of Pb(II) ions than
sodium base. In case of its usage, the lead desorption was significantly greater and ranged
from about 65% for PAC sample to 80% for SAC and HAC activated biocarbons. In turn,
NaOH caused the Pb(II) desorption on the level ranging from about 12% in case of PAC to
20% for the SAC and HAC samples.

The XPS spectra of PAC, SAC and HAC activated biocarbons obtained after heavy
metal ions adsorption (Figure 7 and Table 6) confirmed the presence of copper and lead
ions on the solids surface. Moreover, based on the analysis of Cu 2p spectrum (Table 7)
it can be stated that in solutions of pH close to 5 the dominant copper species are Cu+1

and Cu2+ ions, so its adsorption is governed mainly by ionic exchange. As far as lead
species are concerned (Table 8), a comparable amount of are Pb2+ cations and Pb(OH)2 are



Materials 2022, 15, 5856 11 of 16

observed, so it can be stated that a significant part of lead is precipitated as hydroxides on
the carbonaceous adsorbents surface.
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Figure 7. The Cu 2p and Pb 4f spectra of activated biocarbons after heavy metal ions adsorption.

Table 6. Elemental composition of the activated biocarbons surface after adsorption of heavy
metal ions [at. %].

Sample C N O S Si Cu Pb

PAC + Cu(II) 90.4 0.0 7.2 1.2 0.7 0.5 -
SAC + Cu(II) 89.1 1.5 8.1 0.4 0.6 0.3 -
HAC + Cu(II) 80.5 1.6 12.6 1.3 3.5 0.5 -
PAC + Pb(II) 91.8 0.4 7.2 0.0 0.0 - 0.6
SAC + Pb(II) 92.6 0.9 5.5 0.2 0.3 - 0.5
HAC + Pb(II) 85.0 1.3 10.3 0.0 2.8 - 0.6

Table 9 contains the comparison of Pb(II) and Cu(II) adsorbed amounts on the dif-
ferent carbonaceous adsorbents described in the literature and in the present manuscript.



Materials 2022, 15, 5856 12 of 16

According to these data, the majority of the materials adsorb much more lead ions than
copper ones. However, it should be emphasized that maximum sorption capacity of PAC
sample towards Pb(II) as well as Cu(II) ions is much higher than for the other carbona-
ceous adsorbents. This is especially pronounced in case of copper ions removal from
aqueous solutions.

Table 7. The main Cu 2p photopeaks of PAC, SAC and HAC activated biocarbons.

Sample Species Binding Energy [eV] Relative Content [%]

PAC
Cu2O 932.72 66.8

CuSO4 935.97 10.0
CuO or Cu(OH)2 934.75 6.1

SAC
Cu2O 932.62 54.2

CuSO4 935.97 12.6
CuO or Cu(OH)2 934.24 9.8

HAC
Cu2O 932.59 45.8

CuSO4 935.98 4.8
CuO or Cu(OH)2 934.17 23.3

Table 8. The Pb 4f photopeaks of PAC, SAC and HAC activated biocarbons.

Sample Species Binding Energy [eV] Relative Content [%]

PAC

PbO or Pb3O4 138.89 42.1
Pb(OH)2 143.72 43.1
PbSO4 140.73 7.3

Pb(NO3)2 145.56 7.5

SAC

PbO or Pb3O4 138.82 42.1
Pb(OH)2 143.65 43.1
PbSO4 140.23 7.3

Pb(NO3)2 145.06 7.5

HAC

PbO or Pb3O4 138.80 44.6
Pb(OH)2 143.63 45.6
PbSO4 140.37 4.8

Pb(NO3)2 145.20 4.9

Table 9. Adsorption capacity toward Pb(II) and Cu(II) ions for various carbonaceous adsorbents.

Adsorbent Maximum Adsorbed
Amount [mg/g] Reference

PAC Pb(II) 178.1 mg/g
Cu(II) 177.5 mg/g [this study]

Activated carbon obtained from
Eucalyptus camaldulensis Dehn bark

Pb(II) 110.6 mg/g
Cu(II) 28.9 mg/g [30]

Granular activated carbon derived
from coconut shells

Pb(II) 10.8 mg/g
Cu(II) 3.6 mg/g [31]

Peat Pb(II) 118.7 mg/g
Cu(II) 34.0 mg/g [32]

Chitosan-pyromellitic dianhydride
modified rice straw biochar

Pb(II) 13.9 mg/g
Cu(II) 96.1 mg/g [33]

Date seed biochar Pb(II) 148.8 mg/g
Cu(II) 26.7 mg/g [34]

Pepper stem biochar Pb(II)~120 mg/g
Cu(II)~45 mg/g [35]
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3.5. Electrokinetic Properties of the Activated Biocarbons

Figure 8 shows changes in the surface charge density of the examined carbon materials
without and in the presence of Pb(II) or Cu(II) ions as a function of solution pH. Analysis of
these data indicates that the point of zero charge (pzc) for all tested activated biocarbons is
in the range of pH 3.6–4.1. For pH above pHpzc value, the adsorbent surface is negatively
charged, and below-positively. Thus, at pH 5 (at which the ions adsorption process was
carried out), there are favorable electrostatic conditions for metal cations binding to the
negatively charged surface of the adsorbent. For all three activated biocarbons in the entire
tested pH range, the decrease in the surface charge density is observed in the heavy metal
ions presence, compared to the system without these ions. A slightly greater reduction is
observed in case of the copper(II) ions addition. This behavior is typical of simple inorganic
ions. Adsorption of small cations causes the formation of additional groups with a negative
charge on the surface of a solid, which is manifested by a decrease in the density of the
surface charge [36]. Moreover, the smaller size of Cu(II) ions makes that this phenomenon
is more pronounced in case of these cations.
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Figure 8. Surface charge density of PAC, SAC and HAC samples without and in the presence of
heavy metals ions; C0 10 mg/dm3.
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In the tested pH range, the zeta potential of PAC and HAC activated biocarbons in
the absence of heavy metal ions assumes only negative values (Figure 9). The isoelectric
point (iep) is only observed for SAC sample at pH of 3.3. This means that for this pH
value the total charge of the slipping plane is zero. For each tested solid, the presence of
adsorbed metal ions causes increase in the zeta potential. Its highest values are observed in
the presence of Cu(II) ions. Changes in the zeta potential of solid particles in the presence
of metal cations result mainly from the change in the ionic composition of the slipping
plane area due to the removal of the basic electrolyte ions by the adsorbing Pb(II) and Cu(II)
ions. This mainly concerns the Na+ ions, which lead to an increase in the electrokinetic
potential of the solid aqueous suspension. Moreover, in case of Cu(II) cations the increase
in zeta potential in the pH range 6–8 (maximum on the curves) for PAC and SAC systems is
observed. This is due to the effect of overcharging (or overloading) of the electrical double
layer (edl), i.e., charge reversal. This results from the occurrence of more numerous cations
on the inner part of edl than their number on the solid surface. Consequently, the same
charge sign appears on the edl outside part and also on the surface [37].
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4. Conclusions

Waste plum stones, pine sawdust and horsetail herb were used as the precursors
of new and effective carbonaceous adsorbents. The chemical activation of such kind
of biomass leads to micro-mesoporous activated biocarbons, characterized by diverse
elemental composition, acidic-basic character of the surface as well as sorption abilities
towards lead and copper ions. The highest adsorption of both heavy metals ions occurs
on the surface of the plum stones-based activated biocarbon with the most developed
specific surface area (2759 m2/g)—it reaches a level of about 180 mg/g. The modelling
of adsorption data indicated that lead(II) and copper(II) ions react with the solid surface
mainly through chemical interactions and form an energetically homogeneous monolayer.
A significant difference in metal adsorbed amounts is visible in case of SAC activated
biocarbon characterized by the smallest pore size, for which Cu(II) is adsorbed in greater
amounts. It can be the result of different metal forms and their sizes present in the solution
at pH 5, which affects their ability to penetrate into porous structure of the solids. The
XPS analysis showed that the main forms of heavy metal ions in adsorption layer are:
PbO/Pb3O4 and Pb(OH)2 in case of lead as well as Cu2O, CuSO4 and CuO/Cu(OH)2
for copper.
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draft preparation, M.W., M.G. and P.N.; writing—review and editing, M.W., M.M., M.G. and P.N.;
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the published version of the manuscript.
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