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Abstract: We investigated the effect of different sintering temperatures ranging from 200 ◦C to
600 ◦C on the porous properties and pore microstructure of large capillary pressure wicks made of
carbonyl nickel powder. The evolution model of hydraulic diameter was established and verified
by the maximum pore diameter. Hydraulic diameter changed as the roughness of particle surfaces
decreased and sintering necks grew large during sintering. In the contact-formation stage and the
initial sintering stage (200–500 ◦C), the decrease in the roughness of particle surfaces played a decisive
role, contributing to an increase in hydraulic diameter. In the intermediate sintering stage (600 ◦C),
the growth of sintering necks dominated the process, however the hydraulic diameter was reduced.
These results show that the maximum pore diameter first increased and then decreased in the same
way as our evolution model. Permeability and capillary performance of the wicks first increased and
then declined with increasing sintering temperature. We found the optimal sintering temperature to
be 400 ◦C, at which point the wicks achieved the maximum pore diameter of 1.21 µm, a permeability
of 1.77 × 10−14 m2, and their highest capillary performance of 1.46 × 10−8 m.

Keywords: wicks; carbonyl nickel powder; sintering temperature; maximum pore diameter;
permeability

1. Introduction

Increasingly large heat flux and high heat dissipation makes transferring the heat
generated by electronic devices such as central processing units and hard disk drives
difficult [1]. Loop heat pipes (LHPs) have attracted attention as one possible solution to this
problem due to their long-distance heat transferring capabilities, flexible configurations,
various possible working orientations, and ability to transfer heat in systems with only
small temperature differences [2–4]. The wick inside LHPs, a kind of porous material, is
considered the most important component since it provides capillary pressure to circulate
the working fluid inside a closed loop where no external power is required, and capillary
pressure and permeability are the key parameters of wicks [1]. To optimize their capillary
performance, high permeability and powerful capillary pressure are typically needed.
However, there is always a tradeoff between permeability and capillary pressure. A
smaller pore size increases the capillary pressure of a wick; however, the smaller the pore
size is, the lower the permeability is [5]. Considering this tradeoff, wicks are generally
divided into two types according to their critical features: high permeability wicks and large
capillary pressure wicks. High permeability wicks usually provide LHPs with high heat flux
transferring capabilities over a hundred-millimeter distance at horizontal orientation [2,3,6].
Large capillary pressure wicks ensure the efficient operation of LHPs over a thousand-
millimeter distance at any orientation [6].
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There are several excellent materials for wicks, such as nickel, titanium, polymeric,
ceramic, copper and stainless steel, while those made of carbonyl nickel powder possess
the highest purity, controllable porosity and pore size, appropriate mechanical properties,
moderate thermal conductivity, and compatibility with various working fluids. Hence,
carbonyl nickel powder is widely used to fabricate high-performance wicks [6–8].

To fabricate high permeability wicks with carbonyl nickel powder, pore forming agents
and loose sintering processes are usually adopted, and a comparatively high sintering
temperature, which is normally higher than 550 ◦C, is required to obtain enough strength
needed in the assembly and operation of LHP in particular [8–11]. Qu et al. [12] investigated
the effects of sintering temperature and sintering holding time on the thermal performance
of bi-porous nickel wicks in LHPs. Their results show that the porosity and permeability of
wicks continuously decrease with increasing sintering temperature from 650 ◦C to 800 ◦C,
and with prolonging sintering holding time from 30 min to 60 min. Mishra et al. [8]
developed nickel wicks using the tap-sintering technique and investigated the effects of
sintering temperature on the porosity, permeability and mechanical strength of wicks; their
results show that the porosity and permeability of wicks decline as sintering temperature
increases from 550 ◦C to 775 ◦C.

In order to manufacture large capillary pressure wicks, the method of sintering after
pressing carbonyl nickel powder without pore forming agents is frequently adopted. Wicks
fabricated in this method are praised for their fine pores and high strength, although their
porosity and permeability are somewhat low. For LHPs, the maximum pore diameter
in wicks is vitally important because there is backflow of vapor from the evaporation
zone to the compensation chamber through the pore with the largest diameter due to
the inverse dependence of capillary pressure on pore diameter [9]. This kind of wick
is usually characterized by a porosity of around 50% and a maximum pore diameter of
about 1.0 µm [13–19]. Although this kind of wick is widely used and exhibits excellent
performance, few studies have focused on the fabrication processes of this kind of wick,
and its optimal sintering temperature is still unknown.

Sintering processes significantly affect the pore structure and properties of porous ma-
terials. In sintering processes, sintering necks form and grow large between particles while
porosity and permeability simultaneously decrease [20]. Initially, pores in green porous
materials are irregular. As sintering progresses, however, the angular pores form a smooth,
near-cylindrical network with little change in pore size [20]. With increasing sintering
temperature, the permeability of porous materials usually decreases, and pore size rarely
changes or slightly decreases [21,22]. However, early studies have shown that the perme-
ability and pore size of porous materials both increase with sintering temperature [23–27].
Some of these results are attributed to the liquid phase during sintering [25–27]. However,
other studies have been conducted using the solid-state sintering method, and the reason
for the increase in permeability and pore size remains unknown.

Lunin and Kostornov [24] made cylindrical specimens with a porosity of 50% by
compacting carbonyl nickel powder, and studied the change in pore diameter distribution
while sintering at different temperatures. Their results show that the mean statistical pore
diameter first increases and then declines as the sintering temperature increased from
200 ◦C to 900 ◦C. Nevertheless, few researchers have studied the change in maximum
pore diameter and permeability of porous materials made of carbonyl nickel powder while
sintering at different temperatures. In addition, the evolution of the pore size has not been
rigorously described.

In this work, we fabricated large capillary pressure wicks with carbonyl nickel pow-
der by cold isostatic pressing followed by sintering, and studied the effects of sintering
temperature on their hydraulic diameter, permeability and capillary performance. In order
to analyze the changes in permeability and hydraulic diameter, the porosity and volume-
specific surface area were determined, and we then investigated the fracture morphology
and cross-section morphology of the wicks. Additionally, we established an evolution
model of hydraulic diameter and validated it using the parameter of maximum pore diame-
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ter. This work promotes understanding of the increase in pore size and permeability during
sintering carbonyl nickel powder, and also provides insight into methods of fabrication for
large capillary pressure wicks at an optimal sintering temperature.

2. Materials and Methods

Commercial carbonyl nickel powder with a mean diameter of 1.78 µm was chosen as
the raw material, and its bulk density was 0.35 g·cm−3. Figure 1 shows the experimental
procedure in this study. Uniform green bars were first fabricated by cold isostatic pressing
at 100 MPa. Then, the green bars were cut into green slices with a diameter of 25 mm and a
thickness of 3.5 mm on a lathe. Finally, the green slices were sintered in a tube furnace, and
the wicks were prepared. The sintering process was conducted for 3 h in a vacuum below
1.0 × 10−2 Pa. The sintering temperatures ranged from 200 ◦C to 600 ◦C to investigate the
effects of sintering temperature on the properties of wicks, and this temperature range was
chosen in order to avoid large sintering shrinkage and extreme porosity decrease.
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Permeability of green slices and wicks was measured and used together with maxi-
mum pore diameter to calculate capillary performance. Digital pressure gauges with an
accuracy of ±1 kPa and mass flow controllers with an accuracy of ±2.5 mL·min−1 were
used to determine the permeability according to ISO 4022: 2018, where nitrogen passed
through samples at flow rates ranging from 50 mL·min−1 to 500 mL·min−1. Absolute
alcohol, nitrogen and a digital pressure gauge with an accuracy of ±1 kPa were used
to determine the bubble point pressure Pb of samples according to ISO 4003: 1977. The
maximum pore diameter dmax is calculated by Equation (1):

dmax =
4 · cos θ · γ

Pb
(1)

where θ is the contact angle between absolute alcohol and samples, and γ is the surface
tension of absolute alcohol. Radial sintering shrinkage ratio, porosity and specific surface
area were measured to investigate changes in permeability. The radial sintering shrinkage
ratio ∆L

L0
is calculated by Equation (2):

∆L
L0

=
L0 − L1

L0
× 100% (2)

where L0 is the diameter of a green slice, and L1 is the diameter of the corresponding
wick. The diameters of green slices and corresponding wicks were measured using a
vernier caliper with an accuracy of ±0.01 mm. According to ISO 2738: 1999, an analytical
balance with an accuracy of ±0.0001 g was used to determine the mass of samples m and
to determine the volume of samples V by weighing the samples coated with petroleum
jelly both in the air and in the water. The porosity of samples is calculated by Equation (3):

ε = (1 − m
V·ρ ) × 100% (3)

where ρ is the true density of nickel. The surface area of samples was determined by the
Brunauer–Emmett–Teller (BET) nitrogen adsorption method (Tristar plus 3030, Micromerit-
ics Instruments Corporation, Norcross, GA, USA) according to ISO 9277: 2010, and the
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volume-specific surface area was calculated by dividing surface area by the volume of
samples V. At each sintering condition, 5 wicks were prepared and tested to determine
these properties and characteristics. In addition, three samples with fractured surfaces and
cross-sections of pores were prepared and observed using scanning electron microscopy
(SEM, JSM-F100, JEOL Ltd., Tokyo, Japan).

The uncertainties for measurement of the permeability, bubble point pressure, diameter,
mass and volume were estimated to be 0.05 × 10−14 m2, 1.8 kPa, 0.04 mm, 0.005 g and 10 mm3,
respectively. In addition, the relative uncertainty for measurement of the surface area was 5%.
Using the standard error analysis method, the uncertainties of maximum pore diameter and
radial sintering shrinkage ratio were 0.02 µm and 0.3%, respectively, and those of porosity
and volume-specific surface area were within 0.6% and 0.18 × 106 m−1, respectively.

3. Results and Discussion
3.1. Evolution of Porosity and Volume-Specific Surface Area

High permeability enhances the heat transfer limit of LHPs because it reduces pres-
sure drop of fluids while filtering through wicks during the operation of LHPs [9]. The
permeability K is related to the porosity ε and volume-specific surface area S by the Kozeny–
Carman equation:

K =
ε3

C·S2 (4)

where C is an empirical constant that depends on the material and fabrication process. Hence,
porosity and volume-specific surface area are important characteristics for wick performance.

3.1.1. Porosity

Figure 2 shows the porosity and radial sintering shrinkage ratio of green slices and
wicks sintered at different temperatures. As we can see, the radial sintering shrinkage
ratio increased while the porosity decreased with increasing sintering temperature. A
large sintering shrinkage ratio of a wick meant great reductions in both its dimensions
and volume in sintering, which caused a huge decrease in its porosity, considering its
mass remains unchanged in sintering. Related to the small radial sintering shrinkage at
200 ◦C and 300 ◦C, the porosity of wicks showed little change compared to the porosity
of the green slices, which was 49.2%. When the wicks were sintered at 400 ◦C, the radial
shrinkage ratio slightly increased to 1.0%, hence the porosity slightly decreased to 47.5%.
As the sintering temperature rose to 500 ◦C, the radial sintering shrinkage of the wicks
evidently grew as well, so their porosity sharply dropped. At 600 ◦C, the radial sintering
shrinkage ratio of wicks increased to 9.9%, and thus the porosity declined to 31.3%.
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Figure 2. Radial shrinkage and porosity of green slices and wicks sintered at different temperatures.

Grain-boundary diffusion dominates in the sintering shrinkage of wicks in the pres-
ence of low temperatures and small particle diameters [28]. The sintering shrinkage of the
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wicks in our case indicates that the grain-boundary diffusion of carbonyl nickel powder
with a mean diameter of 1.78 µm commences at 400 ◦C.

3.1.2. Volume-Specific Surface Area

Figure 3 shows the volume-specific surface area of green slices and wicks sintered at
different temperatures. With increasing sintering temperature, the volume-specific surface
area declined rapidly at 200–400 ◦C and slowly at 400–600 ◦C. When the wicks were sintered at
200 ◦C, the volume-specific surface area declined only slightly to 3.33 × 106 m−1 compared to
that of the green slices, which was 3.67 × 106 m−1. At 400 ◦C, the volume-specific surface area
significantly decreased to 2.04 × 106 m−1. With a further increase in sintering temperature,
once again only slight declines were detected in the volume-specific surface area.
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To study the change in volume-specific surface area, we observed the microstructure of
green slices and wicks by SEM. Figure 4 shows the fracture morphology of a green slice and
various wicks sintered at temperatures between 200 ◦C and 600 ◦C. As we can see, higher
sintering temperatures led to smoother surfaces of particles and larger sintering necks between
particles. Rough particle surfaces were detected in the green slice, but the increase in sintering
temperature from 200 ◦C to 600 ◦C gradually smoothed the surfaces of the particles. The most
pronounced decline in roughness of the particle surfaces is found at 200–400 ◦C.

Moreover, clear sintering necks formed between particles at 400 ◦C and grew larger
with increasing sintering temperatures. Sintering is divided into four stages, which are the
contact-formation stage where few sintering necks form, the initial stage where sintering
necks grow without interaction with neighboring ones, the intermediate stage where
sintering necks interact with neighboring ones, and the final stage where tubular pores
pinch closed to form discrete spherical or lenticular pores [20]. As shown in Figure 4,
few sintering necks were detected in wicks sintered at 200 ◦C and 300 ◦C; sintering necks
formed and grew without interaction with neighboring ones at 400 ◦C and 500 ◦C; sintering
necks interact with neighboring ones at 600 ◦C. Hence, sintering at 200 ◦C and 300 ◦C
stopped in the contact-formation stage; sintering at 400 ◦C and 500 ◦C stopped in the initial
stage; and sintering at 600 ◦C stopped in the intermediate stage.

Surface diffusion causes the decrease in roughness of particle surfaces, and grain-
boundary diffusion together with surface diffusion contributes to the formation and growth
of sintering necks. In the sintering process, atoms on rough surfaces move from a convex
point to a concave point due to the chemical potential gradient introduced by the curvature
gradient, leading to the decrease in roughness of particle surfaces [29]. Moreover, the final
shape of the particles depends on the surface diffusion coefficient, which increases with
sintering temperature [30]. As the sintering temperature increases from 200 ◦C to 600 ◦C,
more atoms disperse away from convex points and accumulate at concave points due to
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the increasing surface diffusion coefficient. As a result, higher sintering temperatures result
in smoother particle surfaces and larger sintering necks.

Materials 2022, 15, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 4. Fracture morphology of green slices and wicks sintered at different temperatures: (a) green 

slice, (b) 200 °C, (c) 300 °C, (d) 400 °C, (e) 500 °C, (f) 600 °C. 

Moreover, clear sintering necks formed between particles at 400 °C and grew larger 

with increasing sintering temperatures. Sintering is divided into four stages, which are 

the contact-formation stage where few sintering necks form, the initial stage where sinter-

ing necks grow without interaction with neighboring ones, the intermediate stage where 

sintering necks interact with neighboring ones, and the final stage where tubular pores 

pinch closed to form discrete spherical or lenticular pores [20]. As shown in Figure 4, few 

sintering necks were detected in wicks sintered at 200 °C and 300 °C; sintering necks 

formed and grew without interaction with neighboring ones at 400 °C and 500 °C; sinter-

ing necks interact with neighboring ones at 600 °C. Hence, sintering at 200 °C and 300 °C 

stopped in the contact-formation stage; sintering at 400 °C and 500 °C stopped in the ini-

tial stage; and sintering at 600 °C stopped in the intermediate stage. 

Surface diffusion causes the decrease in roughness of particle surfaces, and grain-

boundary diffusion together with surface diffusion contributes to the formation and 

growth of sintering necks. In the sintering process, atoms on rough surfaces move from a 

convex point to a concave point due to the chemical potential gradient introduced by the 

curvature gradient, leading to the decrease in roughness of particle surfaces [29]. Moreo-

ver, the final shape of the particles depends on the surface diffusion coefficient, which 

increases with sintering temperature [30]. As the sintering temperature increases from 

Figure 4. Fracture morphology of green slices and wicks sintered at different temperatures: (a) green
slice, (b) 200 ◦C, (c) 300 ◦C, (d) 400 ◦C, (e) 500 ◦C, (f) 600 ◦C.

Grain-boundary diffusion also contributes to the growth of sintering necks. Vacant
lattice points diffuse away from sintering necks and sink at the grain boundary, which
results in sintering shrinkage and neck growth [31,32]. As sintering temperature increases
from 400 ◦C to 600 ◦C, the grain-boundary diffusion accelerates, leading to increased
sintering shrinkage and growth of sintering necks.

The decrease in roughness of particle surfaces and the growth of sintering necks
together contribute to the decline in volume-specific surface area (Figure 3). The most
pronounced decline in the roughness of the particle surfaces induces the volume-specific
surface area to decrease significantly at 200–400 ◦C. Furthermore, the growth of sintering
necks causes the slow decline in volume-specific surface area at 400–600 ◦C.

3.2. Evolution of Pore Size
3.2.1. Evolution of Mean Pore Diameter

For a unique pore with an irregularly shaped cross section, the hydraulic diameter dh
of the pore at any of its cross sections is defined in Equation (5) [33] as:

dh= 4·
Apore

Ppore
(5)

where Apore is the area of the pore at the cross section, and Ppore is the perimeter. Countless
through pores exist in porous materials, and the hydraulic diameter of every through pore
varies at different cross sections. By analyzing cross-sectional images of green slices and
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wicks, we determined the mean pore diameter that is capable of reflecting the size evolution
of pores. The uncertainties for measurement of the area and perimeter were estimated to
be 0.019 µm2 and 0.010 µm, respectively. Using the standard error analysis method, the
uncertainty of the mean pore diameter was within 0.015 µm.

Figure 5 shows the cross-section morphology of pores in green slices and wicks
sintered at temperatures from 200 ◦C to 600 ◦C. The mean pore diameter of the green slices
and wicks was determined from cross-sectional images and is shown in Figure 6. As seen
in Figure 5a, the proportion of areas covered by pores is large, and the outlines of pores are
zigzag in the green slice. With increasing sintering temperature, the proportional area of
pores decreased, and the outlines gradually became smooth as shown in Figure 5b–f. From
Figure 6, we see that the mean pore diameter first increased to the maximum at 500 ◦C, and
then declined with an increase in sintering temperature.
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Figure 5. Cross-section morphology of pores in green slices and wicks sintered at various tempera-
tures: (a) green slice, (b) 200 ◦C, (c) 300 ◦C, (d) 400 ◦C, (e) 500 ◦C, (f) 600 ◦C.

The decrease in the roughness of particle surfaces (Figure 4a–f) smoothed the outlines
of the pores at the cross section. With increasing sintering temperature, the roughness of
particle surfaces gradually decreased, so the outlines of pores gradually became smoother.
The growth of sintering necks (Figure 4d–f) reduced the proportional volume of pores in
wicks. Hence, the perimeter and area of every single pore and the proportional area of pores
declined at the cross section. As shown in Figure 6, the wicks sintered at 200 ◦C and the
green slices were almost the same in terms of mean pore diameter, 0.604 µm and 0.590 µm,
respectively. When the wicks were sintered at 300 ◦C, the roughness of the particle surfaces
decreased while sintering necks formed. As a result, the perimeter of the pores declined,
and the area showed little variation, resulting in an increase in the mean pore diameter.
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At sintering temperatures of 400 ◦C and 500 ◦C, the roughness of particle surfaces
decreased significantly, and sintering necks formed and gradually grew. Additionally, the
perimeter of the pores dropped faster than the area, so the mean pore diameter increased
to 0.728 µm at the sintering temperature of 500 ◦C. As the sintering temperature further
increased to 600 ◦C, the particle surfaces showed little change, but the sintering necks
grew rapidly. Greater reduction was found in the area of pores compared to the perimeter,
leading to the decline in the mean pore diameter. The change in the mean pore diameter at
600 ◦C indicates that the growth of sintering necks caused more reduction in the area of
pores than in their perimeter.

Figure 7 summarizes the evolution of the hydraulic diameter in different sintering
stages. When the wicks are sintered in the contact-formation stage (200–300 ◦C) and the
initial sintering stage (400–500 ◦C), the decrease in the roughness of particle surfaces played
a decisive role, contributing to an increase in hydraulic diameter. In the intermediate
sintering stage (600 ◦C), the growth of sintering necks dominated the process, however
reduced the hydraulic diameter.
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3.2.2. Evolution of Maximum Pore Diameter

Maximum pore diameter is defined as the maximum among all the hydraulic diame-
ters of the most constricted part in every through pore [33]. The study of maximum pore
diameter is of great importance because the failures of LHPs usually commence at the
pore with the largest diameter [9]. Figure 8 plots the maximum pore diameter of green
slices and wicks sintered at different temperatures. As the sintering temperature increased
from 200 ◦C to 600 ◦C, the maximum pore diameter first increased and then decreased
in the same way as the evolution model of the hydraulic diameter (Figure 7). The wicks
sintered at 400 ◦C and 500 ◦C are nearly equal in maximum pore diameter, at 1.21 µm
and 1.22 µm, respectively. The experimental evolution of maximum pore diameter thus
validates the evolution model of the hydraulic diameter, and this model may be applied to
the pore size evolution during solid-state sintering for other particles with rough surfaces.
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As seen in Figure 8, sintering at 300–600 ◦C always enlarges the maximum pore diameter
of wicks, which is unsatisfactory. However, a sintering process is still needed to enhance
the permeability and capillary performance of wicks.
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Figure 8. Maximum pore diameter of green slices and wicks sintered at different temperatures.

3.3. Porous Properties
3.3.1. Permeability

Figure 9 shows the permeability and C of green slices and wicks sintered at different
temperatures. With increasing sintering temperatures, the permeability of the wicks first
reached the peak value of 1.77 × 10−14 m2 at 400 ◦C, and then decreased. When the
wicks were sintered at 200 ◦C, the volume-specific surface area (Figure 3) and the porosity
(Figure 2) barely changed, resulting in similar permeability compared to the green slices.
From Equation (4) and observed values of porosity, volume-specific surface area and
permeability, the empirical constant C was calculated, and the uncertainty of C was within
0.11. As sintering temperature increased from 200 ◦C to 600 ◦C, C first increased and then
decreased. Wicks sintered at 400 ◦C and 500 ◦C showed nearly the same values of C, which
were 1.45 and 1.50, respectively.
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3.3.2. Capillary Performance

Capillary performance parameter is usually defined as the ratio of permeability to
pore diameter [34,35]. In this study, we use the ratio of permeability to the maximum pore
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diameter K/dmax to evaluate the capillary performance of our wicks because the maximum
diameter of the wicks determines the heat transfer limit of LHPs [9]. Figure 10 shows the
capillary performance of green slices and wicks sintered at different temperatures, and the
uncertainty of K/dmax was 0.05 × 10−8 m. The capillary performance first increased to
the maximum at 400 ◦C, and then declined with increasing sintering temperatures. The
changes in the capillary performance of the wicks show that the sintering temperature of
400 ◦C granted the wicks the highest capillary performance of 1.46 × 10−8 m. When the
wicks were sintered at 400 ◦C, the capillary performance and the permeability increased
by 23.7% and 37.5%, respectively, while the maximum pore diameter increased by 12.0%
compared to the green slices.
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4. Conclusions

Based on the pore microstructure and porous properties of large capillary pressure
wicks sintered at different temperatures, a summary is proposed:

(1) The pore size first increased and then decreased with increasing sintering temperature
from 200 ◦C to 600 ◦C. When the wicks were sintered at 400 and 500, the maximum
pore diameter reached 1.21 µm and 1.22 µm, respectively, which were the highest
levels in this study.

(2) The evolution model of hydraulic diameter with increasing sintering temperature was
established and validated. In the contact-formation stage and the initial sintering stage
(200–500 ◦C), the decrease in the roughness of particle surfaces played a decisive role.
More reduction in the perimeter compared to the area led to an increase in hydraulic
diameter. In the intermediate sintering stage (600 ◦C), the growth of sintering necks
took on a dominant role, which caused more reduction in the area than in the perimeter,
leading to a decline in hydraulic diameter.

(3) The optimal sintering temperature proved to be 400 ◦C, at which point the wicks
achieved the permeability of 1.77 × 10−14 m2 and their highest capillary performance
of 1.46 × 10−8 m.
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