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Abstract: The depletion of natural resources of river sand and its availability issues as a construction
material compelled the researchers to use manufactured sand. This study investigates the compressive
strength of concrete made of manufactured sand as a partial replacement of normal sand. The
prediction model, i.e., gene expression programming (GEP), was used to estimate the compressive
strength of manufactured sand concrete (MSC). A database comprising 275 experimental results
based on 11 input variables and 1 target variable was used to train and validate the developed models.
For this purpose, the compressive strength of cement, tensile strength of cement, curing age, Dmax of
crushed stone, stone powder content, fineness modulus of the sand, water-to-binder ratio, water-to-
cement ratio, water content, sand ratio, and slump were taken as input variables. The investigation
of a varying number of genetic characteristics, such as chromosomal number, head size, and gene
number, resulted in the creation of 11 alternative models (M1-M11). The M5 model outperformed
other created models for the training and testing stages, with values of (4.538, 3.216, 0.919) and (4.953,
3.348, 0.906), respectively, according to the results of the accuracy evaluation parameters root mean
square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). The R2 and
error indices values revealed that the experimental and projected findings are in extremely close
agreement. The best model has 200 chromosomes, 8 head sizes, and 3 genes. The mathematical
expression achieved from the GEP model revealed that six parameters, namely the compressive
and tensile strength of cement, curing period, water–binder ratio, water–cement ratio, and stone
powder content contributed effectively among the 11 input variables. The sensitivity analysis showed
that water–cement ratio (46.22%), curing period (25.43%), and stone powder content (13.55%) were
revealed as the most influential variables, in descending order. The sensitivity of the remaining
variables was recorded as w/b (11.37%) > fce (2.35%) > fct (1.35%).

Keywords: manufactured sand; concrete; compressive strength; gene expression programing

1. Introduction

In a 2016 study published by Freedonia, approximately 52 billion metric tons of natural
sand (NS) was used in 2019 for construction alone, making it the third most consumed
material in the world after air and water [1]. This staggering piece of data revealed
that the current unsustainable and non-renewable consumption of NS has led to severe
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reduction in the available resource, which sets the stage for a disproportionate increase in
the value of materials [2]. For instance, the need for flood control in China, limiting mining,
environmental protection policies, and a demand increase for sustainable construction
have led to huge shortages in NS, making it very expensive [3]. In addition, the extreme
exploitation of NS, especially the dredged river sand, has threatened the safety of bridges,
stability of the river banks, and survival of the ecosystem [4,5], and there are some places
without NS resources [6]. The properties of concrete are widely modified using a variety
of aggregates and constituent materials [7–10]. There is need for a strategy to functionally
and significantly replace the fast-depleting NS, with new material to mitigate the damage
done to the ecosystem by draining its resources. According to studies, alternative sources
for river sand include manufactured sand (MS), industrial by-products (certain types of
slag, bottom ash), recycled aggregates, and so on.

MS from virgin rocks presents itself as a convenient, practical, sustainable, and eco-
nomic substitute for NS in the production of concrete. Usually, in the manufacturing process
of the sand, finer particles are unavoidably generated, where particles less than 75 µm are
referred to as stone dust or powder. The standards governing the recommended content of
stone dust or powder vary however, a maximum of 7% and 10% of dust or powder content
are the recommendation for ASTM C33 [11] and Chinese [12] standards, respectively. Due
to the manufacturing process of breaking and bringing, there are differences in the particle
shapes between the NS and the manufactured sand. Generally, the sand grains of the
manufactured sand show distinctive rough-angular particles, which have the ability to
yield granular critical state frictional angles [13–15]. As a result of improved interlocking
between the rough-angular sand particles, there is a positive influence on the mechanical
strength and durability properties of concrete [16]. In addition, better bonding properties
were reportedly [17] achieved with reinforced concrete also prepared with manufactured
sand. Many works [18–20] have been conducted to study the comparative effect of manu-
factured sand and NS on the compressive strength of concrete. They have largely reported
the superior performance of the concrete prepared with manufactured sand over NS. In
the study by Li et al. [21], concrete was developed using manufactured sand processed
from different sandstones, such as limestone, quartzite, granite, basalt, and granite gneiss.
It was mentioned that morphology and texture characteristics of the manufactured sand
greatly affected the performance of the concrete. One of the properties used in evaluating
its performance is compressive strength.

Compressive strength remains one of the most important parameters to characterize
concrete generally [22] and, specifically, manufactured-sand concrete (MSC). The process
involved in experimentally obtaining the compressive strength of concrete in the laboratory
is intricate and cost- and time-consuming with a limited testing period. Despite all the
time spent in the laboratory, it was practically impossible to adequately explore all the
different combinations of the mixture compositions (i.e., cement, coarse aggregate, water,
manufactured sand, etc.). Machine learning (ML)–based techniques were recently and
successfully deployed to predict the compressive strength of concrete [23,24]. Ly et al. [25]
proposed principal component analysis (PCA) with teaching–learning-based optimization
(TLBO) as enhancement to the prediction accuracy of adaptive neuro-fuzzy inference system
(ANFIS) in predicting the compressive strength of concrete prepared with manufactured
sand. Similarly, hybrid artificial intelligence (AI) of particle swarm optimization (PSO)–
based adaptive network-based fuzzy inference system (PSOANFIS) and a genetic algorithm
(GA)–based adaptive network-based fuzzy inference system (GAANFIS) was proposed by
Dao et al. [26] to predict the 28-day compressive strength of GPC containing 100% waste
slag aggregates. In a recent study, Feng et al. [27] proposed an intelligent approach that
employs an adaptive boosting (AdaBoost) algorithm to predict the compressive strength
of concrete. The superior predictive ability of AdaBoost was proven by comparing its
performance with those of artificial neural networks (ANN) and support vector regression
(SVR). In another attempt, Duan et al. [28] proposed an ANN model for investigating the
compressive strength of concrete prepared with varying types and sources of recycled
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aggregates. Generally, from the studies of the proposed models [29–31], it was clear
and proven that ML has the capabilities of modeling the nonlinearity inherent between
the concrete mixtures to better predict the compressive strength of concrete. In a recent
study by Ren et al. [32], ensemble classification and regression tree (En_CART) techniques
were employed in predicting the compressive strength of the manufactured sand concrete.
Comparatively, the predictive performance of ANN, Gaussian process regression (GPR),
RF, and SVR were also studied with En_CART models was established in predicting
the compressive strength of the developed manufactured sand concrete with 1350 target
variables from 328 concrete mixture designs. Saridemir [33] explored gene expression
programming (GEP) to develop a model splitting the tensile strength from the compressive
strength of concrete. In building the GEP-based model, 536 experimental datasets from
available literature were used to develop a formulation for splitting the tensile strength
of concrete as a function of specimen age and cylinder compressive strength. A separate
173 experimental datasets were used to validate the formulations other than the training
and testing data. The obtained results from the GEP-based model were compared with
experimental results, the regression-based models and national building codes formulas
and were found to agree well with the experimental data. In other works, GEP has been
successfully utilized to predict the compressive strength of concrete [34–36].

In this study, the goal is to develop a GEP-tree-based prediction model with strong
nonlinear capabilities for better estimation of the compressive strength of concrete de-
veloped with MS and reveal the relationship between the features. The datasets were
pulled from the works of Zhao et al. [37] with included input parameters, such as mixture
compositions, water content, cement content, manufactured sand properties, and curing
days. The target response from the developed ML model is the compressive strength of
concrete with manufactured sand. For model evaluation, statistical parameters, such as
root mean square error (RMSE), mean absolute error (MAE), coefficient of determination
(R2), and coefficient of correlation (R) were used. The rest of the paper is laid out as follows:
The Section 2 contains information on the datasets and the GEP-tree model that was used
to train them. The outcomes of the investigation are described in the Section 3. Finally, the
study’s principal conclusions are provided. The suggested model will be used to choose
the best mixture design for MSC in order to attain the desired compressive strength as
specified by applications.

2. Methodology

This section describes the experimental database used for the development of AI
models. Additionally, GEP modeling and evaluation criteria are also presented.

2.1. Experimental Database

It is critical to establish a well-assembled and vast dataset with clear and explicit
descriptions, insights, and statistically significant input variables if the goal is to generate
powerful and resilient ML models. As a result, the GEP-tree-based algorithms used in
this study were trained using a cleaned database, including 275 experimental datasets
with 11 features taken from the data-in-brief [37,38] worked by Zhao et al. [39]. The
models were developed for the compressive strength (fc’) of MSC using eleven recorded
attributes as inputs: compressive strength of cement (fce, MPa), tensile strength of cement
(fct, MPa), curing age (T, days), Dmax of crushed stone (mm), stone powder content (SPC, %),
fineness modulus of sand (FM), water-to-binder ratio (w/b), water-to-cement ratio (w/c),
water (W, kg/m3), sand ratio (S, %), and slump (Slp, mm). The proper amount of stone
powder in manufactured sand helps in improving the workability of MSC [40]. This is
a result of the paste’s thickening consistency brought on by the higher water absorption
of the stone powder and the larger volume of paste that contains the pulverized stone
powder. In the experimental study by Zhao et al. [39], limestone-based manufactured
sand with a particle size of around 0–4.75 mm, continuous-graded crushed limestone in
the range of 5 to 31.5 mm, and grade 42.5 ordinary silicate cement was employed in the
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MSC. Stone powder was classified as having a particle size less than 0.075 mm, and its
mass in manufactured sand was modified to 5 percent, 9 percent, and 13 percent. All
mixtures also included tap water and the high-performance water reducer FDN-1, which
has a water reducing rate of 19%. The water absorbed by the stone powder was included
in the initial mixing water, the sand ratio was raised by around 2% compared to concrete
made with natural sand, and decreased by 1–2% for every 3% increase in stone powder by
mass when using manufactured sand. In addition to cement, other binders, namely fly ash
and silica, were also used; therefore, the input attribute was named the water-to-binder
ratio. Table 1 summarizes the statistical evaluation and their individual data of the datasets
(input and target parameters) used for model development. The distribution charts of the
input and target variables utilized during model training, in terms of their magnitudes
along observation numbers, are shown in Figure 1. Plotting these numbers may aid in
identifying parameters for which there are insufficient data, and more data are needed.
Because the input parameters are interdependent, all variables studied were correlated, and
the findings are displayed in Table 2. More than half of the input variables are positively
associated, according to a quick evaluation of their effect on the target variable.

Table 1. Descriptive statistics of the input data used for the development of models.

Descriptive
Statistics

fce
(MPa)

fct
(MPa) T (Day) Dmax

(mm)
SPC
(%) FM w/b w/c W

(kg/m3)
S
(%)

Slp
(mm)

Compressive
Strength
fc’ (MPa)

Mean 48.34 8.26 82.11 31.37 7.79 3.06 0.43 0.47 172.68 36.74 87.79 54.24
Standard
Error 0.23 0.03 6.18 0.73 0.28 0.02 0.01 0.00 1.26 0.26 3.65 0.96

Median 46.80 8.00 28.00 31.50 7.00 3.19 0.45 0.45 180.00 36.00 60.00 55.40
Mode 46.80 8.00 28.00 31.50 13.00 3.34 0.45 0.45 180.00 36.00 50.00 68.00
Standard
Deviation 3.77 0.53 102.49 12.16 4.64 0.25 0.08 0.08 20.96 4.33 60.60 16.00

Sample
Variance 14.20 0.28 10,504.05 147.95 21.53 0.06 0.01 0.01 439.22 18.73 3671.81 256.00

Kurtosis 0.36 0.23 1.54 11.31 −0.94 0.24 −0.93 0.53 6.41 −0.75 −0.37 −0.72
Skewness 0.11 0.07 1.66 3.45 0.10 −0.84 −0.06 0.68 −0.81 0.28 0.89 −0.27
Range 17.00 2.50 385.00 60.00 20.00 1.04 0.31 0.36 187.00 16.00 249.00 68.80
Minimum 38.20 6.90 3.00 20.00 0.00 2.30 0.25 0.31 104.00 28.00 11.00 18.40
Maximum 55.20 9.40 388.00 80.00 20.00 3.34 0.56 0.67 291.00 44.00 260.00 87.20
Count 275 275 275 275 275 275 275 275 275 275 275 275.00
Confidence
Level (95.0%) 0.45 0.06 12.17 1.44 0.55 0.03 0.01 0.01 2.49 0.51 7.19 1.90

2.2. GEP Modeling

Gene expression programming (GEP) was first proposed by Koza in 1992 and was
inspired by Darwin’s idea of natural selection and evolution. GEP has been successfully
employed for tackling numerous complicated engineering challenges due to a number
of its inherent advantages [41]. The GEP algorithm has been successfully used for a
variety of concrete-related applications [42–47]. GEP uses a population-based technique,
which is inspired by the traditional genetic algorithms (GAs) procedure for prediction and
optimal solution finding. The procedure starts with initialization, which entails creating a
random population, and then moves on to producing differences in the parent population
by genetic operators such as crossover, elitism, and mutation. The fitness values of the
population passed to the following generation are used to make decisions. Figure 2 depicts
the flowchart for a common GEP model’s essential functioning mechanism. All of the
stages are applied in order to diversity and enrich the offspring population. The number
of genes, chromosomes, head size, genetic operators (mutation and crossover), maximum
number of generations, and connecting functions all affect the predictive effectiveness of
the GEP model.



Materials 2022, 15, 5823 5 of 19Materials 2022, 15, x FOR PEER REVIEW 5 of 19 
 

 

 

 

Figure 1. Details of variables used in the development of models. 

30

35

40

45

50

55

60

1
1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0
5

1
1
8

1
3
1

1
4
4

1
5
7

1
7
0

1
8
3

1
9
6

2
0
9

2
2
2

2
3
5

2
4
8

2
6
1

2
7
4

f c
e
(M

P
a)

Instance No. 

6

6.5

7

7.5

8

8.5

9

9.5

10

1
1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

f c
t
(M

p
a)

Instance No. 

0

50

100

150

200

250

300

350

400

450

1
1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

T
 (

d
ay

s)

Instance No. 

0

10

20

30

40

50

60

70

80

90

1
1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0
5

1
1
8

1
3
1

1
4
4

1
5
7

1
7
0

1
8
3

1
9
6

2
0
9

2
2
2

2
3
5

2
4
8

2
6
1

2
7
4

D
m

ax
(m

m
)

Instance No. 

0

5

10

15

20

25

1
1
4

2
7

4
0

5
3

6
6

7
9

9
2

10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

S
P

C
 (

%
)

Instance No. 

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

1
1
5

2
9

4
3

5
7

7
1

8
5

9
9

11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

F
M

Instance No. 

0

0.1

0.2

0.3

0.4

0.5

0.6

1
1
5

2
9

4
3

5
7

7
1

8
5

9
9

11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

w
/b

Instance No. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1
1
5

2
9

4
3

5
7

7
1

8
5

9
9

11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

w
/c

Instance No. 

50

100

150

200

250

300

350

1 15 29 43 57 71 85 99
1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

W
 (

k
g

/m
3
)

Instance No. 

25
27
29
31
33
35
37
39
41
43
45

1
1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0
5

1
1
8

1
3
1

1
4
4

1
5
7

1
7
0

1
8
3

1
9
6

2
0
9

2
2
2

2
3
5

2
4
8

2
6
1

2
7
4

S
 (

%
)

Instance No. 

25

75

125

175

225

275

1
1
5

2
9

4
3

5
7

7
1

8
5

9
9

11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

S
lp

(m
m

)

Instance No. 

25

35

45

55

65

75

85

95

1
1
4

2
7

4
0

5
3

6
6

7
9

9
2

10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

f c
’ 

(M
P

a)

Instance No. 

Figure 1. Details of variables used in the development of models.
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Table 2. Pearson’s correlation coefficient among the variables used in the development of models.

fce fct T Dmax SPC FM w/b w/c W S slp CS

fce 1
fct 0.88 1
T −0.26 −0.33 1
Dmax 0.20 −0.04 0.01 1
SPC −0.17 −0.12 0.08 0.45 1
FM −0.25 −0.07 0.06 −0.20 −0.08 1
w/b −0.13 −0.05 0.10 0.30 0.46 0.23 1
w/c 0.22 0.06 −0.02 0.63 0.27 −0.15 0.74 1
W −0.34 −0.12 0.13 −0.61 −0.04 0.35 0.12 −0.41 1
S −0.03 −0.03 0.09 −0.37 −0.22 −0.04 0.42 0.36 0.21 1
slp 0.06 0.08 0.02 −0.27 −0.37 −0.06 −0.19 −0.03 −0.10 0.29 1
CS −0.14 −0.20 0.46 −0.40 −0.36 −0.06 −0.66 −0.59 0.09 −0.16 0.16 1Materials 2022, 15, x FOR PEER REVIEW 7 of 19 
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Figure 2. Flowchart of the study.

The GEP model was chosen for the study because it provides a simple and interpretable
mathematical prediction model that can be utilized with high confidence by researchers
and practitioners in the field for similar situations without the requirement for lengthy
experimental testing.

GeneXprotools v5.0 created by Candida Ferreira (Portugal) was used to construct the
GEP models. The data was first retrieved into the tool interface, where the attributes were
separated into target (output) and input (explanatory) variables. The data were divided into
training and validation groups at random. Previous research has shown that partitioning
in the 70/30 ratio produces the best results [48]. The same partitioning percentages were
used in the current investigation. The next stage involved adjusting the setting parameters
of the model. Additionally, probability of mutation and crossover technique was used
as genetic variation. In this regard, the number of chromosomes was varied between
30 and 200, and head sizes were varied between 8 and 12). Because of the intricacy of
the output’s mathematical equation, the number of genes has a significant impact on the
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model’s performance. Previously, majority of researchers employed different of genes, i.e.,
3 [49], 4 [42], and 5 [47]. Increasing the number of genes may boost performance, but it
will also complicate the output’s mathematical equation, and thus the number of genes
in this analysis ranged from 3 to 5. Different linking functions between the genes were
investigated; however, addition produced the best results, and hence it was used in this
study. The fitness function used in this mode was RMSE. The trial details are shown in the
diagram below.

2.3. Evaluation Criteria

Model evaluation was done using various statistical indices, such as the correlation
coefficient (R), root mean square error (RMSE), and mean absolute error (MAE), obtained
from the previous research [49]. The R value is a number that varies from 0 to 1, with 1 in-
dicating perfect correlation and values approaching zero indicating a very poor connection
between the predictors and the target variable. R values of 0.8 and above have been widely
accepted as yielding a more robust and accurate prediction of projected values.

3. Results and Discussion

This section presents performance evaluation of the proposed GEP models. Analysis
of selecting the best hyperparameter settings for the GEP model is also discussed. The
model’s performance is analyzed using different statistical indices, regression slopes, and
the predicted-to-experimental ratio. GEP formulations obtained from the best fit model
are also presented. Finally, results of a detailed parametric analysis (showing the relative
influence of predictors on the target variable) are presented.

3.1. Effect of Genetic Variables

A total of 11 trials (M1 to M11) were run to discover the best hyperparameter values for
the problem. The number of chromosomes, head sizes, and number of genes were varied
under several combinations/permutations, as shown in Table 3 and Figure 3. Initially,
chromosome sizes were varied from 30 to 200 while keeping the head size at 8 and the
number of genes at 3. The results indicated that a chromosome size of 200 achieved the
optimal model performance. The head size was then adjusted from 8 to 12 while keeping
the chromosomes (200) and genes (3) at their fixed values. The highest model performance
was observed when the head size was kept at 8. Finally, a number of genes were changed
using the above optimum values for the number of chromosomes (200) and head size (8).
The best model performance in this case was attained by fixing the number of genes at 3.
To summarize, the proposed model performed better when the number of chromosomes,
head size, and number of genes were set to 200, 8, and 3, respectively. Figure 3 presents
better visual illustration of model performance evaluation based on the considered metrics
(R, RMSE, MAE) as the genetic parameters were adjusted in successive steps. Figure 4
shows the predictive performance of the 11 GEP models based on overall MAE and R
values. It may be noted from the Figure 4 that M5 exhibits the highest R values and lowest
R value, showing its robust and superior performance compared to other models. Thus,
the succeeding analyses were based on the M5 model setting.
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Table 3. Details of trials and their statistical evaluation using correlation and error indices.

Trial
No.

Used
Vari-
ables

No. of
Chromo-

somes
Head
Size

Number
of

Genes

Constants
per

Gene
No. of

Literals
Program

Size

Training Dataset Validation Dataset
Overall

R2Best
Fitness RMSE MAE R2 Best

Fitness RMSE MAE R2

1 11 30 8 3 10 15 45 167.5 4.970 3.664 0.902 144.080 5.940 4.439 0.866 0.884
2 7 50 8 3 10 13 37 173.9 4.749 3.371 0.910 165.180 5.054 3.444 0.902 0.906
3 9 100 8 3 10 15 37 164.0 5.098 3.839 0.897 151.070 5.619 3.856 0.879 0.888
4 6 150 8 3 10 14 33 155.5 5.430 3.858 0.883 146.890 5.807 4.160 0.872 0.878
5 6 200 8 3 10 13 37 180.5 4.538 3.216 0.919 167.970 4.953 3.348 0.906 0.912
6 6 200 9 3 10 12 39 172.6 4.793 3.532 0.909 149.420 5.692 4.079 0.878 0.894
7 9 200 10 3 10 18 44 161.9 5.175 3.866 0.894 125.360 6.976 4.735 0.822 0.858
8 7 200 11 3 10 18 46 163.9 5.100 3.366 0.897 144.350 5.927 4.055 0.869 0.883
9 9 200 12 3 10 18 50 163.5 5.114 3.777 0.896 146.180 5.840 4.158 0.870 0.883
10 7 200 8 4 10 21 55 171.5 4.830 3.456 0.907 147.920 5.760 3.845 0.875 0.891
11 9 200 8 5 10 22 64 191.3 4.226 3.054 0.929 149.470 5.689 3.960 0.877 0.903
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Figure 3. Effect of genetic variables on the performance of GEP models.
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Figure 4. Comparison of overall (a) R and (b) MAE for the trials undertaken in this study.

3.2. Performance of the Developed Models

This section describes the predictive performance of the developed GEP models based
on statistical evaluation indices, slope of regression line, and ratio of predicted/experimental
(pred./exp) ratios. For developing the model, the ratio between the number of experimental
records (i.e., 70% training and 30% validation data points), which in this case were 192
and 83, were considered. Models were developed based on the 11 recorded attributes
mentioned in Section 2.1. The previous literature in this regard suggests that the ratio of
data points to number of input predictors must not be less than three and should prefer-
ably exceed five for the development of an efficient predictive model [50]. This ratio is
significantly above the required limit for the considered compressive strength estimation of
concrete manufactured with sand (17.45 in the training set and 7.54 in the validation set) in
this study, indicating a more reliable ML model.

3.2.1. Statistical Evaluation

Table 3 shows the statistical evaluation of experimental (actual) and prediction results
of the GEP model for the compressive strength (CS) of concrete (manufactured with sand).
The results are shown for both the training and validation stages. The overall values
of R in the GEP predictive model are in general higher than 0.88, indicating that the
experimental and projected outcomes are in close agreement. Considering the R2 values,
it is apparent that M5 achieved the highest value (0.912), outperforming other models.
The experimental results show that R2 values for M5 models in both the training and
validation sets are comparable and are also higher than other models. However, it is
widely acknowledged that merely a greater R2 is not a unique or reliable measure of the
robustness and superiority of an AI model [51]. Consequently, other key indices such
as MAE and RMSE were used for the current study for better comparative analysis of
the selected GEP models. It may be observed from the results (Table 3) that the achieved
RSME (4.953) and MAE (3.348) confirm the superiority of the M5 model and its improved
prediction performance. Based on the considered statistical indices, M2 is identified as the
next best model. The CS prediction results in Table 3 suggest that all of the formulated
GEP models yielded satisfactory prediction performance. The robustness of all formulated
models is evident from the Taylor diagram shown in Figure 5. Factors such as the GEP
model’s algorithmic structure, diverse reproduction process, stochastic adaptive genetic
operators, and minimum assumptions about the input data structure [51] are responsible
for such precise and accurate predications achieved by GEP model. Furthermore, the GEP
algorithm generates random choices and functions that are in line with earlier experimental
findings [48]. The GEP model has comparable performance to previously developed AI
models such as random tree, multilinear regression, M5P, stochastic M5P, random forest,
Gaussian process, and bagged M5P tree; however, it outperforms other AI models in terms
of yielding a simple mathematical equation, whereas previously developed models are
mainly criticized for their black-box processing of input information. In order to estimate
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the uniaxial CS of manufactured-sand concrete, Zhao et al. [52] studied two ANN-based
scenarios. First, nine regular algorithms were used to train the ANN, and the best one was
chosen to represent the traditional ANN (CNN). In the second scenario, two enhanced
ANNs using the biogeography-based optimization (BBO) and multi-tracker optimization
techniques were produced (MTOA). The CNN’s performance in comparison to hybrid
models revealed that BBO and MTOA can both build an ANN that is more accurate. The
most accurate model yielded MAE of 3.8529 and 3. 8759 for the training and testing
data, respectively. This study developed a model having MAE of 3.216 and 3.348 for the
training and validation data, showing superior performance compared with the previously
developed model. Nevertheless, the current model was translated in the form of a simple
mathematical equation.
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3.2.2. Comparison of Regression Slopes and Error Analysis

Another commonly used evaluation metric for assessing the suitability of AI/statistical
models is the slope of the regression lines, which implies the trend between actual (ex-



Materials 2022, 15, 5823 11 of 19

perimental) and predicted output values [44]. The research analysis also evaluated the
performance of developed GEP models based on regression slopes, and the results for
the best-fit model (M5) are shown in Figure 6. The trend lines (regression slope) for both
training and validation data are shown. Further, the corresponding predictive equations
for training and validation stages are also given in the same figure. A standard 45-degree
crossing through the diagonal represents the optimum fitting line which has a slope of
unity (1). The error indices, such as RMSE and MAE, have minimal values for a regression
line with a slope approaching 1 and correlation values of 0.8 and above [53,54]. Closer
distribution of the depicted points with reference to the standard diagonal line are indica-
tive of more acceptable and reliable model performance. As shown in Figure 6, the slope
value of the regression line for training data is 0.93 and that for validating stage data is
0.91, implying excellent prediction performance of M5. The shown regression lines for
the selected M5 model show that, in general, plotted points are concentrated around the
trend line, indicating that it performs reasonably well. It should be observed that the
regression slope values for the validation data are comparatively lower compared to the
corresponding values for the training stage data, indicating that no overfitting problem
exists. Figure 7 presents the error analysis plot for the optimized trial (M5) against the
number of observed instances. The absolute error (difference between predicted and actual
values) is consistently lower than 10 percent for the majority of instances, suggesting that a
lower disparity exists between the experimental and predicted results.
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Figure 6. Comparison of regression slope for trial No. 5.
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Figure 7. Error Analysis for the optimized trial.

3.2.3. Predicted-to-Experimental Ratio

The frequency ratio and cumulative percentage of the model’s predicted results di-
vided by the experimental data are illustrated in Figure 8. The results are shown for the
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ratio (predicted/experimental) between 0.5 and 1.5, showing a 50% deviation of predicted
results from the experimental data. Pred/exp ratio results are shown for both training
(Figure 8a) and validation (Figure 8b) datasets. The maximum number of observations fall
between 0.950 to 1.10, indicating that the majority of data points are within 10% uncertainty.
This shows that the forecasts produced by the models are reliable and accurate. Model
M5 attained the greatest cumulative percent values of 83% ((6 + 32 + 69 + 39 + 14)/(192))
for training stages and 85% ((3 + 18 + 28 + 20 + 2)/(83)) for validation data within the bin
range of 0.9 to 1.10. All of the developed models gave the maximum cumulative frequency
within this bin range; however, model M5 had the largest percentage of both cumulative
percentage and frequency ratio of pred/exp outputs.
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Figure 8. Predicted/experimental ratio for the optimized trial No. 5. (a) Training dataset (b) Valida-
tion dataset.

3.2.4. GEP Formulations

The ideal/optimum combination of GEP model parameters giving (M5) was employed
in accordance with previous studies [43,48,55,56] for generating an empirical formulation
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to forecast the CS of concrete and expression tree shown in Figure 9. Equation (1) to
Equation (4) illustrate the final empirical equation, which was produced by integrating
several mathematical models obtained from the Matlab-based GEP model. The developed
mathematical formulations shown in the equations below can be used for estimating the
CS of concrete using the input variables fct, fce, w/b, w/c, SPC, and T. It is worth noting
that the established model can be utilized to forecast the CS of concrete under typical
circumstances with information on similar variables without the need comprehensive
laboratory-based testing.

fc
′ = x + y + z (1)

x =
3
√
(((−1.21× fct) + (T + 3.13))× fct)

w/b
(2)

y =
(((w/b) + 11.11)× (6.56× (w/b)))× ( fce + 11.11)))

w/b
(3)

z = ((w/b− w/c)×
((

SPC
w/c

)
× 12.97

)
) (4)

where fct is the tensile strength of cement; fce is the compressive strength of cement; w/b
is the water-to-binder ratio; w/c is the water-to-cement ratio; SPC is the stone powder
content; and T is the curing period.
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3.3. Sensitivity and Parametric Analysis

It is frequently important to test the efficacy of machine learning–based simulation on
simulated datasets in order to establish and verify their validity on a variety of datasets.
Sensitivity analysis and parametric analysis are two such techniques commonly used in
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this perspective that attempt to examine the effectiveness of selected GEP model predic-
tions using the inter-dependence of physical phenomena [57–60]. Sensitivity analysis is
frequently used for exploring the variation in response of the proposed predictive model
with reference to any changes in the specific input variables/features [59,61,62], while para-
metric analysis is used to establish the relative importance of the predictors in predicting
the target variable (CS in this case). For the current investigation, several predictors were
subjected to a parametric analysis to determine their respective importance in relation to
the CS of concrete. It is worth noting that all six variables used for both sensitivity analysis
and parametric analysis were numeric, and hence the corresponding fluctuation on the
target variable was easy to interpret.

Figure 10 shows the sensitivity analysis for the investigated predictors (tensile strength
of cement; compressive strength of cement; water-to-binder ratio; water-to-cement ratio;
stone powder content; and curing period). It may be noted that the variables water-to-
cement (w/c) ratio, curing period (T), and stone powder content (SPC) are highly sensitive,
implying any variations in these variables will strongly dictate the prediction performance
of developed GEP models. On the other hand, predictors such as tensile and compressive
strength of concrete were identified as comparatively less sensitive. Figure 11a–f illustrates
the detailed parametric analysis of the optimized model (M5) considering the same pre-
dictors. The trend line/slope and the corresponding R2 values for each are also shown in
Figure 11. As demonstrated in Figure 11a, the compressive strength of concrete (CS) is lin-
early associated with any increase in the tensile strength of the cement used. A similar trend
for variable fct (compressive strength of cement) is also observed (Figure 11b). The curve
depicting the relationship between the CS and curing period (T) is also positively sloped;
however, the trend is not perfectly linear (Figure 11c). There is a comparatively rapid
increase in the CS during the first 200 days (6 months), and afterwards the trend continues
to increase until it becomes steady/flat at T values of 250 and above. The CS of concrete
and stone powder content (SPC) are inverse, and this is also reflected by the negatively
sloped trend line plotted between the two (Figure 11d). Considering the influence of the
water-to-binder (w/b) ratio on the CS of concrete (target), it may be observed that the initial
increase in w/b values (until w/c approaches 0.36) is accompanied with a reduction in CS
(Figure 11e), followed by rapid increase later for any further increase in w/b ratio. Finally,
the impact of increasing w/c ratios on the CS is shown in Figure 11f, and it is revealed that
increasing w/c values (from 0.35 to 0.68) are expected to lower the CS significantly. The
above observations are consistent with a number of earlier investigations [63,64].

Materials 2022, 15, x FOR PEER REVIEW 15 of 19 
 

 

 

Figure 10. Sensitivity analysis of the developed model. 

 

Figure 11. Parametric analysis of the optimized model (a) fce (b) fct (c) T (d) SPC (e) w/b (f) w/c. 

2.35

1.09

25.43

13.55

11.37
46.22

0.00 10.00 20.00 30.00 40.00 50.00

fce

fct

T

SPC

w/b

w/c

Percentage Importance (%)

V
ar

ia
b

le

y = 0.2247x + 39.581
R² = 0.9992

47.5

48

48.5

49

49.5

50

50.5

51

51.5

52

52.5

35 40 45 50 55 60

C
om

p
re

ss
iv

e 
st

re
n
gt

h 
(M

P
a)

compressive strength of cement, fce

y = 0.7163x + 44.544
R² = 0.9988

49.2

49.4

49.6

49.8

50

50.2

50.4

50.6

50.8

51

51.2

6.5 7 7.5 8 8.5 9 9.5

C
om

p
re

ss
iv

e 
st

re
n
gt

h 
(M

P
a)

tensile strength of cement, fct

y = -0.0003x2 + 0.1856x + 34.49
R² = 0.8673

0

10

20

30

40

50

60

70

0 100 200 300 400 500

C
om

p
re

ss
iv

e 
st

re
n
gt

h 
(M

P
a)

Curing Period (days)

y =  - 1.1038x + 59.077
R² = 1

20

25

30

35

40

45

50

55

60

65

0 5 10 15 20 25

C
om

p
re

ss
iv

e 
st

re
n
gt

h 
(M

P
a)

Stone Powder Content (%

y = 439.45x2 - 311.44x + 102.52
R² = 0.9814

30

35

40

45

50

55

60

65

70

0.21 0.31 0.41 0.51 0.61

C
om

pr
es

si
ve

 s
tr

en
gt

h
 (

M
P

a)

w/b

y = 425.28x2 - 616.81x + 246.62
R² = 0.9981

0

20

40

60

80

100

120

0.2 0.3 0.4 0.5 0.6 0.7

C
om

pr
es

si
ve

 s
tr

en
gt

h
 (

M
P

a)

w/c

(a)

(e)

(d)(c)

(b)

(f)

Figure 10. Sensitivity analysis of the developed model.



Materials 2022, 15, 5823 15 of 19

Materials 2022, 15, x FOR PEER REVIEW 15 of 19 
 

 

 

Figure 10. Sensitivity analysis of the developed model. 

 

Figure 11. Parametric analysis of the optimized model (a) fce (b) fct (c) T (d) SPC (e) w/b (f) w/c. 

2.35

1.09

25.43

13.55

11.37
46.22

0.00 10.00 20.00 30.00 40.00 50.00

fce

fct

T

SPC

w/b

w/c

Percentage Importance (%)

V
ar

ia
b

le

y = 0.2247x + 39.581
R² = 0.9992

47.5

48

48.5

49

49.5

50

50.5

51

51.5

52

52.5

35 40 45 50 55 60

C
om

p
re

ss
iv

e 
st

re
n
gt

h 
(M

P
a)

compressive strength of cement, fce

y = 0.7163x + 44.544
R² = 0.9988

49.2

49.4

49.6

49.8

50

50.2

50.4

50.6

50.8

51

51.2

6.5 7 7.5 8 8.5 9 9.5

C
om

p
re

ss
iv

e 
st

re
n
gt

h 
(M

P
a)

tensile strength of cement, fct

y = -0.0003x2 + 0.1856x + 34.49
R² = 0.8673

0

10

20

30

40

50

60

70

0 100 200 300 400 500

C
om

p
re

ss
iv

e 
st

re
n
gt

h 
(M

P
a)

Curing Period (days)

y =  - 1.1038x + 59.077
R² = 1

20

25

30

35

40

45

50

55

60

65

0 5 10 15 20 25

C
om

p
re

ss
iv

e 
st

re
n
gt

h 
(M

P
a)

Stone Powder Content (%

y = 439.45x2 - 311.44x + 102.52
R² = 0.9814

30

35

40

45

50

55

60

65

70

0.21 0.31 0.41 0.51 0.61

C
om

pr
es

si
ve

 s
tr

en
gt

h
 (

M
P

a)

w/b

y = 425.28x2 - 616.81x + 246.62
R² = 0.9981

0

20

40

60

80

100

120

0.2 0.3 0.4 0.5 0.6 0.7

C
om

pr
es

si
ve

 s
tr

en
gt

h
 (

M
P

a)

w/c

(a)

(e)

(d)(c)

(b)

(f)

Figure 11. Parametric analysis of the optimized model (a) fce (b) fct (c) T (d) SPC (e) w/b (f) w/c.

4. Conclusions

The excessive application of river sand, especially as a construction material, has
led to severe shortage of natural resources and unbalanced river eco-system. This study
investigates the nonlinear capabilities of the GEP prediction model for the compressive
strength of concrete made of manufactured sand from stone powder as a partial replacement
for normal sand. The following findings may be taken from this investigation:

1. The optimum statistical indices were acquired after 11 trials based on variable genetic
parameters. These values for the training and validation datasets in the case of the
ultimately selected model (trial 5) were RMSE (4.538 and 4.953) MPa, MAE (3.216 and
3.348) MPa, and R2 (0.919 and 0.906), respectively. Furthermore, the MAE values of
the selected models show a mean error of 5.93 percent (training) and 6.17 percent
(validation). These values are substantially lower, suggesting that the defined GEP
models for forecasting compressive strength of MSC are reliable for use in future.

2. The Taylor diagram shows the robustness of all the models; however, it reveals the
superiority of trial 5. Other statistical performance metrics, such as predicted-to-
experimental ratio for the optimum trial and the slope of the regression line between
experimental and anticipated outcomes, were employed to supplement the accu-
racy analysis of the best GEP model. The best model yielded 0.9347 (training) and
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0.9108 (validation) regression slopes, which are closer to unity (i.e., ideal slope), re-
flecting the reliability of the developed model. The predicted/experimental ratio
manifested that 85 percent and 83 percent of the values were within 10% of deviation
from the actual experimental results.

3. The MATLAB code extracted from the final GEP model was used to create a mathemat-
ical equation with easily determinable input parameters to evaluate the compressive
strength of MSC, obviating the need for time-consuming and expensive sample test-
ing and thus affecting the cost-effectiveness of civil engineering projects. It was also
determined that water–cement ratio, water–binder ratio, compressive strength of
cement, tensile strength of cement, curing period and stone powder percentage are
the six variables among the eleven effectively contributing to compressive strength.

4. The sensitivity analysis showed that the water-to-cement ratio is the most influential
parameter followed by duration and percentage replacement of stone powder content,
equaling 46.22, 25.43, and 13.55, respectively, in contributing to the compressive
strength. The parametric analysis revealed that the compressive strength of concrete
linearly changes with the tensile and compressive strength of cement. The increase
in compressive strength of MSC was steeper during the first 100 days, which also
validates the model in terms of its coherence with the literature. The increase in
the percentage of stone powder decreased the compressive strength of the MSC.
Maximum magnitude of compressive strength was obtained at a water–cement ratio
of 0.30.

5. The model was based on the available literature, which covers specific ranges of the
input variables. More robust models can be developed based on the literature from
multiple sources covering a wider range.
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