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Abstract: The Iwan model is composed of elastoplastic elements and is widely used to represent the
stiffness degradation of bolted joints under mixed-mode loading (normal and tangential loading). The
latest static methods of parameter identification established the relationship between the elastoplastic
elements and the contact pressure under normal loading. Under mixed-mode loading, the parameters
of the Iwan model are dynamic for the evolution of contact conditions. Therefore, static parameter
identification methods are not suitable for the dynamic Iwan model. A new technique was proposed
to identify the parameters of the elastoplastic elements in this paper. Firstly, several different finite
element models were established. The influence of the contact method and the thread structure were
analyzed, and a reliable and efficient bolted-joint modeling method was proposed. Secondly, the
evolution of contact conditions was studied. The dynamic elliptical contact model and the ellipticity
discrete method were proposed. Finally, the residual stiffness of the Iwan model was analyzed to
establish the mapping between the residual stiffness and the bending of the screw. The results can
provide a technique for identifying the parameters of the dynamic Iwan model.

Keywords: elastoplastic elements; Iwan model; bolted joint; mixed-mode loading

1. Introduction

Connection structures are usually applied in complicated systems. They mainly
include: a movable connection structure and a fixed connection structure. The movable
connection structure is generally a hinge of various forms. The fixed connection structure
includes welding, riveting, bolted joints, adhesive connections, and stop ring connections,
etc. [1]. Bolted joints are widely used in complex equipment for simplicity and convenience.
Bolted joints mainly transfer loads via connection interfaces. Stiffness degradation caused
by the interface slip seriously endangers the functionality and safety of the structure.
Therefore, a theoretical model that can characterize the stiffness degradation of bolted joints
is necessary.

Experiments are essential for theoretical modeling. Ungar [2] studied the sliding
and damping of the bolted interface and determined the damping through the decay
rate of the dynamic response. Segalman [3] designed the BMD device to reduce the
interference of the unnecessary bolted surfaces and obtained the power-law relationship
between energy dissipation and load amplitude. Ito et al. [4] used ultrasonic to study
the pressure distribution on the bolted surface and found that the roughness affects the
pressure distribution. Mantelli et al. [5] applied a pressure-sensitive film to measure the
pressure distribution of bolted joints and analyzed the applicability of various pressure
distribution models. However, there is no feasible apparatus to measure the evolution
of contact conditions under mixed-mode loading. On the basis of experiments, many
theoretical models have been proposed such as the Iwan model [6], LuGre model [7],
Valanis model [8], 4-stage shear model [9], and Lu model [10], where the Iwan model is
widely used for simplicity. To characterize the residual stiffness, Song et al. [11] modified
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the constitutive model of the Iwan model. Segalman et al. [12,13] proposed a reduced-order
model based on the Jenkins element of the Iwan model. Li et al. [14] proposed a double-
pulse density function (DF) of the Iwan model. The disadvantage of the modified Iwan
models above is that the parameters of the DF are fitted by degradation experiments.

Li et al. [15] proposed a new method for solving the DF based on the Hertzian pressure
distribution. Zhao et al. [16] proposed a technique based on the linear pressure distribution
to solve the DF. The commonality of both methods is the correlation of the interfacial
friction shear stress with the critical sliding forces of the Jenkins elements in the Iwan
model. Both the Hertzian and the linear pressure distribution ignored the evolution of the
contact evolution under mixed-mode loading.

The finite element method (FEM) is widely used in bolt analysis and has been
proven to be very helpful in understanding the phenomenon observed in the experiment.
Belardi et al. [17] proposed a modeling method for multi-bolt joints with a user-defined
finite element and validated the model experimentally. Chen et al. [18] studied the tighten-
ing behavior of bolted joints with FEM and experiments. However, various models have
been established such as the 2D model [19] and 3D model [20], etc. [21–25]. The analysis
results are inconsistent due to different modeling methods.

The aim of this study is to develop a technique to solve the DF of the Iwan model
under mixed-mode loading by FEM. We intend to provide a dynamic Iwan model and
establish the relationship between the elastoplastic elements and the physical model. In
Section 2, we introduce the Iwan model and the static method to solve the DF. In Section 3,
we propose the method to establish a reliable bolted-joint model and the technique to
associate the elastoplastic elements with the evolution of contact conditions. In Section 4,
the research results are discussed, and future research directions are highlighted.

2. The Iwan Model and the Microslip Friction Modeling Approach
2.1. The Iwan Model

Bolted joints are usually subjected to mixed-mode loading, as shown in Figure 1a. The
lower plate is fixed, and the upper plate sustains the tangential load T. The upper plate will
slide in the direction of the tangential load and slipping will occur at the inter-plate surface.
Extract the tangential force T and relative displacement u to plot the backbone curve, as
shown in Figure 1b. Let η represent the ratio of the sliding area to the contact area on the
inter-plate surface, and the backbone curve can be divided into three parts: sticking (η = 0),
microslip (η ∈ (0, 1)), and macroslip (η = 1). During microslip, the stiffness undergoes a
significant nonlinear degradation. The classic Iwan model can reproduce this degradation
process well.
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The classic Iwan model is composed of n Jenkins elements, as shown in Figure 2a. The
Jenkins element is composed of a spring with stiffness kt/n and a friction resistor with
critical sliding force f ∗i /n in series. A Jenkins element is an ideal piecewise unit which can
reproduce either slip or stick [26]. For simplicity, the density function ψ( f ∗) in the classic
model is uniform, as shown in Figure 2b, where ∆ is the bandwidth.
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Once the parameters of the Iwan model have been identified, the discrete form of the
backbone curve can be deduced as follows

T =
m

∑
i=1

f ∗i /n + ktu(n−m)/n (1)

where u is the relative displacement, kt is the total tangential stiffness, m is the number of
Jenkins elements that yield, and n is the number of Jenkins elements. The critical sliding
forces of Jenkins elements are in the order of f ∗1 /n < f ∗2 /n < · · · < f ∗N/n.

The integral form of the backbone curve of the Iwan model is

T =
∫ ktu

0
f ∗ψ( f ∗)d f ∗ + ktu

∫ ∞

ktu
ψ( f ∗)d f ∗ (2)

where ψ( f ∗)d f ∗ is the fraction of the total number of elements having f ∗ ≤ f ∗i ≤ f ∗ + d f ∗.
The tangential force of the unloading process under the cyclic load with displacement

amplitude A is

↼
T(u) =

∫ kt(A−u)
2

0
− f ∗ψ( f ∗)d f ∗ +

∫ kt A

kt(A−u)
2

[ktu− (kt A− f ∗)]ψ( f ∗)d f ∗ + ktu
∫ ∞

kt A
ψ( f ∗)d f (3)

According to the Masing rule as Equation (4), the tangential force-relative displacement
relation of the reloading process can be obtained.

⇀
T(u) = −

↼
T(−u) (4)

When all Jenkins elements yield, the tangential stiffness is zero, conflicting with the
residual stiffness proposed by the literature [27], as shown in Figure 3a. Song et al. [11]
modified the constitutive model to represent the residual stiffness by adding a linear spring
with the stiffness of ka, as shown in Figure 3b.
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2.2. The Microslip Friction Modeling Approach

Li et al. [15] proposed a microslip friction modeling approach by combining the classic
Iwan model with a known Hertz contact pressure distribution on the contact surface. The
proposed model creates a relationship between the contact pressure distribution and the
DF in the Iwan model. In contrast to the classic Iwan model, the new model does not
introduce additional parameters to the DF. Zhao et al. [16] applied this approach to solve
the DF under the bolt preload and applied it to the Iwan model under mixed-mode loading.
Both assume that the tangential load does not affect the pressure distribution on the bolted
surface, as shown in Figure 4.
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Figure 4. Schematic diagram of the microslip friction modeling approach.

Assuming that the inter-plate surface pressure along the radial direction is p(r), the
friction shear stress on the inter-plate surface is

τpp(r) = µp(r) (5)

The area of sliding region is

s(r) = π(R2
max − r2) (6)

According to Equations (5) and (6), the s(τpp) can be deduced. Normalize the s(τpp)
to s̃(τpp), and take the derivative of s̃(τpp) with respect to τpp. Then, the DF of the friction
shear force τpp is obtained, and the ψ( f ∗) can be obtained based on τpp = λ f ∗.
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3. Calculation and Analysis
3.1. Finite Element Modeling

Due to the insufficiency of the experimental method, we applied the FEM to ana-
lyze the evolution of the contact condition of the bolted joint under mixed-mode loading.
Most researchers have replaced the threaded structure with bonding contact for simplicity
and convergency. The feasibility of the thread simplification still needs to be verified.
Therefore, the thread model and the simplified model were established and compared.
The finite element model was constructed by Abaqus and Hypermesh software, and the
simulations were conducted on the server (computer computing environment: Windows 10
operating system, 2.30 GHz Intel Xeon Gold 6140 CPU, and 192 GB RAM). We applied the
Abaqus/Standard main solver module to solve the quasi-static problem. Abaqus/Standard
is a general analysis module that uses implicit analysis methods to solve linear and nonlin-
ear problems, such as static, dynamic, and complex multi-field-coupled analyses.

The bolt head is a cylinder with a radius of 6.5 mm and a thickness of 5 mm, and the
total length of the screw is 35 mm. The thread is constructed according to Figure 5.
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Figure 5. (a) The external thread profile. (b) The internal thread profile (The thread pitch P is 1.25 mm,
the radius ρn is 0.07 mm, the thread height H is 1.08 mm, and the radius ρ is 0.14 mm).

The thread is applied at the nut, and the diameter of holes on the jointed plates is
larger than that of the screw [16,28]. The established high-quality models of the bolt and
nut are shown in Figure 6. The mesh of the bolt cross section and the hole of the nut are not
symmetric with respect to the axis due to the thread lead angle of 2.8473◦.
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In the simplified model, the screw is a cylinder with a diameter of 8 mm, and the nut is
a hollow cylinder. The simplified model is as shown in Figure 7. The difference between the
simplified model and the thread model is that the simplified model simulates a threaded
connection through bonding contact.
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The specific geometrical dimensions of the plate are shown in Figure 8. A gap was left
to avoid interference between the bolt and the hole. According to the ISO Mechanical Design
Manual, the diameter of the hole was 9 mm. There was a 0.5 mm gap between the screw
and hole. Generally, the magnitude of microslip was on the order of microns, and a space
of 0.5 mm was reserved enough for the microslip and macroslip of the inter-plate surface.
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To improve the calculation efficiency and accuracy, the mesh near the bolt hole was
locally refined, as shown in Figure 9. There are various element types in Abaqus, among
which, linear-reduced integration elements have the characteristics of accurate displacement
results and fast calculation speed and are suitable for contact analysis. Therefore, the linear-
reduced integration element C3D8RH was adopted. The material of the model was alloy
AISI4340, based on the literature [29], whose elastic modulus was 205.9 GPa and Poisson’s
ratio was 0.3. The plastic properties were not considered because no plastic deformation of
the material was found in past experiments.
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The bolt preload was simulated by defining an internal section on the screw and the
direction and amplitude of the preload, as shown in Figure 10.
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Figure 10. Schematic diagram of bolt preload.

The tangential load was applied on the reference point (RP) coupled with the right
surface of the upper plate, and the left surface of the lower plate was fixed, as shown in
Figure 11. The friction coefficient of steel is usually between 0.42 and 0.78, and the friction
coefficient of all contact surfaces in this paper was 0.6 [30].
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Different bolt preload leads to different macroslip displacements. It was necessary to
determine the amplitude of the preload so that the macroslip displacement was less than
the gap of 0.5 mm. Through pre-calculations for both the thread model and simplified
model, the macroslip displacement of the 1000 N preload was 0.0036 mm. The tangential
displacement load was 0.015 mm, which could reproduce the whole microslip. The analysis
steps are as follows.

Step 1: Apply a preload of 1000 N to the bolt’s internal cross section;
Step 2: Apply a tangential displacement of 0.015 mm at RP in the tangential direction.
The tangential behavior can be represented by the Coulomb law with the Lagrange

multiplier or penalty method. The Lagrange multiplier method reproduces the Coulomb
law but does not converge in pre-calculations for the large node displacement. Instead, the
calculation with the penalty method can converge. It is necessary to analyze the feasibility
of the penalty method to replace the Lagrange method.

3.2. Analysis of the Lagrange Multiplier and Penalty Method

The Lagrange multiplier method enforces the relative displacement of the adhesive
contact to be zero, as shown in Figure 12a, which strictly matches the Coulomb law. Due to
the introduction of multipliers by the Lagrange multiplier method, the order of the equation
increases, and the stiffness matrix is no longer a symmetric positive definite matrix. Solving
the corresponding multipliers can accurately satisfy the constraint equations, but it will
lead to great convergence difficulties because of the loss of positive definiteness.

The penalty method is an approximate method where the relative displacement of
adhesive contact is not zero but follows hard-elastic behaviour, as shown in Figure 12b. It
does not change the order and positive definiteness of the system matrix, and the system
matrix is theoretically easier to be solved. Since both models cannot converge with the
Lagrange multiplier method, an equivalent model was established to analyze the difference
between the two methods, as shown in Figure 13. A uniform pressure of 200 MPa was
applied to the bolt-plate surfaces to simulate the normal load (bolt preload). The tangential
displacement of 0.2 mm was applied to simulate the tangential load.
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Figure 13. The lapped plate under mixed-mode loading.

To improve the confidence of the calculation results, the mesh convergence analysis
was performed. The relationship between the nodes number and the maximum contact
pressure on the inter-plate surface was as shown in Figure 14. When the mesh was between
0.5 mm and 0.8 mm, the maximum contact pressure was stable at 72~73 MPa. The node
number of the 0.5 mm model was four times that of 0.8 mm, requiring higher computing
resources.
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The mesh of 0.8 mm was applied in the equivalent model. The coarser mesh may
lead to node penetration from the slave surface to the master surface, resulting in poor
calculation reliability. In this paper, the mesh of the master surface was refined to suppress
the penetration. The grid model is shown in Figure 15, where the node number of the
upper and lower plate was 44,145 and 8160, respectively.
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Figure 15. The finite element model of lapped plates.

The pressure distribution along the x-direction of the inter-plate surface under preload
and the backbone curves under mixed-mode loading are shown in Figure 16. The Pearson
correlation coefficient of the pressure distribution curves was 0.99956, and that of the force-
displacement curves was 0.99999. The results show that both contact methods are suitable
from the point of view of providing similar results, and the Lagrange multiplier method
could be replaced by the penalty method in the bolted plate model under mixed-mode
loading.
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3.3. Analysis of the Thread Model and the Simplified Model

We set four pressure scanning paths on the inter-plate surface, as shown in Figure 17a.
The radius of the hole is represented by Rmin, and the radii of the four circles are a, 1.17 Rmin,
1.33 Rmin, and 1.5 Rmin, respectively.

According to the pressure distribution curves in Figure 17b, the pressure distributions
of the two models show harmonic law, which is not caused by the thread structure but
rather by the asymmetry of the plate. The thread structure makes pressure distribution
curves of the thread model fluctuate within a small amplitude. Since the thread structure
is replaced by the bonding contact in the simplified model, the normal stiffness increases,
causing the pressure amplitude to be slightly larger than that of the thread model.

The calculation results of the two models under mixed-mode loading are as shown
Figure 18. The backbone curves of the two models coincided, and there were only slight
differences in the macroslip stage. The microslip could not be clearly distinguished by the
backbone curves, as shown in Figure 18a. According to the stiffness degradation curves,
as shown in Figure 18b, in the simplified model, the initial stiffness and residual stiffness
were higher than those in the thread model.
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Figure 17. Pressure distribution on the inter-plate surface: (a) scanning paths on the inter-plate
surface, (b) the pressure distribution of the two models.
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Figure 18. Dynamic degradation of the thread model and simplified model under mixed-mode
loading: (a) backbone curves, (b) stiffness degradation curves, (c) calculation time.

The degradation of bolted joints presented by the simplified model and the thread
model were consistent, and the friction on the threaded surfaces was negligible. The
simplified model was available to analyze the dynamic degradation of bolt joints with a
balance of efficiency and accuracy.

3.4. Analysis of Elastoplastic Elements under Mixed-Mode Loading

The above analysis indicates that the calculation results of the simplified model were
reliable. Therefore, based on the calculation results of the simplified model under mixed-
mode loading, we analyzed the relation between elastoplastic elements of the Iwan model
and the evolution of the contact conditions.

Under bolt preload loading, the mapping between the elastoplastic Jenkins elements
in the Iwan model and the friction shear stress was established in Section 2. Such mapping
is not suitable for the mixed-mode loading condition.

Under mixed-mode loading, the tangential force is composed of the friction force on
the bolthead-plate surface Fbp and that on the inter-plate surface Fpp, as shown in Figure 19.
The tangential force T satisfies T = Fpp + Fbp, while the tangential force T in the Song
modified model is

T = [
∫ ktu

0
f ∗ψ( f ∗)d f ∗ + ktu

∫ ∞

ktu
ψ( f ∗)d f ∗] + kau (7)

The bolthead-plate surfaces were always in partial contact and sticking under mixed-
mode loading, as shown in Figure 20a. The result indicates that Fbp is a static friction force
that cannot be solved through pressure and friction coefficient. According to Figure 20(b1),
the contact area was circular under the initial bolt preload. The contact boundary shrank
in the x-direction and stretched in the z-direction, as shown in Figure 20(b1–b3). When
T = 228.55 N, the contact boundary reached the plate boundary in the z-direction. When
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T = 489.332 N, the contact boundary was truncated by the plate boundary in the z-direction.
When 228.55 N ≤ T ≤ 489.332 N, the contact condition was sticking, and the mapping was
that the force sustained by the Jenkins element was smaller than the minimum critical slip
force (ktu < f ∗min).
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Figure 20. The evolution of contact conditions under mixed-mode loading: (a) Contact condi-
tion on the bolthead-plate surface, (b) contact condition on the inter-plate surface: (b1) T = 0 N,
(b2) T = 228.555 N, (b3) T = 489.332 N, (b4) T = 575.232 N, (b5) T = 632.458 N.

When 575.232 N ≤ T ≤ 632.458 N, microslip occurred. The central and the truncated
area remained sticking, as shown in Figure 20(b4). When the tangential force was larger
than 632.458 N, the macroslip occurred, and Fpp was equal to the product of the preload
and the friction coefficient µ(Fpp = µN).

With the increase in the tangential load T, the contact boundary of the inter-plate
surface varied, which means that the DF was dynamic. The contact boundary resembled
an ellipse, except for the truncated area.

As shown in Figure 21a, the pressure was centrosymmetric, which was suitable for the
microslip friction modeling in Section 2.2. As T increased, the peak pressure increased from
2.768 MPa to 4.624 MPa. The pressure of the central area accumulated in the x-direction.
The pressure distribution decreased from the center to the surrounding, and the pressure
in the truncated area was relatively low.
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Figure 21. Pressure distribution on the inter-plate surface under mixed-mode loading: (a) T = 0 N,
(b) T = 228.555 N, (c) T = 489.332 N, (d) T = 575.232 N, (e) T = 632.458 N.

Based on the analysis above, we simplified the contact area to an ellipse at the expense
of a small amount of preload, as shown in Figure 22. The two axes of the ellipse were ax
and by, and the modified area was an ellipse with the semi-major axis of bymax for narrow
plates. In microslip, the semi-minor axis was a dynamic value of aT

x . The dynamic ellipse
can be described by function as

a2
x

(aT
x )

2 +
b2

y

(bymax)
2 = 1 (8)

The microslip friction modeling approach in Section 2.2 does not work on the dynamic
ellipse. According to Figure 23a, the isolines have different ellipticity. The ellipticity discrete
method was proposed, as shown in Figure 23b. The ith and the (i − 1)th ellipse form a
sliding area of si.
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The ellipticity of the ith ellipse is ρi, linearly increasing from 1 to bymax/aT
x with the

increase of i from 0 to n. The ellipticity of the ith ellipse is

ρi = 1 +
bymax − aT

x

aT
x n

i (9)

The semi-minor axis and semi-major axis of the ith ellipse are

ai
x = Rmin + aT

x−Rmin
n i

bi
y = ρiai

x
(10)

Then the area of the ith sliding area is

si = π(ai
xbi

y − ai−1
x bi−1

y ) (11)

The variation law of pressure distribution in the x-direction is not the research content
of this paper, and it is assumed to be pT(r). Thus, the pressure on the si is pT(ai

x). Since the
elliptical contact area assumption and the ellipticity discrete method sacrifice part of the
preload, the corrected pressure distribution pTc(r) is

pTc(r) =
N

n
∑

i=1
si pT(ai

x)
pT(r) (12)

The normal load Ni is
Ni = si pTc(ai

x) (13)

The friction shear stress τi of the ith sliding area is

τi = µNi (14)

When n tends to infinite, the DF of friction shear stress Ψ(τ) is deduced by normaliza-
tion and derivation. Thus, the DF of the Iwan model is

ψ( f ∗) = λΨ(λ f ∗) (15)

Then the mapping between the friction shear stress and critical sliding force can be
established. The Fpp is the source of the [

∫ ktu
0 f ∗ψ( f ∗)d f ∗ + ktu

∫ ∞
ktu

ψ( f ∗)d f ∗] in the Iwan
model. Therefore, it can be inferred that the Fbp is the source of kau, and the residual
stiffness ka is equal to the tangential stiffness of the bolthead-plate surface dFbp/du. It is
difficult to measure the variation law of static friction Fbp under mixed-mode loading. The
reaction force Fbp

′ acting on the bolt head is shown in Figure 24. The bolt head-plate surface
and the nut-plate surface always remain sticking under mixed-mode loading, and the lower
plate is fixed while the upper plate moves with the tangential load. The bolt head moves
in the x-direction with the upper plate, and the other end is fixed on the stationary lower
plate, as shown in Figure 24. Therefore, the bending stiffness of the bolt can be measured to
predict the residual stiffness ka in the Iwan model.



Materials 2022, 15, 5817 14 of 16

Materials 2022, 15, x FOR PEER REVIEW 14 of 16 
 

 

model. Therefore, it can be inferred that the bpF  is the source of ak u , and the residual 
stiffness ak  is equal to the tangential stiffness of the bolthead-plate surface bpdF du . It is 
difficult to measure the variation law of static friction bpF  under mixed-mode loading. 

The reaction force bpF ′  acting on the bolt head is shown in Figure 24. The bolt head-plate 
surface and the nut-plate surface always remain sticking under mixed-mode loading, 
and the lower plate is fixed while the upper plate moves with the tangential load. The 
bolt head moves in the x-direction with the upper plate, and the other end is fixed on the 
stationary lower plate, as shown in Figure 24. Therefore, the bending stiffness of the bolt 
can be measured to predict the residual stiffness ak  in the Iwan model. 

 
Figure 24. The displacement of the bolt in the x-direction. 

4. Discussion 
In this paper, we established a reliable finite element model and analyzed the con-

tact and dynamic degradation of the bolted joint under mixed-mode loading. A new 
technique to identify parameters of *f  and ak  in the dynamic Iwan model was pro-
posed. The specific conclusions are as follows. 
(1) The penalty method sacrifices accuracy for convergence, but it is closer to the real 

situation than the Lagrange multiplier method. Through analysis, the calculation 
results of both methods are the same for lapped plates, and the penalty method is 
more suitable for the contact analysis of bolted plates. 

(2) A threaded connection reduces the normal and tangential stiffness of the joints 
compared to bonding contact, but the reduction is negligible. Therefore, in finite 
element analysis, it is feasible to use bonding contact to replace the threaded 
connection. 

(3) The contact area of the inter-plate surface changes with the tangential load under 
mixed-mode loading, and the contact boundary can be represented by an ellipse 
function. In microslip, the semi-major axis remains unchanged and the semi-minor 
axis is a function ( )T

xa T  of the tangential force T. 
(4) On the premise of the known dynamic pressure distribution, the contact area can be 

discretized by the different ellipticity. The discrete method can be applied to 
dynamic elliptical boundaries, and the DFs of friction shear stress and critical 
sliding force can be solved. 

(5) The residual stiffness of the Iwan model is derivative of static friction to relative 
displacement, and the static friction force causes the bending of the screw. 

Figure 24. The displacement of the bolt in the x-direction.

4. Discussion

In this paper, we established a reliable finite element model and analyzed the contact
and dynamic degradation of the bolted joint under mixed-mode loading. A new technique
to identify parameters of f ∗ and ka in the dynamic Iwan model was proposed. The specific
conclusions are as follows.

(1) The penalty method sacrifices accuracy for convergence, but it is closer to the real
situation than the Lagrange multiplier method. Through analysis, the calculation
results of both methods are the same for lapped plates, and the penalty method is
more suitable for the contact analysis of bolted plates.

(2) A threaded connection reduces the normal and tangential stiffness of the joints com-
pared to bonding contact, but the reduction is negligible. Therefore, in finite element
analysis, it is feasible to use bonding contact to replace the threaded connection.

(3) The contact area of the inter-plate surface changes with the tangential load under
mixed-mode loading, and the contact boundary can be represented by an ellipse
function. In microslip, the semi-major axis remains unchanged and the semi-minor
axis is a function aT

x (T) of the tangential force T.
(4) On the premise of the known dynamic pressure distribution, the contact area can be

discretized by the different ellipticity. The discrete method can be applied to dynamic
elliptical boundaries, and the DFs of friction shear stress and critical sliding force can
be solved.

(5) The residual stiffness of the Iwan model is derivative of static friction to relative
displacement, and the static friction force causes the bending of the screw.

The analysis of elastoplastic elements can further improve the application scenarios
of the Iwan model and develop the Iwan model from a static model to a dynamic model.
These results may be useful in appropriate designs of the bolted joint under stiffness and
damping criteria.

Abad et al. [21] also used the FEM to analyze the degradation of bolted joints under
mixed-mode loading and identified parameters of the Valanis model. However, the relation
between the similar evolution of contact conditions and the theoretical model was not es-
tablished. It indicated that the Iwan constitutive model has great potential for development,
but there is still much work to be done as follows:

(1) The pressure distribution law under mixed-mode loading needs to be studied, and
a function needs to be constructed to characterize the pressure distribution in the
non-circular area.
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(2) Experiments are indispensable to verify the theory. Designing equivalent bolted plates
to overcome the shortcomings of ultrasonic methods to measure pressure distribution
across multiple interfaces may be a feasible technique.

(3) The mapping of the parameter kt in the constitutive model is still not clear, and the
mapping parameter λ also needs to be studied.
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Nomenclature

T tangential force u Relative displacement
N normal load µ friction coefficient
Fexc amplitude of excitation force ka Residual stiffness
n number of Jenkins elements Rmax maximum radius of contact area
Rmin radius of the hole τbp friction shear stress on the bolthead-plate surface
p Contact pressure τpp friction shear stress on the inter-plate surface
kt tangential contact stiffness Fbp friction force on the bolthead-plate surface
pc corrected pressure Fpp friction force on the inter-plate surface
s sliding area A amplitude of the cyclic load
f ∗ critical sliding force aT

x semi-minor axis of the contact boundary
∆ range of critical sliding force ai

x semi-minor axis of the ith ellipse
bymax semi-major axis of the contact boundary bi

y semi-major of the ith ellipse
H thread height ρi ellipticity of the ith ellipse
DF density function η ratio of the sliding area to the contact area
pT contact pressure under mixed-mode loading pTc corrected contact pressure under mixed-mode loading
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