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Abstract: In terms of its chemical composition, biomass is a very complex type of fuel. Its combustion
leads to the formation of materials such as alkaline ash and gases, and there is evidence of the corrosive
effect this process has on refractory linings, thus shortening the service life of the combustion unit.
This frequently encountered process is known as “alkaline oxidative bursting”. Corrosion is very
complex, and it has not been completely described yet. Alkaline corrosion is the most common cause
of furnace-lining degradation in aggregates that burn biomass. This article deals with an experiment
investigating the corrosion resistance of 2 types of refractory materials in the Al2O3-SiO2 binary
system, for the following compositions: I. (53 wt.% SiO2/42 wt.% Al2O3) and II. (28 wt.% SiO2/
46 wt.% Al2O3/12 wt.% SiC). These were exposed to seven types of ash obtained from one biomass
combustion company in the Czech Republic. The chemical composition of the ash is a good indicator
of the problematic nature of a type of biomass. The ashes were analyzed by X-ray diffraction and
X-ray fluorescence. Analysis confirmed that ash composition varies. The experiment also included the
calculation of the so-called “slagging/fouling index” (I/C, TA, Sr, B/A, Fu, etc.), which can be used
to estimate the probability of slag formation in combustion units. The corrosive effect on refractory
materials was evaluated according to the norm ČSN P CEN/TS 15418, and a static corrosion test was
used to investigate sample corrosion.

Keywords: corrosion; refractory; biomass; thermal processing; wood ash

1. Introduction

Worldwide, 80% of electricity is produced using fossil fuels. According to the Inter-
national Energy Agency (IEA), electricity production reached approximately 25.8 T-kWh
in 2020, and an increase to 36.5 T-kWh is expected by 2040 [1]. As stated by the World
Bioenergy Association, 59.2 NPP/year, i.e., 10.3% of the global energy supply, comes from
biomass [2]. Biomass is becoming a popular source of energy which can be used in various
ways. Electricity produced from biomass currently corresponds to 493 TWh, which is
approximately 2% of the world’s electricity production [2]. Using biomass as a raw material
for powerplants is certainly interesting and useful; however, this technology also has certain
disadvantages. The use of biomass in powerplants leads to the formation of residue, called
biomass ash. It is estimated that around 480 million tons of ash are produced every year
by biomass powerplants worldwide. This is similar to coal ash, with 780 million tons per
year [2].

The most frequently burned material is wood (64%), followed by cereals and plant
residue from agricultural production. In general, it can be said that the average percentage
of ash produced by burning biomass ranges between 1 and 6%; for wood, it is 0.6–1.6%;
for bark, it rarely exceeds 3%; straw produces an ash content of around 5%, while grass
produces 7%. At the other end of the spectrum, the ash content produced by black coal
is significantly higher, reaching 20–30%, and from brown coal, this amount can be even
greater [3]. Ash represents a variable composition of mineral and inorganic components.
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During the combustion process, ash continuously changes its physical and chemical
properties, the final product being a molten mixture of original minerals, various eutectics,
and elements. Ash causes various problems, especially corrosion, erosion, stickers, etc. [4]
If the melting temperature of ash during combustion is tash < tflame, then the grate of
the hearth can become clogged. Ash layers on the walls of the furnace diffuse into the
lining, which then peels off in thin layers. The combustion chamber of the boiler must
therefore be structurally adjusted such that the flame temperature drops below the ash
melting temperature, i.e., the temperature on the grate should be lower than the melting
temperature of the biomass ash [5].

The major problem from a chemical point of view is corrosion, which comes from the
interaction between a refractory and a corrosive medium: gas, molten metals, molten glass,
molten salts, or slag. It results in a loss of mass and thickness and in the degradation of the
material properties [6]. The corrosion of refractory materials is a combination of external
and internal physical and chemical influences.

The process is basically a chemical reaction between the refractory material and the
slag or metal. Reactants are transported to the interface of the refractory material, and, in
turn, the product reacts and is transported to the liquid phase. The dissolution of refractory
materials in the melt is controlled by diffusion. Three types of corrosion have been defined:
surface, dimple, and undersurface corrosion [7].

Alkaline corrosion, or “alkaline oxidative bursting”, is extremely common, effective,
and particularly harmful to alumina–silicon (Al–Si) lining systems, and it is usually ob-
served in the temperature range of aggregates of 800–1000 ◦C. During biomass combustion,
damage to the refractory lining is observed (Figure 1) as the peeling of surface layers,
cracking, the bending of individual parts of the lining, the bulging of entire walls, and
eventually their collapse [8,9].
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Figure 1. Degradation of refractory materials in boilers after combustion of different types of
biomasses [8,9]: (1) the damage to refractory materials after 1 year of the combustion of wood chips;
(2) the furnace vault after 1.5 years of the combustion of chipboard; (3) the corroded part of refractory
samples after 2 years of combustion of plant biomass, and (4–9) the presentation of the defects of the
refractory lining after the combustion of biomass for 10 years of operation.

The main difference between coal ash and biomass ash is that coal ash contains higher
amounts of SiO2 and Al2O3, but it contains lower amounts of K2O and Na2O. The eutectic
of Al–Si forming fly ash lies above 1200 ◦C, while the eutectic of plant fly ash is much lower.
Eutectic temperatures for mixtures of alkali metals together with silica or phosphorus
have a low melting point: Na2O.2SiO2 (874 ◦C), K2O.4SiO2 (770 ◦C), and 2CaO.3P2O5
(774 ◦C) [10].

Aluminosilicate refractories are based on the SiO2-Al2O3 system. The equilibrium
diagram of this system is given in Figure 2, marking various refractories. The main phase
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in the Al–Si binary diagram is mullite (3Al2O3.2SiO2) [11], which increases the resistance
of the refractory material against the corrosive effects of ash [11].
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Figure 2. Categorization of basic refractory materials in binary diagram of SiO2-Al2O3. Note: * the
amount of Al2O3.

In the AL–SI system, new phases are often formed as a result of different chemical
reactions, gradually degrading the system. The newly formed products have a larger
volume than the original material, with expansion being reported between 7 and 30%. This
creates compounds in the lining or on its surface that have chemical compositions and
physical parameters different from the lining itself [12]. Ternary diagrams of the types
Na2O-Al2O3-SiO2 and K2O-Al2O3-SiO2 also describe the formation of individual phases in
the given system (see Figure 3).
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ual phases formed during alkaline corrosion.

The corrosion mechanism in the Na–Al–Si system includes the formation of albite
(NaAlSi3O8), nosean (Na8Al6Si6O28S) [15,16], and natrosilite (Na2Si2O5) by Equation (1),
which further reacts with mullite (Al6Si2O13) to form albite (NaAlSi3O8) and aluminum
oxide according to Equation (2). Nepheline (NaAlSiO4) can also be formed according to
Equation (3). Nosean is rarely reported in the literature as a corrosion product. However,
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due to its structural similarity to nepheline, it can also be expected to produce swelling.
The reaction can be described by Equation (4) [17]:

Na2SO4 + 2SiO2 = Na2Si2O5 + SO2 + 1/2O2 (1)

Na2Si2O5 + 2Al6Si2O13 = 2NaAlSi3O8 + 5Al2O3 (2)

2NaAlSi3O8 + Al6Si2O13 + 3Na2SO4 = 8NaAlSiO4 + 3SO2 + 3/2O2 (3)

4Na2SO4 + 3Al6Si2O13 = Na8Al6Si6O28S + 6Al2O3 + 3SO2 + 3/2O2 (4)

In the case of high-alumina refractories (>45% Al2O3) containing mullite (A3S2) and
cristobalite (SiO2), reaction with NaO2 above 1000 ◦C forms nepheline (NaS2) and α-Al2O3
according to Equation (5). As can be deduced from the ternary diagram K2O-Al2O3-SiO2, at
a lower content of Al2O3 < 30%, orthoclase KAS6 is formed, and at a content of Al2O3 > 30%,
new phases of leucite (KAS4) are formed according to Equation (6):

3Al2O3·2SiO2 + Na2O→ Na2O·Al2O3·2SiO2 + 2Al2O3 (5)

K2O·Al2O3·6SiO2 → K2O·Al2O3·4SiO2 + 2SiO2 (6)

Since the composition of biomass ash encourages the formation of eutectic melts, it is
advisable to use high-alumina refractory materials with an Al2O3 content > 80% or to add
silicon carbide for these linings. The compound, aluminosilicate-based materials mainly
include products containing oxide-less constituents—graphite and silicon carbide

Materials in Al2O3-SiO2-SiC systems combine the high thermal conductivity and chem-
ical inertness of silicon carbide with the chemical and thermal stability of aluminosilicate
and corundum. The products are therefore highly resistant to corrosion by liquid metals, as
well as to sudden changes in temperature.

SiC oxidizes according to Equations (7) and (8) and creates an amorphous SiO2 film
on the surface [18,19]:

SiC + 1.5O2 → SiO2 + CO (7)

SiC + 2O2 → SiO2 + CO2 (8)

To prevent graphite oxidation, firing is carried out without any contact between the
fired product and oxygen. The firing temperature is chosen to create a ceramic bond in the
products. At present, the process of quick firing is used, ensuring a reducing atmosphere in
the kilns at higher temperatures and while cooling the products.

K2O and Na2O, in the form of alkaline vapors, are capable of diffusing into the refrac-
tory matrix, and then they react with Al2O3 and SiO2 components to form K-aluminosilicate
and Na-aluminosilicate phases [20]. In the AL–SI binary system, potassium pairs react
according to Equations (9)–(11). The most harmful is the presence of free SiO2 and Na2O,
which increase the reaction rate at high temperatures and support the formation of reactive
glassy phases, according to Equation (12) [20]:

K2O + SiO2 → K2O.SiO2 (9)

3 (K2O.2SiO2) + 3Al2O3.2SiO2 → 3 (K2O Al2O3.2SiO2) + 2SiO2 (10)

K2O.Al2O3.2SiO2 + 2SiO2 → K2O.Al2O3.4SiO2 (11)

2SiO2 + Na2O→ Na2O·2SiO2 (12)

The so-called slagging/fouling index can be used to estimate the probability of slag
formation in combustion units during biomass combustion. Slagging/fouling means the
formation of layers (sticky, melted, or soft) of ash particles on heat exchange surfaces. A
summary of slagging and fouling indices and their calculation are presented in Table 1.
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Table 1. Ash characterization indices [10,21–24].

Index Equation
Tendency Slagging/Fouling

Low Middle High Ex. High

SiO2 (%) - <20 20–25 >25

Cl (%) - <0.2 0.2–0.3 0.3–0.5 >0.5

B/A B
A =

Fe2O3+CaO+MgO+Na2O+K2O
SiO2+Al2O3+TiO2

<0.5 0.5–1 1–1.75 >1.75

S/A S/A = SiO2
Al2O3

<0.31 - 0.3–3 -

I/C I
C = Fe2O3

CaO <0.31 0.3–3 >3 -

Fu Fu = B
A ·(Na2O + K2O) <0.6 0.6–40 >40 -

TA TA = Na2O + K2O <0.3 0.3 < TA < 0.4 >0.4 -

Sr Sr = SiO2
SiO2+Fe2O3+CaO+MgO ·100 >72 65–72 <65

The SiO2 index is often the predominant element in biomass samples and causes the
formation of melt, or “stickers”, therefore giving it the characteristic of being slag-forming.

The chlorine index Cl acts as an accelerator of the reaction between K and SiO2, which
leads to the formation of fused glass deposits and the formation of slag at boiler operating
temperatures of 800–900 ◦C [23].

Ash-deposition potential may be evaluated in terms of base-to-acid (B/A). The basicity
index B/A (base/acid ratio) is based on the general rule that basic oxide compounds lower
the melting point, and acidic compounds raise it. The B/A ratio is an indication of the
fusion and slagging potential of ash. I/C (iron/calcium ratio) stands for Fe2O3/CaO, e.g.,
ash with a ratio of Fe2O3/CaO = 0.3/3.0 containing eutectics that increase slag formation.

The Fouling index Fu (fouling index) is the B/A ratio, also taking into account the
alkali content (Na2O + K2O). Fouling refers to the dry deposition of ash particles or the
condensation of volatile inorganic components on heat transfer surfaces. The normal
percentage of alkali in biomass ash is between 25 and 35%, and it forms a eutectic in
combination with silica.

Ash has a high viscosity (Sr) value, slag viscosity index Sr [24], so it will have a low
tendency to slag. The TA (total alkali) index assesses the fuel’s ability to form ash layers.
Values of individual ash samples, defined based on the above-mentioned indices, are
summarized in Section 3.2.

The chemical composition of ash is a good indicator of the problematic nature of
biomass. For biomass fuels, massive slagging of heat exchange surfaces of boilers occurs
during combustion. Ash composition and atmosphere in a combustion chamber influence
the ash-melting temperature [10]. Indicators tell us of the characteristics of ash in terms
of their influence on the formation of the glassy phase, and thus their tendency to slag
and clog linings, heat exchange surfaces, and gas flow routes. These indices are based on
chemical composition of biomass and its combustion. The equations are mainly based on
fuel evaluation. However, since there is no specific index for biomass, it is possible to apply
these indices to this type of fuel as well.

2. Materials and Methods
2.1. Ashes from Wood Biomass Combustion

Seven different types of ash from different types of wood biomass were used for the
experimental portion of our study. All of these were obtained from the Czech Republic,
mainly from the Moravian–Silesian Region, but one was from the Central Bohemian Region.
Ashes utilized during the experimental portion were used in the original form for the
crucible test. the granulometry was not adjusted. More information about the ash samples
is presented in Table 2.
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Table 2. Characterization of wood ash used for experiment.

Type of Wood Biomass Disposal Method Labeled

Spruce pellets combustion P019
Woodchips combustion P020
Woodchips combustion P031
Woodchips, woodbark, sawdust, pellets, scraps combustion P032
Woodchips, woodbark, sawdust, pellets, scraps combustion P033
Woodchips gassification P059, P060
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2.2. Refractory Materials

Tested refractory materials were manufactured by one of the largest producers and
suppliers of refractory products and raw materials in the Czech Republic. Two types of
shaped refractory materials, belonging to the silica–aluminum group, were selected for the
corrosion experiment.

The first type was quality labeled as STV. It is a shaped refractory material classified
as standard fire clay. The second type was quality labeled as ARS60N and is classified high
alumina. The parameters of the mentioned tested materials with their properties are shown
in Table 3.

Table 3. Chemical composition and properties of refractory materials.

Oxides wt.% STV ARS60N

SiO2 53.5 28.40
Al2O3 40.5 46.60
TiO2 2.1 -

Fe2O3 2.1 0.88
CaO 0.3 0.2
MgO 0.3 0.27

K2O + Na2O 0.8 + 0.2 0.5
SiC - 13.2

Bulk density (kg/m3) 2150 2700
Apparent porosity (%) 18.0 15

Cold crushing strength (MPa) 30 70
Refractory qualities under load (RUL) T0.5 (◦C) 1360 >1500

2.3. Corrosion Crucible Test and Evaluation Method

The crucible test gives only approximate results. The refractory cube was filled
with corrodent and heated to the testing temperature for a specified period. The testing
conditions (temperature and corrodent composition) may reflect the expected service
conditions, but in some situations, a more aggressive corrodent and/or high temperature
may be used to speed up the attack to determine the resistance of the refractory to the
corrosive liquid in a relatively short time. The crucible test is described step by step in
Figure 4. The refractory cuboid sample with a cylindrical hole in the central portion was
filled with corrosive, medium/powdered ash with a heating temperature of 1200 ◦C for 2 h.
After cooling, the tested sample was cut through along the vertical axis, and the corroded
portion was measured.
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After the corrosion test, samples were visually checked for compactness, potential
cracks, and holes in the sample and walls. The ČSN P CEN/TS 15418 method [25] and the
internal regulation method of P-D Refractories CZ a.s. [26] were used for test evaluation.

The classification used for reporting the condition of the crucible with defined pa-
rameters [25] U: unaffected/no visible attack; LA: lightly attacked/minor attack; A: at-
tacked/clearly attacked and C: corroded/completely corroded. In addition to the above-
mentioned evaluation regulations, another internal regulation method of P-D Refractories
CZ was also used [26].

Table 4 shows the parameters of the classification after the corrosion test. Two evalua-
tion methods may sometimes be requested by a customer or company testing laboratory,
and the parameters can be used for comparison.

Table 4. Alkali test classification after internal regulation of P-D Refractories CZ [26].

Class
Classification

Corrosion Infiltration Cracks

A not attacked no corrosion and/or infiltration No
B slight attack <6 mm corrosion and/or infiltration No
C distinctive attack >7 mm corrosion and/or infiltration Slight
D severe attack >9 mm corrosion and/or infiltration large, clearly visible cracks

2.4. Characterization Methods

The chemical composition (XRF) of the ash was determined by energy-dispersive
X-ray fluorescence spectroscopy (ED-XRF) on the SPECTRO XEPOS (Spectro Analytical
Instruments, Kleve, Germany). Powdered samples were shaped/pressed into tablets for
XRD measurement.

The mineralogical composition (XRPD) of the samples was evaluated using X-ray
diffraction analysis on the X-ray diffractometer MiniFlex 600 (Rigaku, Tokyo, Japan)
equipped with a 0Co tube and a D/teX Ultra 250 detector. XRD patterns were recorded in
a 5–90◦ 2θ range with a scanning rate of 5◦ min−1.

3. Results and Discussion
3.1. Ash Characterization

Chemical analysis is a good indicator for determining the problematic nature of
biomass. The chemical composition of all of the ash types is presented in Figure 5. Biomass
ash almost always contains carbonates, especially calcite, and very often portlandite, as
well as a proportion of organic carbon.
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Oxides in biomass ash can be divided into acidic (SiO2, Al2O3, TiO2, etc.) and basic
(K2O, CaO, MgO, Na2O, Fe2O3, P2O5, etc.). Acidic oxides increase the melting point of ash.
The higher the content of acidic oxides, the higher the melting point. On the other hand,
basic oxides lower the melting point of the ash.

The predominant oxides are SiO2 and CaO. A high level of CaO is typical for wood.
The higher the content of basic oxides, the lower the melting point. SiO2 plays an important
role as a glass-forming oxide, while CaO and K2O reduce the viscosity of the resulting glass-
forming melt. The nature of the oxides and their representation determines the formation of
other compounds and the behavior of the refractory material in contact with the corrosive
agent. Ash was analyzed by XRDF, and this showed variable sample composition. The
percentage of single oxides is as follows: SiO2 9.13–55.17 wt.%, CaO 16.33–41.79 wt.%,
Al2O3 0.98–10.14 wt.%, Fe2O3 1.80–13.16 wt.%. For alkali oxides it is Na2O 0.38–12.23 wt.%
and K2O 6.11–19.17 wt.%. The amount of Cl is around 0.6 wt.%.

In terms of chemical composition, ash resembles low-melting glass. The variability
of chemical composition complicates accurate representation in a ternary diagram. An
approximate composition based on the largest content of wt.% of oxides is shown in
the diagram. Four ash types, labeled P020, P033, P059 and P060, are marked in the CaO-
Al2O3-SiO2 ternary diagram, and two types, labeled P031 and P019 are marked in the
K2O-SiO2-CaO system, as presented in Figure 6.
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The next method of ash characterization was X-ray powder diffraction phase analysis
(XRPD). The samples were compared to the reference diffractogram database published
by ICDD (PDF-2) in the range of 5–90◦ 2theta. The results for the analyzed samples are
presented in Table 5, where there is an overview of the phases in the samples.

Table 5. Phase composition of analyzed biomass ash samples.

Phase Composition
Labeled of Sample

P019 P020 P031 P032 P033 P059 P060

quartz (SiO2) x x x x x
calcite (CaCO3) x x X x x x X
graphite C x
CaO x x X x
magnesite (MgCO3) X
MgO X x
anorthite (CaAl2Si2O8) x
microcline (KAlSi3O8) x x x x
arcanite (K2SO4) X
anhydrite (CaSO4) x
anorthoclase x
leucite (KAlSi2O6) x x
orthoclase (KAlSi3O8) x
sylvite (KCl) x
portlandite Ca(OH)2 x x
hematite (Fe2O3) x x
mullite (Al4.59Si1.41O0.97) x
analcime (NaAlSi2O6) x

As confirmed by the analysis, the most frequently recurring phases are quartz, anor-
thite, calcium silicate, hematite, anhydrite, and microcline. In ash samples P059 and P060,
there were seven phases identified as portlandite; microcline, leucite, and portlandite occur
in both. Samples P019 and P032, were especially rich in the glass phase.

3.2. Calculation of the Slagging and Fouling Indices

To predict slagging/fouling in a combustion furnace, it is possible to use indices for
the SiO2, basic/acid ratio, silica/alumina ratio, fouling, iron/calcium ratio, and total alkalis,
as summarized in Table 6. A special index only for biomass does not exist, but many
authors have calculated these indices with regard to the probability of slag forming in
combustion units.

Table 6. Calculation of slagging and fouling indices for individual ash types.

Ash
Index

SiO2 (%) Cl (%) B/A S/A I/C Fu TA Sr

P019 9.1 l 0.21 s 8.1 ex 9.3 h 0.0 l 240.1 h 29.7 h 15.8 h

P020 46.5 h 0.41 h 0.7 m 5.6 h 0.2 l 7.7 m 11.5 h 67.1 m

P031 16.2 l 0.16 l 3.7 ex 6.4 h 0.1 l 72.1 h 19.3 h 25.3 h

P032 19.1 l 1.74 ex 2.3 ex 3.3 h 0.1 l 46.4 h 20.0 h 35.2 h

P033 55.1 h 0.10 l 0.5 l 5.4 h 0.4 m 3.6 m 7.6 h 71.7 m

P059 41.7 h - 1.2 h 11.6 h 0.1 l 10.2 m 8.05 h 49.8 h

P060 33.1 h - 1.3 h 3.4 h 0.5 m 6.9 m 5.3 h 41.0 h

Note: X l: low value; X m: middle value; X h: high value; X ex: extreme value.

In the case of SiO2 content in P020, P033, P059 and P060, they have a high inclination
towards slagging. The high levels of silica in wood biomass ashes may have been caused
by contamination with different elements (clay, sand, etc.); also, each part of the wood
plant may contain different amounts of oxides. According to chloride content, extremely
high fouling inclinations were observed in samples P032 = 1.74 and P020 = 0.47, while a low
fouling inclination with a value > 0.2 was calculated for P033 = 0.1.
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Index B/A confirmed that all wood biomass ash samples included in this study
showed high to extremely high values of slagging (>1), as shown in Table 6 and Figure 7.
The highest value B/A = 8.1 was for ash P059, which will have a tendency toward slag
formation. The low B/A index for P033 ash can be attributed to its high SiO2 content, which
implies an increased presence of acidic compounds. No ash samples had a B/A value lower
than 0.5. Samples which had the highest B/A index and a high Na2O content showed an
inclination towards fouling.
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Figure 7. Indices B/A, S/A, and I/C for individual ash samples.

The I/C value for the tested samples was >0.3 and represents a small risk for the
degradation of refractory materials. S/A index values were higher for all tested ash
samples. the slagging tendency based on the silica/alumina ratio (S/A) was high for all
the ash samples because no value was lower than 3 (Figure 7).

As a final result, higher Fu values correspond to higher fouling tendencies. The
extreme value of the fouling index (Fu) was observed in sample P019, with Fu = 240.1,
and P031 Fu = 72.1, as presented in Figure 8. Fouling index values over 40 indicate a high
tendency to fouling. The fouling tendency based on total alkalis was high for the types of
ash mentioned below.
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The value of total alkali content (TA) was never less than 0.4. (Figure 8). The lowest TA
index was observed in P060 TA = 5.3, and it was 6 times higher in P019 = 29.7. The maximum
value was 0.4, and there was a higher tendency towards the fouling of refractory materials
during biomass combustion. Slagging probability was high for ash samples based on their
Sr ratios, which were lower than 65. In this study, the calculated index for Sr corresponded
to five ash types. Samples P020 and P033 had the middle value between 65 and 72. Based on
calculations, the ash will tend to form slag and deposits.

3.3. Corrosion of Refractory Materials

Two types of refractory materials were selected for this portion of the corrosion
experiment, STV fire clay (containing 53 wt.% SiO2, 42 wt.% Al2O3), shown in Figure 9,
and ARS60N high alumina (containing 28 wt.% SiO2, 46 wt.% Al2O3, and 13 wt.% SiC),
shown in Figure 10. Refractory materials underwent a crucible test under the following
conditions: 2.9 g of ash as corrosion agent/2 h on maximum temperature at 1200 ◦C. All
ash types melted at the suggested testing temperature.
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Resistance to eutectic melts was determined by the refractory quality of STV at 1200 ◦C.
As shown in Figure 9, infiltration was relatively low in samples P019 and P060 with refractory
materials, whereas the attack of ashes P032 a P031 achieved a high intensity with STV
refractory materials.

The evaluation of the corrosion attack by two methods is presented in Table 7. The
corroding interaction was most intensive between P032 and STV refractory surface. P032
had the highest proportion, 1.77 wt.% Cl, a high content of alkalis (Na2O + K2O), namely
16 wt.%, a high CaO content of 26 wt.%, and 19 wt.% SiO2. B/A = 2.3 ex was extreme,
and the ash can be defined as basic. The slag viscosity index was Sr = 35.2 h and index
Fu = 46.6 h was high, too. The ash showed a tendency towards slagging, and CaO and K2O
reduced the viscosity of the slag. Basic oxides lowered the ash melting point.

Table 7. Evaluation of STV refractory material corrosion at 1200 ◦C.

Quality STV

Ash P019 P020 P031 P032 P033 P059 P060

Cracks no no no no no no no
ČSN P CEN/TS 15418 [25] U U A A LA LA U

PD Refractories CZ [26] B B B C B B B

Note: Evaluation of crucible test according to [25] U: unaffected/no visible attack: −; LA: lightly attacked/minor
attack: +; A attacked/clearly attacked: ++; C: corroded/completely corroded: +++. Evaluation of crucible test
according to [26] A: not attacked; B: slight attack/<6 mm corrosion and/or infiltration/no cracks: +; C: distinctive
attack/>7 mm corrosion and/or infiltration/slight cracks: ++; D: severe attack corrosion/>9 mm corrosion and/or
infiltration/large cracks, visible disruption: +++.

Cl acts as an accelerator of reactions between K2O and SiO2, which leads to the forma-
tion of fused glass deposits and the formation of slag at the boiler operating temperature of
800–900 ◦C [23]. According to Table 7 and normative regulation [25], the reaction between
the STV quality refractory and ash P032 was evaluated as attacked/clearly attacked, and
according to [26], the distinctive attack is >7 mm corrosion and/or infiltration/slight cracks.

P031 attack had an effect in contact with refractory materials that was very similar to
that of P032. All index values were categorized as high, but the amount of Cl was only
0.16 wt.%, unlike that of P031. The crucible test of STV corrosion by P031 was evaluated
according to [25] as attacked/clearly attacked and [26] slight attack/<6 mm corrosion
and/or infiltration/no cracks.

From the visual point of view (see Figure 9), the sample tested by P033 formed melt,
which represents a low-melt eutectic compound, because K2SiO3 and Na2SiO3 present low
melting temperatures. P033 contained 55.1 wt.% SiO2, alkali (Na2O + K2O) 7 wt.%, and
only 0.1 wt.% Cl. Index B/A was only 0.5, but a high index Sr = 71.7, which had a negative
effect to refractory materials. A similar effect was observed on samples attacked by P020.
STV refractory materials, after the application of P019 and P060, may appear to be inert
to ash, but a little infiltration was noticeable upon closer examination. Nevertheless, the
evaluation according to the methodology was uniform.

An increase in temperature can be a significant indicator of changes in refractory mate-
rials. A problem may occur if temperature fluctuations occur–in this case, the combustion
temperature could be 200 ◦C higher than the normal operating temperature [29], and the
corrosion of refractory materials can be very intensive.

The formation of slag in the furnace depends on the chemical and mineralogical
composition of the ash and on the conditions in the furnace (temperature, reduction, or
oxidation zone, etc.). When fuel is burnt, combustion produces ash. In this case, residue will
always form on the walls of the hearth and the heat exchange surfaces [18]. Slag deposits
can be further divided into so-called “sintered deposits”. (They are formed by dust particles
trapped in a liquid or plastic state and stick to the wall.) The second type is hard deposits
having a layered structure. The viscosity of the slag depends on the composition of the
ash [13,14,30].
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The second tested sample was high-alumina refractory ARS60N with a content of
46 wt.% Al2O3, 28 wt.% SiO2, and 13 wt.% SiC (Figure 10). From the visual point of view, the
refractory material was resistant to ash attack at 1200 ◦C. None of the samples showed total
corrosion leading to disintegration. P032 showed negative effects on the refractory material
ARS60N, just as it did with the STV quality. P032 caused slight changes on the surface
structure with very fine cracks. The infiltration of ash was 6.4 mm, and in the structure of
the tested refractory materials, it formed spaces without grains, which changed to compact
slag in the middle of the sample. However, the integrity of the samples was preserved. A
detailed photo of the changing structure of P032 is presented under the main pictures. As
already mentioned, this ash has a tendency towards slagging. A very similar effect was
observed in the middle of the refractory material, which formed after the attack of ash P033.
According to Table 8 and the literature [25], the corrosion effect between refractory quality
ARSN60 and P032 described as attacked/clearly attacked, and according to Plibrico [26], it
presented as a distinctive attack />7 mm corrosion and/or infiltration/slight cracks.

Table 8. Evaluation corrosion of refractory materials ARS60N at temperature 1200 ◦C.

Quality ARS60N
Ash P019 P020 P031 P032 P033 P059 P060

Cracks No no no small no no no
ČSN P CEN/TS 15418 [25] LA A U A LA U LA

PD Refractories CZ [26] B C B C B B B

Note: Evaluation of crucible test according to [25] U: unaffected/no visible attack: −; LA: light attacked/minor
attack: +; A: attacked/clearly attacked: ++; C: corroded/completely corroded: +++. Evaluation of crucible test
according to [26] A: not attacked; B: slight attack/<6 mm corrosion and/or infiltration/no cracks: +; C: distinctive
attack/>7 mm corrosion and/or infiltration/slight cracks: ++; D: severe attack corrosion/>9 mm corrosion and/or
infiltration/large cracks, visible disruption: +++.

The viscosity index of P032 is Sr = 35.2 h, and that of P031 Sr = 25.3 h. According to [24],
ash with a value (<65) viscosity Sr will have a high tendency towards slagging. On the
other hand, P020, with index Sr = 67 m and P033 Sr = 71.7 m, will display the opposite trend.
The effect of P020 is visually comparable for both STV and ARS60N refractory materials.
The interaction between P020 and ARS60N samples formed a very slight layer of glassy
character with an infiltration of about 6–8 mm. In terms of chemical composition, P020
contained 46 wt.% SiO2, 16 wt.% CaO, and 11 wt.% alkali oxides (Na2O + K2O). This ash is
acidic, as the ratio is B/A = 0.7 m. TA = 11.5 m and Fu = 7.7 m [24], so this ash should have
a low tendency towards slagging. Other tested ash types showed invisible or minimum
attack with refractory materials. ARS60N presented a higher level of corrosion resistance
against the tested ash types than to STV. This portion of the experiment showed that the
suggested temperature of 1200 ◦C during the corrosion crucible test should not be exceeded
for tested STV and ARS60N refractory materials with the above-mentioned tested wood
ash types.

4. Conclusions

STV quality refractory materials contain 53 wt.% SiO2 and 42 wt.% Al2O3), while in
ARS60N, the quantity of oxides is 46 wt.% Al2O3, 28 wt.% SiO2, and 13 wt.% SiC). These
materials belong to the alumina–silica system and were tested for their corrosion resistance.
The results obtained within this research can be summarized as follow:

• Seven types of wood ash were used as corrosive media in their original forms. All
types of ash were obtained by biomass combustion. The testing method was a crucible
test at 1200 ◦C.

• The intensity of the corrosive effect was determined by two regulations. Neither a
corrosion test nor visual evaluation revealed a greater penetration or destruction of
the samples and that was not recorded, but only light/middle corrosion. From all
tested ash samples, the one labeled P032 achieved the highest corrosive effect on both
tested alumina–silica refractory materials.
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• A less-intensive corrosion attack was observed in P031 with STV and ARS60N with
P020. Visible signs of corrosion included melts, fine cracks, infiltration, and in some
cases, structural changes. The above-mentioned results suggest that the poorer the
material is in silicon dioxide, the better it resists corrosion.

• The chemical stability of the phases increases as follows: amorphous silica (SiO2) <
cristobalite (SiO2) < quartz (SiO2) < andalusite (Al2SiO5) < mullite (Al6Si2O13) <
corundum (Al2O3).

• Upon a visual check, fire clay materials with SiO2 > Al2O3 content presented a higher
infiltration of the corrosion medium into the sample with an apparent porosity similar
to that of sillimanite refractory materials.

• This may lead us to the conclusion that a higher level of Al2O3 content can increase
corrosion resistance, as is often reported. An effective solution is also a partial replace-
ment of the oxide with silicon carbide SiC, which has shown a favorable effect on the
resistance of refractory materials. A high refractory-material-testing temperature can
be a good indicator of a possible corrosive effect on the tested refractory material if
there is undesirable temperature fluctuation during combustion.

• The nature and behavior of biomass ash can be defined by calculating slagging/fouling
indices (B/A, Sr, Fu, TA, etc.), which are applied to the calculations of conventional fuels.

• Based on the chemical composition and calculated indices for wood biomass ash
samples, it was confirmed that many of the values are above the limits and should
tend to form slag and fouling. However, not all samples confirmed this prediction.
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5. Blahůšková, V.; Vlček, J.; Jančar, D. Study connective capabilities of solid residues from the waste incineration. J. Environ. Manag.

2019, 231, 1048–1055. [CrossRef] [PubMed]
6. Reynaert, C.; Sniezek, E.; Szczerba, J. Corrosion tests for refractory materials intended for the steel industry—A review. Ceramics-

Silikáty 2020, 64, 227–288. [CrossRef]
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10. Horák, J.; Kuboňová, L.; Dej, M.; Laciok, V.; Tomšejová, Š. Effect of type biomass and ashing temperature on the properties of

solid fuel ashes. Pol. J. Chem. Technol. 2019, 21, 43–51. [CrossRef]
11. Routschka, G. Refractory Materials, 2nd ed.; Vulkan-Verlag: Essen, Germany, 2004; ISBN 3-8027-3154-920.

http://doi.org/10.1016/j.rser.2021.111451
http://doi.org/10.1016/j.jenvman.2018.10.112
http://www.ncbi.nlm.nih.gov/pubmed/30602228
http://doi.org/10.13168/cs.2020.0017
http://doi.org/10.1016/j.fuel.2020.117069
http://doi.org/10.2478/pjct-2019-0019


Materials 2022, 15, 5796 15 of 15

12. Schlegel, E.; Aneziris, C.G.; Fischer, U. Illustration of alkali corrosion mechanisms in high temperature thermal insula-
tion materials. In Proceedings of the Conference: UNITECR’07—Technical conference on refractories, Dresden, Germany,
18–21 September 2007; pp. 117–120, ISBN 978-3-00-021528-5.

13. Kazmina, O.V.; Tokareva, A.Y.; Vereshchagin, V.I. Using quartzofeldspathic waste to obtain foamed glass material. Resour.-Effic.
Technol. 2016, 2, 23–29. [CrossRef]

14. Levin, E.M.; Robbins, C.R.; McMurdie, H.F. Phase Diagrams for Ceramics; The American Ceramics Society Inc.: Westerville, OH,
USA, 1964.
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