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Abstract: The effect of aging on the internal mechanism of the dry shrinkage cracking of lime soil was
studied from the perspective of macroscopic cracking phenomenon and microscopic composition
change, and the reasonable aging time of lime soil was determined. Large numbers of cracks
often occur in buildings constructed using lime soil, which impacts sustainable development and
building environmental protection. This study explored the influence of aging time on the mechanical
properties and shrinkage cracking of lime soil. The influence of aging time was evaluated using a
triaxial compression test; using the dry–wet cycle, sieving, pH, and other tests, the influence of aging
time on volume crack rate, expansion shrinkage rate, particle size distribution, and pH was analyzed.
Scanning electron microscopy and X-ray diffraction experiments were used to analyze changes in
the lime soil particle structure for different aging times and the formation of new substances. The
results show that as aging time increases, the stress–strain curve of the soil softens significantly, shear
strength deteriorates, and cohesion decreases. When the aging time is 6 h, the expansion rate and
shrinkage rate at the center of the soil sample are the maximum. The volume fracture and expansion
shrinkage rates decrease first, and then plateau with aging time, with the changes remaining stable
after 72 h; these rate decreases are positively correlated with the change rate of pH. The formation of
Ca(OH)2 affects the sample pH, and the changes in pH, Ca(OH)2, and CaO tend to be stable. With
an increase in aging time, the proportion of particles of a size less than 0.1 mm decreases, and that
of particles of size 0.1–0.5 mm increases. After 72 h of aging, the particle size proportion remains
unchanged. Reasonable aging time can, thus, reduce the hydration reaction of lime, improve particle
agglomeration effects, and reduce the crack development of the soil.

Keywords: aging time; lime soil; dry shrinkage cracking; mechanical properties; pH; particle
size distribution

1. Introduction

Lime soil is a common building material for ancient buildings, mainly composed of
lime, quartz sand, and clay [1–5]. Most of the existing immovable cultural relics, such as city
walls, earth sites, and bridges, also use lime soil as the main repair material, which is related
to the high strength, good durability, and strong compatibility of lime soil materials [6–9].
However, affected by the climate, the dry and wet states in nature are always changing,
and the soil moisture content may change periodically, thus, affecting the engineering
properties of the soil [10]. Taking Kaifeng, Henan Province, as an example, the studied area
has concentrated rainfall throughout the year, high rainfall in summer and autumn, and
frequent meteorological disasters such as heavy rain and rainstorms. Kaifeng is located in
the Central Plains, and belongs to a typical temperate monsoon climate. It is cold and dry
in spring and winter, and hot and rainy in summer and autumn. Therefore, the buildings
mainly composed of lime soil experience a large effect from these weather changes and
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disasters [11]. Under the influence of dry and wet natural factors, lime is prone to hydration
reaction, resulting in the reduction in the internal moisture of lime soil. During the process
of water absorption expansion and water loss contraction, lime soil undergoes expansion
and contraction deformation, which damages its integrity. A large number of cracks appear
on the surface of lime soil, which has an important impact on the durability and stability of
the soil site [12].

In order to improve the properties of lime soil, the “aging” process was studied by
a large number of scholars. The aging process is directly related to the hydration and
reactivity of lime soil [13–15]. Gu studied the influence of aging time, water–cement ratio,
digestion temperature, and other factors on the dispersion and activity of lime milk. The
results show that the activity and dispersion of calcium hydroxide are better when the initial
lime digestion temperature is 84 ◦C and the water–cement ratio is 5:1 without aging [16].
Giuseppe found that aging time affects the crystal form and size of calcium hydroxide [17].
Wei explored the mechanism of the lime aging process and its application in the field of
cultural site protection. They found that with the increase in aging time, the particle size
and activity of calcium hydroxide decreases. Calcium hydroxide with particle sizes of
100–200 mesh can improve the compressive strength, surface hardness, and other physical
properties of lime soil [18]. Khattab and Hengiqu found that increasing the aging time can
reduce the pozzolanic reaction and improve sample durability [19,20]. However, Sweeney
studied the effects of aging time on the mechanical properties of lime-improved clay, and
found that as the aging time increases, the density and compressive strength of the sample
decrease, and that longer aging times reduce the plasticity indexes of the samples [21].

At present, the research mainly focuses on the effect of aging time on the activity
of calcium hydroxide and its engineering application, but there is little research on the
aging process law under the joint action of lime and soil. After lime and soil are mixed
evenly and reacted with water, the internal physical and chemical changes continue, and
lime soil aging takes a certain amount of time [22]. Under the condition that other aging
conditions remain unchanged, the aging time is too short, the lower the hydration of lime,
the higher the reactivity of lime, and the hydration of lime causes the uplift and cracking
of lime soil [23]; long aging time and low lime activity affect the mechanical properties of
lime soil [24,25]. Therefore, a reasonable aging time plays an important role in engineering.
Through unconsolidated, undrained triaxial shear tests, dry–wet cycles, screening, and
pH evaluation, the effects of different aging times on the mechanical properties and dry
shrinkage cracking of lime soil were studied at a macro scale; the changes in the particle
structure and formation of new substances were analyzed by scanning electron microscopy
(SEM) and X-ray diffraction (XRD), and the internal causes of microscale lime soil cracking
were explored. The purpose of this paper was to reveal the deterioration mechanism of lime
soil from different perspectives of macroscopic cracking phenomenon and microstructure
change. By analyzing the quantitative relationship between the pH value change, particle
size, and the deterioration degree of lime soil, a reasonable aging time was selected.

2. Materials and Methods
2.1. Materials

The soil used in the test was exfoliated soil from a soil site in Henan Province
(Figure 1a). The soil was silty clay, with a liquid limit of 32%, plastic limit of 14%, and
plasticity index of 18. The chemical element composition of soil samples was analyzed
by XRF test, and the results are shown in Table 1. High active CaO was used for lime soil
preparation, with particle size of 150–200 mesh and a white appearance (Figure 1b). The
chemical composition of lime is shown in Table 2.
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Figure 1. Test materials: (a) silty clay in Henan Province; (b) quicklime.

Table 1. Chemical composition of soil sample.

SiO2 Al2O3 CaO Fe2O3 MgO K2O Na2O TiO2 P2P5 MnO SO3 SrO ZnO

27.02 8.49 7.52 4.31 1.89 1.13 1.11 0.49 0.32 0.09 0.09 0.02 0.02

Table 2. Chemical composition content of quicklime.

CaO MgO SO4 Fe Pb NO3 Cl Unsolvable in Acetic Acid

98.64 0.50 0.10 0.015 0.005 0.004 0.003 0.05

2.2. Methods

Seven sets of samples were prepared with aging times of 6, 12, 24, 48, 72, 120, and 168 h,
lime content of 20%, and moisture content of 20%. Through unconsolidated, undrained
shear tests, dry–wet cycles, screening, pH evaluations, XRD, and SEM, the micro mechanism
of the effects of aging time on the dry shrinkage cracking of lime soil were explored
experimentally (Figure 1).

1. Limit moisture content test: This test used the combined liquid and plastic limit tester
to determine the liquid limit and plastic limit of silty clay in Henan Province, calculate
the plasticity index, and judge the range of plastic state of silty clay. In this test, 300 g
of air-dried soil samples with the optimum moisture content of 27.3% were taken.
The moisture content of the prepared soil samples was the plastic limit, the middle
value of liquid plasticity, and the liquid limit of the soil, so that the cone penetration
depth was controlled at 3~5, 7~9, and 15~17 mm, respectively. They were placed
into double-layer, fresh-keeping bags and left for 24 h. The liquid plastic limit was
retested. If the penetration depth is not within the specified range, the test shall be
reperformed. If the penetration depth is within 3 specified ranges, the test is deemed
to be successful, and the liquid limit and plastic limit can be obtained. When the test
results met the requirements, the soil samples were placed under the three conditions
into the 105 ◦C oven, and their moisture content was measured to calculate the limit
moisture content of silty clay;

2. Aging of soil sample: The soil sample was dried, then the powder was extracted and
passed through 2 mm sieve. A total of 3500 g of soil samples was evenly mixed with
700 g of lime, and 840 mL of distilled water was added for uniform mixing. A total of
seven groups of samples were prepared. The prepared lime soil sample was placed
into the standard oxidation tank (temperature: 20 ◦C, humidity: 95%), and aged for
6, 12, 24, 48, 72, 120, and 168 h. During the aging process, 30 g samples (3 parallel
samples) were taken every 6 h to dry and measure the average moisture content, and
water was added to maintain the initial moisture content of 20%;

3. Triaxial compression test: The aged soil samples were proportioned according to
the moisture content of 20% and dry density of 1.28 g/cm3 to prepare the triaxial
samples of diameter 39.1 mm and height 80 mm. The unconsolidated, undrained
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triaxial shear test was carried out according to the standard for geotechnical test
methods (GB/T50123-2019), and the shear rate used was 0.5 mm/min to measure
the stress–strain relationship of the sample under confining pressures of 50, 100, and
150 kPa. To reduce the test errors, three parallel tests were conducted in each set
of tests with four samples each time, of which three samples were used for triaxial
shear under different confining pressures. Since the triaxial test was conducted by
computer and acquisition system, the computer automatically recorded the stress
value at the corresponding strain, and automatically generated the stress–strain curve
and Mohr’s circle after the test started; then the internal friction angle and cohesion of
the excavated sample were calculated.

4. Dry–wet cycle test: The dry shrinkage deterioration test was carried out after sample
preparation. A total of 2000 g of the aged bulk sample was placed in a mold of size of
25 cm × 25 cm, following which static compaction was performed in a 2 cm steel mold.
The moisture content of the sample was 20% and the dry density was 1.28 g/cm3,
and the static compaction treatment carried out. The lime soil sample was dried in
a temperature control oven set at 40 ◦C for 36 h; after drying, water was sprayed
evenly onto the surface of the sample with a spray bottle of 800 mL, which was
recorded as a dry–wet cycle (Figure 2a); a total of 5 dry–wet cycles were carried out.
During the whole drying process, the sample was weighed by an electronic scale and
photographed by a high-definition camera to record the crack development process;

5. Expansion and contraction rate test: A vernier caliper with an accuracy of 0.02 mm
was used to measure the height of lime soil samples at 9 different positions, and the
average value of the expansion and contraction deformation height of the samples
was taken (Figure 2b);

6. Screening test: the aged sample was dried in an oven at 105 ◦C to constant weight.
A total of 200 g dried samples (3 parallel samples) was taken, and a screening test
was conducted on the samples with sieve hole diameters of 2, 1, 0.5, 0.25, 0.1, and
0.075 mm. The particle size information of aged lime soil samples was obtained;

7. pH value test: The aged sample was dried, and 100 mL of distilled water was added
to 20 g of the dried sample (3 parallel samples), and a pH818 precision pH meter was
used to test the pH value of the supernatant after standing;

8. Electron microscope test: The test instrument was a S570 scanning electron microscope.
The aged samples were dried for electron microscope test, and the scanning electron
microscope multiples were 500 times and 2000 times. The chemical reaction products
and microstructure changes in the samples were observed;

9. X–ray diffraction test: An X-ray diffraction test was conducted after the sample was
dried. The test instrument was an X-ray diffractometer with model d8-advance, and
the scanning incidence angle was 10–70◦. The changes in chemical products in the
sample were explored.
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Crack image processing and information extraction: In order to reduce the influence
of sample boundary, the middle part of the sample (size 20 × 20 cm2) was used for
quantitative fracture analysis. Firstly, Image–pro plus6.0, Adobe PhotoShop, and other
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software were used to cut the image, correct the size, and remove the lime efflorescence
interface. Then, MATLAB software (MATLAB 7.0) was used to compile the program for
extracting the characteristic parameters of three-dimensional volumetric fracture rate, and
the method of integration was used to solve the volume fracture rate of the sample through
the three-dimensional level [26,27]. Figure 3 shows a processed three-dimensional image.
Equation (1) is the volume crack rate of soil mass.

Ve =
N
∑

i=1
S(M − Di)/(SMN)

= ∑N
i=1(255 − Di)/(255N)

(1)

where S is the area of each pixel. S = 1, M is the maximum gray value of the image; M = 255,
the gray level corresponding to the ith pixel of Di; and N is the total number of image pixels.
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Figure 3. MATLAB 3D image processing: (a) specimen crack image; (b) 3D image processing.

3. Results and Discussion
3.1. Effect of Aging Time on Mechanical Properties of Samples
3.1.1. Stress–Strain Curve

Figure 4 shows the stress–strain curve of the sample under different aging times and
confining pressures. When the aging time is 6 h, the stress–strain curve shows strain
softening, and the peak stress decreases significantly with an increase in aging time. Under
the same confining pressure, for a longer aging time, the peak stress softening amplitude
of the curve is greater, and a smaller partial stress is required to produce the same axial
strain. There is significant deterioration of the macro shear strength of the soil, but the
evolution trends under various confining pressures are different. The decrease in shear
strength increases significantly with the increase in confining pressure. When the confining
pressure is high, the non-linear characteristics of the shear strength evolution curve are
more significant. However, under all confining pressures, the reduction in shear strength is
greater for the samples aged for 72–120 h. It is seen from Figure 4c that when the sample
is aged for 72–168 h, the shear strength decreases by 37.5% (compared with the ratio of
difference with the 72 h result to the value at 72 h).

Materials 2022, 15, x FOR PEER REVIEW 6 of 17 
 

 

aggregates, thus, resulting in a reduction in the sample density and mechanical properties 
[29]. The aging time is a tradeoff at the expense of the mechanical strength of the soil. The 
longer the aging time, the worse the mechanical strength of the lime soil. 

   

(a) (b) (c) 

Figure 4. Stress–strain curves of samples under different aging time and confining pressures: (a) 𝜎  
= 50 kPa; (b) 𝜎  = 100 kPa; (c) 𝜎  = 150 kPa. 

3.1.2. Strength Index Impact Analysis 
Figure 5 shows the relationship between cohesion, internal friction angle, and aging 

time. The cohesion of the sample increases with an increase in aging time; this is mainly 
attributed to the carbonation of lime, which forms a layer of calcium carbonate protective 
shell on the surfaces of the clay particles, resulting in the loss in partial cohesion between 
the particles. The internal friction angle first decreases, and then increases with an increase 
in aging time. Owing to short aging time and uneven heat distribution in the soil, the 
morphology of Ca(OH)2 in the hydration reaction is disordered, and the bite friction be-
tween the carbonized particles is reduced [30]. With the extension of aging time, the soil 
particles undergo obvious agglomeration, and the internal friction angle of the lime soil is 
improved. 

The mechanical properties of lime deteriorate with the increase in aging time. The 
main reason for this is that after the carbonization reaction, the particles only form a car-
bonization layer on the surface of the soil particles, and the soil particles are only aggre-
gates of loose particles, which cannot achieve strong cementation [31]. Moreover, owing 
to the carbonization effects, the cohesion between the clay particles is partially lost, result-
ing in the increase in the internal friction angle and decrease in the cohesion of the 
remolded lime soil, which affects the other mechanical properties of the lime soil [32]. 
Therefore, choosing a reasonable aging time is of great significance in engineering appli-
cations. 

 
Figure 5. Variation law of cohesion and internal friction angle of samples with different aging time. 

612 24 48 72 120 168
40

45

50

55

60

65

70

29

30

31

32

33

34

64.89
63.17

60.24
56.74

54.42

49.67

44.19

32.61

31.02

30.54

31.62

32.21

32.97 33.12
 

 T
he

 a
ng

le
 o

f i
nt

er
na

l f
ri

ct
io

n 
(°

)

C
oh

es
iv

e 
fo

rc
es

 (k
Pa

)

Aging time (h)

 Cohesive forces
 

 

 The angle of internal friction

Figure 4. Stress–strain curves of samples under different aging time and confining pressures:
(a) σ3 = 50 kPa; (b) σ3 = 100 kPa; (c) σ3 = 150 kPa.
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The reason for the above phenomenon is that as the aging time increases, the lime is in
fuller contact with the clay, and obvious agglomeration effects occur. The agglomerates and
clay fine particles are wrapped by calcified crystals and silicates to form a hard shell [28].
After compaction, it is difficult to achieve cementation between the clay particles and aggre-
gates, thus, resulting in a reduction in the sample density and mechanical properties [29].
The aging time is a tradeoff at the expense of the mechanical strength of the soil. The longer
the aging time, the worse the mechanical strength of the lime soil.

3.1.2. Strength Index Impact Analysis

Figure 5 shows the relationship between cohesion, internal friction angle, and aging
time. The cohesion of the sample increases with an increase in aging time; this is mainly
attributed to the carbonation of lime, which forms a layer of calcium carbonate protective
shell on the surfaces of the clay particles, resulting in the loss in partial cohesion between
the particles. The internal friction angle first decreases, and then increases with an increase
in aging time. Owing to short aging time and uneven heat distribution in the soil, the
morphology of Ca(OH)2 in the hydration reaction is disordered, and the bite friction
between the carbonized particles is reduced [30]. With the extension of aging time, the soil
particles undergo obvious agglomeration, and the internal friction angle of the lime soil
is improved.
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Figure 5. Variation law of cohesion and internal friction angle of samples with different aging time.

The mechanical properties of lime deteriorate with the increase in aging time. The main
reason for this is that after the carbonization reaction, the particles only form a carbonization
layer on the surface of the soil particles, and the soil particles are only aggregates of
loose particles, which cannot achieve strong cementation [31]. Moreover, owing to the
carbonization effects, the cohesion between the clay particles is partially lost, resulting in
the increase in the internal friction angle and decrease in the cohesion of the remolded lime
soil, which affects the other mechanical properties of the lime soil [32]. Therefore, choosing
a reasonable aging time is of great significance in engineering applications.

3.2. Effects of Aging Time on Sample Volume Crack Rate

Figure 6 shows the volume crack rate and the corresponding typical cracking images
of the samples for different aging times under the dry–wet cycles. During the dry–wet
cycle, the volume crack rate increases with increase in the number of dry–wet cycles. The
shorter the aging time, the greater the influence of the number of dry–wet cycles on the
volume crack rate, which increases first, and then tends to be stable with the additional
increase in the aging time. The volume crack rate of the sample aged for 72 h is 53.3% lower
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than that aged for 6 h. When the aging time is extended to 168 h, the volume crack rate of
the sample decreases by 60%, and the overall decreasing trend is not obvious.
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Figure 6. Variation of volume crack rate of sample with dry–wet cycle times and corresponding
crack image.

3.3. Effects of Aging Time on Expansion and Shrinkage of Samples

Figure 6 shows the relationship between aging time, number of cycles, and expansion
shrinkage rate after five dry–wet cycles. The expansion rate of the sample decreases with
the increase in aging time (Figure 7a). When the aging time is 72 h, the expansion rate
decreases to 4%. If the aging time is prolonged, then the change trend of the expansion
rate is not obvious, and the change rate is about 1–2%. The expansion rate of the sample
reaches a peak after one or two dry–wet cycles, and then decreases gradually with the
increase in the number of dry–wet cycles. During the first dry and wet cycle, lime soil and
water undergo a hydration reaction to produce expansion. If the first hydration reaction is
insufficient, the second dry and wet cycle soil sample continues to undergo the hydration
reaction. As the hydration reaction continues, the sample starts to expand and crack, the
internal damage of the soil is serious, and the expansion rate gradually decreases.
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Figure 7. Relationship between aging time, cycle times, and expansion shrinkage: (a) relationship
between aging time cycle times and expansion rate; (b) relationship between aging time cycle times
and shrinkage.
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The shrinkage of the sample decreases with an increase in aging time. The shrinkage of
the sample with an aging time of 6 h is the largest, and is 11.5 times that of the sample aged
for 72 h (Figure 7b). With the extension of aging time to 72 h, the shrinkage deformation of
the sample tends to be stable. If the aging time is increased, the shrinkage deformation of
the sample remains small, and the shrinkage change is about 0–1%. In the first drying and
wetting cycle, the lime soil undergoes a hydration reaction and expands. During the drying
process, the lime soil shrinks after losing water, and the shrinkage rate of lime soil is large;
with the progress of the hydration reaction, the lime soil expands and cracks gradually, the
water-holding capacity of lime soil is poor, and the shrinkage rate decreases gradually.

We analyzed the expansion rate of soil samples at different measuring points under the
action of dry and wet cycles (Figure 2b), and obtained the data of samples after five dry and
wet cycles for processing. Figure 8a shows the expansion rates of samples with different
aging times at nine different fulcrums. The expansion rate at the center of the sample
is the largest (Number 5 soil sample), the expansion rate at the middle position is the
second, and the expansion rate at the corner position is small. When the aging time is 6 h,
the expansion rate of the sample at the center is larger, which is 3.78 times of the other
minimum expansion rates. With the increase in aging time, the expansion rate of the center
of the sample gradually decreases. When the aging time is 72 h, the expansion rate changes
at different positions basically tend to be the same. The aging time is short, and due to the
influence of hydration reaction, the soil sample bulges at the center, while the surrounding
of the soil sample is constrained by the appliance, and the expansion rate is small. With the
increase in aging time, the influence of hydration on the sample decreases gradually, and
the expansion rate of the whole soil sample decreases.
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Figure 8. Samples with different aging times at 9 different fulcrums: (a) expansion rate; shrink rate;
(b) shrink rate.

Figure 8b shows the change law of shrinkage rate of samples at different positions,
which is similar to the change law of expansion rate, and the shrinkage rate at the center of
the sample is the largest. When the aging time is 6 h, the shrinkage of the sample at the
center is the largest. With the increase in aging time, the shrinkage rate at the center of soil
sample decreases gradually. When the aging time is 72 h, the reduction in shrinkage rate is
large, and the change of shrinkage rate in different positions is gradually consistent. When
the aging time is short, the soil sample reaches the maximum value of the expansion rate
of the sample when it absorbs water. The internal damage of the soil sample is relatively
serious. During the drying process, the soil sample has a large shrinkage potential.
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3.4. Effects of Aging Time on pH

The pH value test results are shown in Figure 9. The pH value of the sample increases
first, and then decreases with the increase in aging time. When the aging time is 24 h, the
pH value of the sample reaches the peak value. At the initial stage of aging, CaO in lime soil
rapidly reacts with water to produce a large amount of Ca(OH)2 in a short time, resulting in
an increase in the pH value of the sample. With the increase in aging time, Ca(OH)2 reacts
with CO2 in the air to form CaCO3 crystals, which consumes part of OH− in the sample,
and the pH value of the sample decreases. The decreasing rate of the pH value accelerates
when the aging time is 72 h, and the decreasing rate is 0.11%. With the further extension of
aging time, the content of Ca(OH)2 decreases gradually, the carbonation of CO2 in the air
decreases, and the OH− consumed by CaCO3 crystallization is relatively limited, so the
reduction rate of the pH value of the sample slows down, and gradually tends to be stable.
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3.5. Effects of Aging Time on Particle Size

The content of each particle size of samples with different aging times is shown in
Figure 10. With the increase in aging time, the content of particles smaller than 0.1 mm
decreases, and the content of particles smaller than 0.1–0.5 mm increases. Compared with
the sample aged for 72 h, the content of fine particles less than 0.1 mm decreases by 17.5%,
and the content of particles of size 0.1–0.5 mm increases by 23.7%. In the aging process,
lime and soil particles react chemically, and obvious agglomeration effects occur. Small
particles are cemented together to form large particles, and a relatively stable bond is
formed between particles [33,34].
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3.6. Effects of pH on Dry Shrinkage Cracking of Samples
3.6.1. Effects of pH on Volume Crack Rate of Sample

Figure 11 shows the variation curve of the volume crack rate with aging time and pH
after five dry–wet cycles. At the initial stage of aging, the pH of the sample is low, and
the volume crack rate is high. As the aging time increases, the pH first increases and then
decreases, and the volume fracture rate decreases. Figure 12 shows the fitted curve of the
correlation between pH change rate and volume fracture rate change; it is observed that
there is a good, linear, positive correlation between the volume fracture rate and pH within
a certain time, with a correlation value of 0.817. With the increase in pH change rate, the
amount of Ca(OH)2 produced by the CaO hydration reaction increases, and the volume
crack rate resulting from the secondary hydration reaction decreases.
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3.6.2. Effects of pH on Sample Expansion

Figure 13 shows the change curve of the expansion rate with aging time and pH after
five dry–wet cycles. When the aging time is 6 h, the pH of the sample is small, and the
expansion rate is maximal. With the increase in aging time, the pH first increases and then
decreases, and the expansion rate continues to decrease.
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Figure 14 shows the fitted curve of the correlation between the change rate of the pH
value and that of the expansion rate. Given a certain aging time, the correlation between
the change rate of the pH and decrease in expansion rate is very high, with a good linear
relationship. When the aging time is 6–72 h, the change rate of pH is large, the change rate
of Ca(OH)2 is accelerated, and the expansion rate is reduced.
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Figure 14. Correlation between pH value change rate and expansion rate change rate.

3.6.3. Effects of pH on Sample Shrinkage

The shrinkage of the sample reflects its water-holding capacity. Figure 15 shows
the change curve for shrinkage with aging time and pH after five dry–wet cycles. With
the increase in aging time, the pH first increases and then decreases, and the shrinkage
continues to decrease. Figure 16 shows the fitted curve of the correlation between the
change rate of pH and that of shrinkage, with a good, linear, positive correlation between
the shrinkage and pH for a certain aging time. When the aging time is short, the pH value
is low, expansion cracking occurs after the secondary hydration reaction of the sample, the
internal damage of the soil is serious, the water-holding capacity of the sample is poor, and
the shrinkage rate is large [35,36].
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Figure 16. Correlation between pH value change rate and shrinkage change rate.

During aging, the change in the pH value of the sample is closely related to the
amount of Ca(OH)2 produced by the CaO hydration reaction. To further explore the
internal mechanism of the effect of the pH value on lime soil cracking under different aging
times, seven sets of samples with different aging times were selected for the XRD test to
explore the formation and change law of the internal products of the samples. Figure 17
shows the XRD results, analysis of which shows that lime soil contains CaO, Ca(OH)2,
CaCO3 crystals, and other substances. Quantitative analysis of the XRD results is carried
out, and the analysis results are shown in Figure 18. The following results are obtained
by analysis:

(1) Figure 15 shows the XRD analysis results of soil samples with different aging times.
The changes in material composition of soil samples with different aging times can be
obtained by XRD. The peak points of the chemical substances of the soil samples at
different aging times change. With the increase in aging time, the peak intensity of
CaO decreases, but the peak intensity of Ca(OH)2 increases first, and then decreases.
The CaO hydration reaction generates Ca(OH)2, which leads to the increase in the
peak intensity of Ca(OH)2. Affected by carbonization reaction, Ca(OH)2 reacts with
CO2 in the air, so that the peak intensity of Ca(OH)2 decreases, and the peak intensity
of CaCO3 gradually increases. However, the diffraction peak intensity of the CaCO3
crystals is low, the content of CO2 in natural air is low, the carbonization reaction is
slow, and the final carbonization products are limited [37,38];
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(2) In the aging process, the content of CaO decreases with the increase in aging time.
When the aging time is 6 h, a large amount of the CaO reacts with water quickly to
form Ca(OH)2, and the content of CaO decreases to 5.2%. When the aging time is
extended to 72 h, the content of CaO decreases to 0.8%. If the aging time is extended
further, the overall decreasing trend is not obvious, and the content changes remain
within 0.05–0.73%;

(3) The content of Ca(OH)2 increases first, and then decreases with the extension of the
aging time, and a peak value is obtained at 24 h. The change in the Ca(OH)2 content
tends to remain stable at 72 h of aging, and even after the aging time is prolonged.
The overall decrease trend is not obvious, and the change in Ca(OH)2 content is about
1.4–1.8%. The change trend of the pH value is consistent with that of Ca(OH)2.
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3.7. Effects of Particle Size on Dry Shrinkage Cracking of Samples

In order to further explore the internal mechanism of the influence of particle size
on lime soil cracking, the selected representative samples were tested by 500 times and
2000 times scanning electron microscope. The results are shown in Figure 19. The observa-
tion shows that the aging time causes obvious changes in the internal particle structure.
When the aging time is 6 h (Figure 19a), the morphology of Ca(OH)2 just after the hydration
reaction is disordered and irregular, and is prone to stress concentration. From the macro-
scopic point of view, the soil is easy to crack. With the increase in aging time (Figure 19a–e),
the soil particles have an obvious agglomeration effect. When the aging time is 72 h, the
particle size and outline of the pellets gradually tend to be stable (Figure 19e).
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Figure 19. SEM images of samples with different aging times at 500× and 2000× magnification:
(a) 6 h; (b) 12 h; (c) 24 h; (d) 48 h; (e) 72 h; (f) 120 h; (g) 168 h.

We further studied the particle size change of the particles, conducted contrast and
denoising on the electron microscope images using Photoshop software, and then measured
the particle size using Image Pro Plus 6.0 software to obtain the particle size of the particles
in different aging times under the micro state. Figure 20 is a normal distribution diagram
of particle size at different aging times.
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At the initial stage of aging, the particle size is small; With the increase in aging time,
the particle size increases gradually. When the aging time is 72 h, the particle size still
increases. Aggregates and clay fine particles are wrapped by calcified crystals and silicates,
and small particles are bonded together to form stable, bonded, large particles. An obvious
agglomeration effect occurs between particles. After the carbonization reaction, particles
only form a carbonized layer on the surface of soil particles, while soil particles are only
aggregates of loose particles, which cannot achieve strong cementation. Moreover, due to
the carbonization effect, the cohesion between clay particles is partially lost, resulting in
the reduction in the shear strength and durability of lime soil.

4. Conclusions

Through unconsolidated, undrained triaxial shear tests, dry–wet cycles, screening, pH
evaluation, and other tests, the effects of different aging times on the mechanical properties
and dry shrinkage cracking of lime soil are explored at the macro scale. Using SEM and
XRD tests, the changes in the particle structure and formation of new substances at the
micro scale are analyzed. The following observations are obtained from this study:

(1) The increase in aging time is at the expense of soil strength. With the increase in aging
time, carbonization and agglomeration reactions occur on the soil surface. However,
it is difficult for the agglomerates and particles to form cementation, which leads to
the obvious deterioration in the micro mechanical properties and shear strength of
the soil sample, including the obvious softening of the stress–strain curve, the serious
loss of shear strength, and the attenuation of cohesion;

(2) When the aging time is 6 h, the expansion rate and shrinkage rate at the center of
the soil sample are the maximum. With the increase in aging time, the change in
expansion and contraction rates at different positions gradually tends to be the same.
The volume crack and expansion shrinkage rates first decrease, and then tend to
stabilize with the increase in aging time. Compared with a sample aged for 6 h, the
volume crack rate of the sample aged for 72 h decreases by 53%, the expansion rate
decreases by 14.5%, and the shrinkage rate decreases by 10.5%. With the extension
of aging time, the change rates of these three characteristic parameters are about
0–1% each;

(3) The decrease in volume crack rate and expansion shrinkage rate with aging time is
positively correlated with the change rate of the pH value, and pH is the internal
reason affecting soil cracking. The pH increases first, and then decreases with the
increase in aging time. When the sample reaches the reasonable aging time, the pH of
the sample shows an obvious decreasing trend. At this time, the changes in Ca(OH)2
and CaCO3 tend to be stable, the hydration reaction is completed, and the cracking
potential is reduced. If the aging time is prolonged, the carbonization reaction causes
the shear strength of the soil to decrease, and affects the durability of the soil;

(4) A reasonable aging time improves the particle agglomeration of lime soil. With
an increase in aging time, the soil particles undergo obvious agglomeration, the
proportion of particles of a size less than 0.1 mm decreases, and the proportion of
particles of size 0.1–0.5 mm increases. After an aging time of 72 h, the particle size
distribution remains almost unchanged.
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