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on the Concentration of Paramagnetic Centers in Nano-
and Microdiamonds
Alexander M. Panich
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Abstract: An analysis of our data on 1H and 13C spin–lattice and spin–spin relaxation times and
rates in aqueous suspensions of purified nanodiamonds produced by detonation technique (DNDs),
DNDs with grafted paramagnetic ions, and micro- and nanodiamonds produced by milling bulk
high-temperature high-pressure diamonds is presented. It has been established that in all the studied
materials, the relaxation rates depend linearly on the concentration of diamond particles in suspen-
sions, the concentration of grafted paramagnetic ions, and surface paramagnetic defects produced
by milling, while the relaxation times exhibit a hyperbolic dependence on the concentration of para-
magnetic centers. This is a universal law that is valid for suspensions, gels, and solids. The results
obtained will expand the understanding of the properties of nano- and microdiamonds and will be
useful for their application in quantum computing, spintronics, nanophotonics, and biomedicine.

Keywords: spin–lattice relaxation time; spin–spin relaxation time; nanodiamonds; paramagnetic
defects; concentration dependence

1. Introduction

Detonation nanodiamond (DND) particles are of significant scientific interest and are
very promising materials for modern science and applications in quantum computing,
spintronics, nanophotonics, and biomedical applications due to the small size of primary
particles (5 nm) with a narrow size distribution, easy surface functionalization, high biocom-
patibility, and possibility of production in large quantities [1–11]. DND suspensions with
grafted paramagnetic metal cations [12–20] exhibit a high relaxivity and are proposed as
new contrast agents for magnetic resonance imaging (MRI) [16–18,20]. Recently, Sękowska
et al. reported the possible use of DNDs in MRI phantoms [21] produced using distilled
water, agar, and carrageenan with the addition of the DND particles suspended in dimethyl
sulfoxide (DMSO). Surprisingly, the authors obtained linear dependences of the spin–lattice
(T1) and spin–spin (T2) relaxation times in the phantoms as a function of the nanodiamond
concentration (see Figures 3 and 5 in Ref. [21]). This result contradicts our recent experi-
mental nuclear magnetic resonance (NMR) data on DND suspensions [16–18], as well as
some fundamentals of relaxation phenomena in nuclear spin systems [22–24].

In this paper, we analyze the results of measuring proton and carbon nuclear spin–
lattice and spin–spin relaxation times and rates in (i) aqueous suspensions of highly purified
DNDs, (ii) aqueous suspensions of DNDs with grafted paramagnetic ions, (iii) powdered
DNDs grafted with paramagnetic ions, and (iv) powdered micro- and nanodiamonds
produced by milling bulk diamonds prepared by the high-temperature high-pressure
(HTHP) method. We established that in all the studied materials the relaxation rates depend
linearly on the concentration of nanodiamonds in suspensions, the concentration of grafted
paramagnetic ions in suspensions and in powder samples, and surface paramagnetic
defects produced by milling, while the relaxation times exhibit a hyperbolic dependence
on the concentration of paramagnetic centers. This is a universal law that is valid for
suspensions, gels, and solids. The results obtained will expand the understanding of the
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behavior of nano- and microdiamonds and will be useful for their applications in quantum
computing, spintronics, nanophotonics, and particularly in biomedical applications.

2. Materials and Methods

We report the data on aqueous suspensions of purified DNDs and DNDs with grafted
Gd3+ ions, powder DNDs with grafted Cu2+ and Gd3+ ions, and milled HTHP nanodia-
monds of the SYP series. Sample purification, EPR, and SQUID impurities monitoring
and preparation of aqueous suspensions of highly purified and de-agglomerated DND
particles are described elsewhere [12–18,25]. The average DND particle size is ca. 4.5–5 nm
as determined by dynamic light scattering (DLS), transmission electron microscopy (TEM),
and atomic force microscopy (AFM) measurements [12–18,26].

Grafting of the nanodiamond surface with copper and gadolinium ions was made
by mixing aqueous suspensions of nanodiamond particles with aqueous solutions of
copper acetate Cu(CH3CO2)2 or gadolinium nitrate hexahydrate Gd(NO3)3·6H2O [12–18].
Dissociated metal cations (Cu 2+ or Gd 3+) in this mixture undergo ion exchange with
hydrogen atoms of surface carboxyl groups and subsequent chemical bonding to the
nanoparticle surface [12–15]. Thereafter, we call these materials Cu-DND and Gd-DND.

Submicron diamond powders of Syndia SYP series, manufactured by L.M. Van Moppes
& Sons SA, Geneva, Switzerland, and hereafter identified by the denomination SYP, were
produced by milling initial CDFS HPHT microdiamond crystallites with an average particle
size of 100 µm, which resulted in several fractions with average particle sizes of 18, 30, 86,
130, 208, and 386 nm [27]. An additional laboratory purification stage was carried out to
exclude ferro- and paramagnetic impurities from the commercial SYP samples.

The EPR study of all samples of purified DNDs shows the concentration of param-
agnetic defects in the range of (4 ÷ 7) ×1019 spin/g [26,28–33], while in SYP NDs the
concentration varied from 6.7 × 1018 to 3.3 × 1019 spin/g depending on the particle
size [27].

It is well established that the surface of DND particles is terminated by hydrogen
atoms forming hydrocarbon, hydroxyl, and carboxyl groups [30,31]. They are the source of
1H nuclear spins. 1H and 13C NMR measurements of powder samples were carried out
at room temperature (T = 295 K) using a Tecmag (Houston, TX, USA) pulse solid-state
NMR spectrometer and an Oxford superconducting magnet in an external magnetic field
B0 = 8.0 T, corresponding to the 1H and 13C resonance frequencies of 340.52 and 85.62 MHz,
correspondingly. 13C spin–lattice relaxation times T1 were measured using a saturation
comb pulse sequence ( π

2 pulse train) [34]. Magnetization recovery in measuring T1 was

fitted by a stretched exponential M(t) = M∞

{
1 − exp[−( t

T1
)

α
]
}

, which is characteristic of
the spin–lattice relaxation through paramagnetic defects [12–15,19,20,26–31,35]. Here, M∞
is the equilibrium magnetization, and the parameter α varies in the range of 0.5 < α < 1. 13C
spin–spin relaxation times T2 were measured using the Hahn echo method.

1H NMR measurements of nanodiamond suspensions were carried out at a temper-
ature of 310.1 K (37 ◦C). The 1H spin–lattice relaxation times T1 were measured using
an inversion recovery pulse sequence [34], while the spin–spin relaxation times T2 were
measured using a Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence [36].

3. Results and Discussion
3.1. Suspensions of Purified DNDs and DNDs with Grafted Paramagnetic Ions

As is known, DND particles exhibit intrinsic localized paramagnetic defects:
(i) P1 nitrogen paramagnetic centers distributed over the entire diamond core and
(ii) unpaired electron spins of dangling bonds positioned mainly in the near-surface
layer [26,28–31]. The total defect density in DND particles measured by the EPR method
is around 6 × 1019 spin/g [26,28–31]. In DND suspensions, the relaxation of the proton
nuclear spins of the solvent is accelerated, owing to the interaction of protons with unpaired
electron spins of the aforementioned paramagnetic defects [16–18]. The contributions of the
DND-inherent paramagnetic defects to the experimentally measured proton spin–lattice
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and spin–spin relaxation rates Rexp
1 and Rexp

2 in suspensions are described [16–18] by the
second term of the equations

Rexp
1 =

1
Texp

1
=

1
Tsolv

1
+

1
TDND

1
= Rsolv

1 + rDND
1 × CDND (1)

Rexp
2 =

1
Texp

2
=

1
Tsolv

2
+

1
TDND

2
= Rsolv

2 + rDND
2 × CDND (2)

where Tsolv
1 and Tsolv

2 are the relaxation times due to the solvent, TDND
2 and TDND

1 are
the spin–lattice and spin–spin relaxation times caused by paramagnetic defects of the
nanodiamond particles, CDND is the DND concentration, and r1 and r2 are the relaxivities
defined as the slopes of the concentration dependences of 1

Texp
1

and 1
Texp

2
. Here, Tsolv

1 and

Tsolv
2 are the characteristics of the particular liquid solvent used and, therefore, are constant

for all measurements.
The results of our measurements of the spin–lattice and spin–spin relaxation times and

rates of water protons in aqueous DND suspensions as a function of the DND concentration
are shown in Figures 1 and 2. Our data show that paramagnetic defects of the DND
particles (i) affect the relaxation rates of water protons in suspension and (ii) reveal a
linear dependence of the relaxation rates RDND

1 and RDND
2 on the DND content. This

finding is in accordance with the fundamentals of the spin relaxation theory [22–24],
which demonstrates a linear dependence of the relaxation rate on the concentration of
paramagnetic centers/defects. Herewith, as it follows from Equations (1) and (2) and
the experimental data presented in Figures 1 and 2, both proton spin–lattice and spin–
spin relaxation times demonstrate a hyperbolic dependence on the concentration CDND of
nanodiamonds in suspension according to Equations (3) and (4):

T1 =
1

Rsolv
1 + rDND

1 × CDND
(3)

T2 =
1

Rsolv
2 + rDND

2 × CDND
(4)
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Figure 2. Dependence of the spin–spin relaxation rate R2 (circles) [16] and the spin–spin relaxation
time T2 (triangles) of water protons in aqueous DND suspensions on the DND concentration.

This experimental result contrasts with the linear concentration dependence of T1
and T2 reported by Sękowska et al., [21]. The latter is inconsistent with that published in
the literature and the fundamentals of the relaxation phenomena in nuclear spin systems,
which casts some doubt on the correctness of the measurements and conclusions made in
Ref. [21]. Herewith, we note that the measurements of Sekowska et al., particularly those
of T2, were carried out in a limited range of nanodiamond concentrations, which causes
some difficulties in establishing the character of the concentration dependence measured
by these authors.

Similar dependencies were obtained for suspensions of the gadolinium-grafted DND
(Gd-DND), which are shown in Figures 3 and 4. Contributions of paramagnetic gadolinium
ions grafted to the DND surface to the spin–lattice and spin–spin relaxations of water
protons in this case are:

Rexp
1 =

1
Texp

1
=

1
TGd

1
+

1
TDND

1
+

1
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1

= rGd
1 × CGd + RDND

1 + RH2O
1 (5)
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2 =
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2
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1
TGd

2
+
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TDND

2
+
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TH2O
2

= rGd
2 × CGd + RDND

2 + RH2O
2 (6)

where CGd is the Gd(III) ions concentration in suspension.
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dependence on CGd:
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We note that Gd(III) ions have a large unpaired electron spin of S = 7/2 and a large
magnetic moment of 7.9 µB (here, µB is the Bohr magneton), thus their contribution to
relaxation exceeds the DND contribution by more than an order of magnitude [16–18].

In addition to our data, we mention the measurements of an aqueous solution of the
nanodiamond-polyglycerol-gadolinium(III) conjugate DND-PG-Gd(III) [37]. The relaxation
rates R1 of water protons in this material show a linear dependence on the Gd concentration
in magnetic fields of 1.5 T, 3.0 T, and 7.0 T.

3.2. Powder DNDs with Grafted Paramagnetic Ions

Similar dependences of the nuclear spin relaxation in nanodiamonds on the concen-
tration of the paramagnetic ions were obtained in our measurements of powder samples.
In this case, the spin–lattice relaxation rate R1 = 1

T1
of the nuclear spin I, which inter-

acts with the unpaired electron spin S of the paramagnetic ion, is given by the expres-
sion [14,15,19,20,22,29–31]

R1(r) =
1

T1(r)
=

2
5

γ2
Sγ2

I}2S(S + 1)[
3τe

1 + ω2
I τ2

e
](

1
r6 )× NS (9)

Here, γI and γS are the nuclear and electron gyromagnetic factors, ωI is the nuclear Larmor
angular frequency, r is the distance from the nucleus to the paramagnetic ion, τe is the
correlation time of the electron spin of the paramagnetic ion, and NS is the number of
paramagnetic ions in the particle.

The obtained dependences of the 1H and 13C spin–lattice relaxation times and rates
on the concentration of paramagnetic Cu2+ and Gd3+ ions grafted to the DND surface are
presented in Figures 5–8. All these data show a linear dependence of the spin–lattice and
spin–spin relaxation rates R1 and R2 and a hyperbolic dependence of the relaxation times
T1 and T2 on the paramagnetic ions concentration. This finding is consistent with the fun-
damentals of the spin relaxation theory [22–24], which demonstrates a linear dependence
of the relaxation rate on the concentration of paramagnetic centers.
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3.3. Powder HPHT Nanodiamonds

Let us move on to the powder nanodiamonds of the Syndia SYP series manufactured
by L.M. Van Moppes & Sons SA (Switzerland) by milling the initial high-pressure high-
temperature (HPHT) microdiamond crystallites with an average particle size of ∼100 µm.
According to the size distribution datasheets provided by the manufacturer, this milling
process provides several SYP fractions with average particle sizes of 18, 30, 86, 132, 208, and
386 nm, respectively, which were used in our study along with the initial SYP micro CDFS of
the size of 100 µm. In Figure 9, we present our NMR measurements of SYP nanodiamonds
of various sizes, in which the main contribution to relaxation is made by paramagnetic
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defects (mainly unpaired electron spins of broken bonds) associated with surface and sub-
surface defects that appear during the process of diamond milling [27]. Such paramagnetic
centers produced by mechanical damage (e.g., milling) are often found in insulators and
semiconductors, including diamonds, and are observed in EPR experiments [38–41]. On
diminishing the average size of the ND fraction, the density of these defects increases from
7.6 × 1018 spin/g in the fraction of the largest particle size to 3.3 × 1019 spin/g in the
fraction of the smallest particle size. Figure 9 clearly shows the linear dependence of the
spin–lattice relaxation rate and the hyperbolic dependence of the spin–lattice relaxation
time on the concentration of the paramagnetic defects in this series of materials.
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Hyperbolic-like concentration dependence of T1 was recently obtained in measure-
ments of the 1H spin–lattice relaxation of aqueous solutions of nanodiamonds of 18 and
125 nm in diameter prepared by the HPHT technique [42].

The data obtained in our measurements demonstrate the universality of the depen-
dence of the nuclear spin relaxation in nanodiamonds on the concentration of the paramag-
netic centers both in suspensions and in powder samples. This is a universal law that is
valid for solutions, suspensions, gels, and solids [12–18,22,23,27,29–31].

3.4. Other Materials Containing Gadolinium Ions

The universality of the dependences of nuclear spin relaxation in nanodiamonds on the
concentration of paramagnetic centers in both suspensions and powder samples obtained
in our measurements is supported by data on other non-diamond lanthanide complexes
promising for NMR/MRI diagnostic probes [43]. For example, proton relaxation rates for
Gd2O3 nanodisks of different diameters and Gd-doped iron oxide nanoparticles of various
sizes and shapes were measured in water after the nanoparticle surface functionalization
with polyethylene glycol (PEG) dibasic acid. Both relaxation rates R1 and R2 reveal a linear
dependence as a function of the Gd and Gd-Fe concentrations [44,45].

The relaxation rates R1 and R2 of water protons taken at room temperature in aqueous
solutions of SiO2-coated quantum dots with grafted Gd-DOTA complexes at various concen-
trations ranging from 0.125 to 4 µM reveal a linear dependence on the Gd concentration [46].

Longitudinal relaxation rates and transverse relaxation rates as a function of concentra-
tion for aqueous solutions of gadolinium diethylenetriamine-pentaacetic acid (Gd-DTPA)
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and gadolinium DTPA-bis methylamide (Gd-DTPA BMA) at 23 ◦C represent a linear
regression of the data, from which the relaxation rates R1 and R2 were determined [47].

The R1 values of Gadomer (Gadolinium-1,4,7,10-tetraazacyclododecane-N,N’,N’,N’”
-tetraacetic-monoamide-24-cascade-polymer), RESOVIST, or Ferucarbotran (a mixture of
Fe2O3 and γ-Fe3O4 nanoparticles with a size of ~5 nm in a carboxydextran matrix), and
GADOVIST (C18H31GdN4O9) in bovine plasma, measured in a magnetic field of 1.5 T at
37 ◦C, show a linear dependence on the Gd concentration [48].

These results support well the above findings about the universality of the depen-
dence of nuclear spin relaxation on the concentration of the paramagnetic centers both in
suspensions and powder materials.

4. Conclusions

It has been established that the dependences of the nuclear spin–lattice and spin–spin
relaxation times and rates in nano- and microdiamonds on the concentration of intrinsic
paramagnetic defects, surface-grafted ions, and milling-induced paramagnetic defects
reveal a universal behavior for both suspensions and powder samples. The relaxation
rates show linear concentration dependence, while the relaxation times exhibit hyperbolic
dependence on the concentration of paramagnetic centers. This is a universal law that
is valid for solutions, suspensions, gels, and solids. The data obtained will expand the
understanding of the behavior of nanodiamonds and will be useful for their applications in
quantum computing, spintronics, nanophotonics, and biomedicine. In our opinion, this is
particularly important for the use of the nanodiamond suspensions as contrast agents and
phantoms for MRI [16–18,20,49].
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