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Abstract: Nanocomposites based on iron oxide/titanium oxide nanoparticles were prepared by
employing green synthesis, which involved phytochemical-mediated reduction using ginger extract.
XRD confirmed the composite formation, while scanning electron microscopy (SEM), dynamic light
scattering (DLS), and energy-dispersive X-ray spectroscopy (EDX) was employed to investigate the
particle size, particle morphology, and elemental analysis. SEM indicated the formation of particles
with non-uniform shape and size distribution, while EDX confirmed the presence of Fe, Ti and oxygen
in their elemental state. The surface effects were investigated by Fourier transform infrared radiation
(FTIR) and impedance spectroscopy (IS) at room temperature. IS confirmed the co-existence of grains
and grain boundaries. Thus, FTIR and IS analysis helped establish a correlation between enhanced
surface activity and the synthesis route adopted. It was established that the surface activity was
sensitive to the synthesis route adopted. The sample density, variation in grain size, and electrical
resistivity were linked with surface defects, and these defects were related to temperature. The
disorder and defects created trap centers at the sample’s surface, leading to adsorption of CO2 from
the environment.

Keywords: surface effects; green synthesis; impedance spectroscopy; hematite; ginger extract; iron
oxide-titania nanocomposite

1. Introduction

TiO2 is a popular semiconductor that has gained the attention of scientists for various
applications, i.e., as a supercapacitor, photocatalyst, and environment purifier [1]. TiO2
naturally occurs in three polymorphs: anatase, rutile, and brookite [2,3]. Due to the high
photocatalytic activity and high dielectric constant, rutile form has been widely studied;
however, it has a wide bandgap of 3.02 eV with a high electron-hole recombination rate,
limiting its applications [4,5]. Owing to this limitation, researchers are working on the
composite formation and doping of TiO2 with other metal oxides to tune this bandgap [6].
Fe2O3 has a comparable bandgap of 2.2 eV, with a half-filled d orbital and a similarly ionic
radius, making it a potential candidate for this purpose [7]. It is reported that Fe3+ adds an
extra energy level in the TiO2 bandgap, generating an intermediate level for photoelectrons
to reside in, thus reducing the electron-hole recombination and improving the conduction
properties [7,8]. It is also important to note that the synthesis route has direct implications
on structural and electromagnetic properties [9]. Researchers have reported that the direct
impregnation of Fe2O3 on TiO2 showed decreased photocatalytic performance, more than
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was expected from a conventionally synthesized α-Fe2O3@TiO2 nanocomposite [10]. Fe2O3
is oxygen deficient, especially when treated at low temperatures, creating oxygen vacancies
that act as adsorption sites for O2 and CO2. Thus, the sample surface is adsorbed by
environmental O2 and CO2 either via chemisorption or physisorption [11].

Owing to ever-growing pollution and energy shortages, recent trends involve the
utilization of green synthetic protocols [12]. A much newer approach is soft synthesis,
which includes solid-state synthesis methods that involve minimal use of high temperature
and pressure conditions. Nanoparticle synthesis can be achieved at sintering temperatures
as low as 150 ◦C. Such methods are economically feasible, and they are expected to be
the future of cheap and reliable synthesis. The precursor polynuclear multimetallic com-
pounds yield nanostructures upon decomposition [13]. Green chemistry relies on using
natural ingredients such as extracts from plants’ leaves, flowers, roots, seeds, yeast, fungi,
and bacteria as an alternative to the hazardous chemicals used in conventional synthesis
methods [14]. Consequently, it offers the possibility of preparing nanostructured magnetic
ferrites [15–18].

In the present work, ginger extract is used as it contains biomolecules and metabo-
lites [19–22]. These metabolites can act as capping agents, reducing agents, and stabilizing
and/or chelating agents, which can influence the size, the shape, and the morphology of the
nanoparticles [17,18]. However, one of the main setbacks of such methods is the introduc-
tion of defects and disorder in the sample. Despite being a cheap and inexpensive method,
heterogeneities, i.e., porosity and impurities, are expected to be introduced into the system
due to low-temperature sintering; these are efficiently eliminated with high-temperature
heat treatment [23]. Low-temperature sintering for small durations leads to the formation
of particles with non-homogeneous particle-size distribution and structural defects [24].
Such structural defects on the sample surface are reactive towards environmental gases.
The electrochemical response of a sample is greatly affected by surface heterogeneity and
surface roughness [25]. Constant phase elements give systems a quantitative measure
of heterogeneity [26]. In this article, the prime focus will be the study of heterogeneity
introduced in the sample prepared from green chemistry. The effects of oxygen reduction
reactions (ORR) and porosity on the reactive surface in the sample will be studied via
various experimental techniques

The present work is based on the impedance response of various heterogeneities
(surface effects, electrode effects, and surface diffusion) resulting from the green chemistry
synthesis of nanocomposites of α-Fe2O3@TiO2. The composites were prepared using
ginger root extract mediated wet ferritization, followed by in situ decomposition. The
synthesized composites were subjected to electrochemical impedance spectroscopy studies.
Correlations between the structural and impedance characteristics of the α-Fe2O3@TiO2
nanocomposites were established.

2. Materials and Methods

All reagents used were of analytical grade and were used without further purification.
Ginger roots were purchased from the local market in Faisalabad, Punjab, Pakistan.

2.1. Preparation of Extracts

5 g of roots (ginger) were ground with a mortar and pestle. The ground material was
placed in 400 mL of distilled water, and the mixture was boiled and stirred until the volume
reduced to half. The beige color extract (pH: 4) was cooled to the ambient temperature and
filtered under reduced pressure to yield the extract.

2.2. Synthesis of Ferrite Composite

The metal salts in the stoichiometric ratio (Fe3+/Ti4+, 2:1) were gradually added to the
aqueous extracts of ginger extract (200 mL) under constant stirring. The resulting solution
was concentrated on a magnetic hot plate. Initially, the solution turned into a gel, followed
by the formation of semi-solids upon in situ decomposition. Upon further stirring and
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heating, the semi-solid turned into a fine solid powder. During the whole procedure, drastic
changes in color and weight were observed. The solid powder was heated until no further
reduction in weight was observed. The powdered ferrite composites were pressed into
pellets under a pressure of 5 MPa, and sintered for 2 h at 150 ◦C. The schematic diagram is
shown in Figure 1.
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Figure 1. Schematic diagram of the green synthesis of α-Fe2O3@TiO2 nanocomposites.

3. Characterization of Prepared Compounds

A SIEMENS D5000 diffractometer was utilized for X-ray diffraction (XRD) data collec-
tion. Data was collected for a 2θ range of 20◦ to 80◦ using Cu-Kα radiations (λ = 1.54026 Å)
with a step size of 0.05◦, and a scan rate of 2.0 s/step. The surface morphology of the
as-synthesized samples was investigated using SEM (Tescan MAIA3, Cardiff, UK), and the
compositional analysis was carried by an Oxford instrument EDX detector. DLS (Litesizer
500 BM10, Anton Paar, Ukraine) was used to measure the average particle size. FTIR (Nico-
let iS50 spectrometer, Waltham, MA, USA) was used to detect various bond stretching in
the sample. Impedance studies were carried out using an Alpha-N Analyser (Novocontrol
Germany) in the frequency spectrum range of 1.0 to 5 × 106 Hz; the electrode contacts were
made with copper wire using silver paints as adhesive material. An AC voltage of 0.2 V
was applied to the sample for these studies. WINDETA and ZView software were used for
data acquisition and fitting results.

4. Results
4.1. XRD

Figure 2 shows the XRD pattern of the green synthesized α-Fe2O3@TiO2 nanocompos-
ite. The XRD pattern confirms the formation of the α-Fe2O3@TiO2 nanocomposite. The
main diffraction peaks corresponding to hematite planes (012), (104), (110), (113), (024),
(116), (018), (214), (300), (1010), and (220), which matched with the XRD pattern of pris-
tine α-Fe2O3 powder, were present. This XRD pattern is consistent with that reported
by Vasiljevic et al. [27]. The additional peaks of the TiO2 corresponding to rutile phase
are indicated in Figure 2. The dominant planes corresponding to rutile phase are (110),
(101), (111), (211), and (002). The dominance of rutile form was also reported by Vasiljevic
et al.; according to the authors, the presence of hematite lowers the temperature for the
conversion of anatase to rutile form, thus making rutile polymorph the dominant form [27].
It was found that α-Fe2O3 (hematite), having R3c symmetry and TiO2 rutile phase with P
42/mnm geometry, was present in the composite as indicated by the XRD peaks [28].
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α-Fe2O3@ TiO2.

4.2. SEM

The morphological and compositional analysis of the α-Fe2O3@TiO2 nanocomposites
was carried out by field emission scanning electron microscopy (FESEM) and the related
energy dispersive X-ray spectroscopy (EDX). The SEM micrographs of the material at
various magnifications are shown in Figure 3. The micrographs show uniformly distributed
spherical particles along with the formation of some agglomerates of irregular shape. Careful
particle size analysis indicated a particle size distribution in the range of 80 to 200 nm [29].

The particle size distribution obtained from SEM, shown in Figure 3c, indicated the
majority of the particles were in the range of 120 to 140 nm. Litesizer 500 BM10 was
also used for the dynamic light scattering analysis to determine the particle size in the
nanocomposite. The sample powder was dispersed in water at room temperature. The
mean intensity was 394.86 kcps for 15 runs. The particle size was found to be in the range
of 100–400 nm as shown in Figure 3d. The reason for the discrepancy in the particle size
determined by SEM and dynamic light scattering analysis may have arisen from the fact
that agglomerated particles with larger sizes were not included in the SEM analysis.

The composition of the nanocomposite was verified by the EDX analysis. The EDX
spectrum is shown in Figure 3e, with the corresponding elemental composition in wt%.
The presence of Fe, O, and Ti corroborated the XRD results and indicated the formation
of α-Fe2O3@TiO2, while the composition of Fe and O was in line with the Fe2O3 [30].
No significant difference in the chemical composition of the spherical and agglomerated
particles was observed.

Table 1 represents the quantitative elemental composition of the sample as indicated
by EDX (Figure 3e)

Table 1. Elemental composition details as obtained from EDX.

Element Weight % Atomic % σ

Fe 63.5 33.33 0.6
O 33.2 63.64 0.6
Ti 3.3 3.03 0.2

Total 100% 100%
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4.3. DLS

Litesizer 500 BM10 was used for the Dynamic light scattering analysis to determine
the particle size in the nanocomposite. The sample powder was dispersed in water at
room temperature. The mean intensity was 394.86 kcps for 15 runs. The particle size
was found to be in the range of 100–400 nm as shown in Figure 3d. The difference in
particle size between the particle analyser and SEM suggests possible agglomeration in the
nanoparticles (Figure 3a,b).

4.4. FTIR

The FTIR of the synthesized material was observed in comparison with the pristine
powder of TiO2 and Fe2O3. The obtained data was in the range of 350 to 2000 cm−1 as
shown in Figure 4.
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In the pattern for the α-Fe2O3@TiO2 nanocomposite, the peak at 410 cm−1 corresponds
to Fe–O stretching mode, while the peak observed at 497 cm−1 is due to the Ti–O stretching
mode; these peaks are shifted to 420 cm−1 and 455 cm−1 for Fe–O and Ti–O stretching
modes in the case of α-Fe2O3@TiO2 nanocomposite [31]. The peaks observed at 1078 cm−1

contributed to symmetrical CO3
2− anion mode stretching [32]. The peak at 1130 cm−1

corresponds to C–O stretching vibrations. It suggests the possibility of the adsorption of
CO2(g) from the environment on the reactive sample surface, forming a layer of carbonate,
as indicated by Equation (1) [33–36]. The broad peak appearing at 1648 cm−1 corresponds
to the formation of carbonate species [31,32]. The FTIR spectrum shows the presence of
chemical heterogeneities in α-Fe2O3@TiO2 nanocomposite.

CO2(g) + O2−(lattice)→ CO3
2− (1)

4.5. Impedance Spectroscopy

Impedance spectroscopy is a convenient technique that helps in the study of different
electroactive regions in a polycrystalline ceramic. Figure 5a shows the complex plain
plot of the as-prepared α-Fe2O3@TiO2. The frequency increases from right to left, as the
arrow indicates in Figure 5a. The plot comprises of a depressed semicircle with a spike
at the lower frequency side. The amount by which the center of the semi-circular arc
was displaced below the real axis is measured in terms of the depression angle θ. It is
an important parameter to judge the presence of distributed elements (heterogeneity and
defects) in the system, which results in more than one relaxation phenomena. The resultant
arc gets distorted by the multiple relaxation processes, holding time constant, within two
orders of magnitude or less [34,35]. Thus, the relaxation time, rather than having a single
value, is distributed over a range of frequencies. The depression angle estimated by the
ZView software was found to be 45.208◦. Considering the high value of θ, the constant
phase element (CPE) was used in place of a capacitor to consider the non-ideal capacitive
behavior. CPE and Care were related by the following expression:

C = CPE1/n R(1 − n)/n (2)

where R is the resistance of the cell, and n is the measure of deviation from ideal behaviour;
n = 0 indicates purely resistive behaviour, and n = 1 indicates purely capacitive behavior.

Sintered polycrystalline materials consisted of grains, grain boundaries (mostly con-
taining segregated impurities & pores), as well as surface layer and sample electrode
interfaces [36]. The high-frequency response can usually be attributed to the bulk of poly-
crystalline material, whereas comparatively intermediate- and low-frequency responses
may represent the electrical properties of electroactive regions like highly resistive grain
boundaries, as well as surface layer and electrode resistances [35,37].

The ZView software was employed to find the electrical parameters, i.e., capacitances
and resistances of respective electroactive regions by finding the best fitting model for
the impedance plane plots of the Fe2O3@TiO2 sample. An equivalent circuit model ob-
tained from the fitting is shown in Figure 5b, containing (Rg Cg) (Rgb CPEgb) (Rsurface
CPEsurface) (CPEe) cells. The order of magnitude of capacitance associated with various
electroactive regions has been well reported in the literature [38]. By comparing the values
of capacitance obtained from the ZView fitting, (shown in Table 2) with already published
literature [38], it can be assumed that Rg Cg and Rgb CPEgb cells are associated with grain
and grain boundaries, respectively, i.e., Cg~10−12 and Cgb~10−10 (equivalent capacitance
is calculated from Equation (2)), whereas Rsurface CPEsurface gives information about
ongoing surface phenomenon, i.e., equivalent capacitance Csurface~10−9. This cell was
a clear indicator of the presence of an active surface. It suggests that the layer was being
formed by environmental gases, i.e., CO2 and O2 on the exposed pellet surface (not cov-
ered with silver paint) [27,31]. The low values of n surface & ne are also an indicator of
the surface diffusion/adsorption from the surface, thus resulting in the high resistance
(R surface = 4.02 × 104 Ω), where CPEe represents electrodes as Ce~10−6. To validate
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the fitted model, residue was plotted against the frequency (shown in inset Figure 5c). It
should be noted that the difference between the experimental and fitted value of Z′ and Z”
is approximately zero for a considerable range of the frequency. However, the inductance
introduced by 1 m coaxial cables contributed to deviation at high frequencies, which is
known to occur in the impedance analyzers at the higher ends of frequency spectrums [36].
Furthermore, the Chi-square value and sum of squares for the fitted model was found to be
2 × 10−4 and 0.024, respectively, which is indicates good fit.
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going surface phenomenon, i.e., equivalent capacitance Csurface~10−9. This cell was a clear 
indicator of the presence of an active surface. It suggests that the layer was being formed 
by environmental gases, i.e., CO2 and O2 on the exposed pellet surface (not covered with 
silver paint) [27,31]. The low values of n surface & ne are also an indicator of the surface 
diffusion/adsorption from the surface, thus resulting in the high resistance (R surface = 
4.02 × 104 Ω), where CPEe represents electrodes as Ce~10−6. To validate the fitted model, 
residue was plotted against the frequency (shown in inset Figure 5c). It should be noted 

Figure 5. (a) Complex plain plot of Fe2O3@TiO2 sample prepared from Ginger (b) equivalent circuit
obtain from ZView fitting (c) residue obtain for Z′ (Ω) and Z” (Ω) from ZView fitting.

Table 2. Resistance and capacitance value for every component obtained from ZView fitting.

Fitting Parameters Fe2O3@TiO2

Rg (Ω) 1.1 × 104

Rgb (Ω) 4.03 × 105

Rsurface (Ω) 4.02 × 104

Cg (F) 14.5 × 10−12

Cgb (F) 1.45 × 10−10

Csurface (F) 2.95 × 10−9

Ce (F) 4.8 × 10−6

nsurface 0.50923
ne 0.36214

Generally, in ceramics, grain boundaries are more resistive than grains. Decreased sin-
tering temperatures and slow diffusion of ions results in chemical microheterogeneity [39].
The reoxidation is mainly limited to grain boundaries. This makes grain boundaries more
resistive compared to the grains [40,41]. Furthermore, the non-stoichiometric distribution of
oxygen and the presence of the carrier’s traps in grain boundaries form a barrier layer that
hinders the carrier’s transport throughout the sample. In addition to higher resistance, this
thin barrier layer possesses higher capacitance as inverse proportionality exists between
the thickness, d, and the capacitance, C, (C ∝1/d) [42]. Because of such values of electri-
cal parameters, the response of grain boundaries occurs at a lower frequency spectrum
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compared to grains. The values of R and C (or CPE) for grain and grain boundaries can be
compared in Table 2. The resistance of grain boundaries is larger than the grains’ resistance
which indicates the agglomeration of particles, as suggested from the above SEM images
(Figure 3a) [43].

In composite materials, a depletion layer appears due to the difference in work func-
tion of the two materials comprising the composite. Also, non-stoichiometry and defect
formation near the sample surface may lead to the formation of similarly capacitive sur-
face layers. It has been previously reported that oxygen-deficient surfaces are prone to
chemisorption of CO2 and O2, leading to the formation of a carbonate layer on the surface
of pellets [36]. This relatively thin surface layer, indicated by Rsurface Csurface, acts as a
high capacitance in parallel with a large resistor. High porosity, seen in the SEM image,
suggests an active surface of the sample, which is highly reactive towards environmental
effects. Moreover, the FTIR spectrum showed the presence of C–O vibration stretching,
suggesting the presence of carbonate layers on the composite surface.

Spikes observed (i.e., at low frequencies in the sample) can be attributed to block-
ing capacitance effects at the crystal-electrode interface, i.e., oxide-ion conduction in the
sample [44]. Electrode interfaces between the surfaces of pellets are sensitive to the het-
erogeneity of the polycrystalline material. If the medium is heterogeneous, the electrode
interfaces are lessened and outweighed by the large number of grain boundaries between
the electrodes. Only the CPE component is used to model the electrode sample interface,
indicating minimum resistance offered by this region compared to others [43].

5. Conclusions

Heterogeneities in nanocomposite Fe2O3@TiO2 mixed-metal oxide powders were dis-
cussed, having been successfully prepared by green methods using ginger roots in a short
time at a low calcination temperature. The synthesized samples were characterized using
various analytical techniques. XRD and FTIR confirmed the formation of the Fe2O3@TiO2
composite in both samples. While the SEM indicated the formation of the nanocomposite,
with sizes varying from 100 nm to 200 nm, DLS confirmed the agglomeration of particles.
FTIR indicated the adsorption of CO2 gas on the surface of the sample. Electrochemical
impedance spectroscopy (EIS) was performed at room temperature. Complex plain plot,
equivalent circuit, and ZView fitting data confirmed the co-existence of grain, grain bound-
aries, and the presence of a carbonate layer on the surface that registered a separate and
prominent relaxation phenomenon at the lower end of the frequency spectrum.
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