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Abstract: The quantitative study of the relationship between material composition, microstructure
and properties is of great importance for the improvement in material properties. In this study,
the continuous data of elemental composition, recrystallization, hardness and undissolved phase
distribution of the same sample in the range of 60 to 150 square millimeters were obtained by high-
throughput testing instrument. The distribution characteristics and rules of a single data set were
analyzed. In addition, each data set was divided into micro-areas according to the corresponding
relationship of location, and the mapping between multi-source heterogeneous micro-area data sets
was established to analyze and quantify the correlation between material composition, structure and
hardness. The conclusions are as follows: (1) the average size of the insoluble phase in the middle of
the two materials is larger than that of the surface, but due to the existence of central segregation,
the average area of the T4 insoluble phase showed an abnormal decrease; (2) there was positive
micro-segregation of Al, Cr, Ti, and Zr elements, and negative micro-segregation of Zn, Cu, and
Fe elements in the recrystallized grains of the T5 middle segregation zone; (3) the growth process
of the insoluble phase was synchronous with the recrystallization proportion and the size of the
recrystallized grains; (4) the composition segregation and recrystallized coarse grains were the main
reasons for the formation of low hardness zone in T4 and T5 materials, respectively.

Keywords: 7B05 aluminum alloy; deep learning; element distribution; recrystallization; spatial-mapping;
data mining

1. Introduction

7B05 aluminum alloy has the characteristics of low density, corrosion resistance, weld-
ability and thermal deformation. It has been widely used in high-speed train components
such as traction beams, corbel beams and buffer beams [1–3]. There are obvious differ-
ences in mechanical properties of hot-rolled thick plates of high-strength aluminum alloy
on the same plane and different planes along the thickness direction. This anisotropy
mainly results from the deformation and uneven temperature distribution during material
processing and heat treatment [4,5].

The mechanical properties of the rolled sheet along the thickness direction are different
due to the differences in the surface and center structure [6–10]. During the rolling process,
the surface of the plate comes into contact with the roller, resulting in an unstuck layer.
A greater driving force is caused by the interaction between the dynamic recrystallization
to produce full recrystallization organization [11]. Defects near the center of the point, such
as dislocation density, are small, and the metal flow is relatively stable. Due to the high
temperature, the dynamic response function is stronger, and the proportion of dynamic
recrystallization to the surface is relatively low. However, due to the high temperature and
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long holding time in the central part, the deformed fiber microstructures can easily fuse
with each other and form coarse recrystallized grains [12].

The composition difference between the surface and the central part is also an im-
portant reason for the difference of mechanical properties. The results show that 7B05
aluminum alloy has both microscopic segregation in several grain ranges and macroscopic
segregation at the centimeter level [13]. Macroscopic segregation is due to the presence of el-
ement aggregation or impoverishment in the post-solidification center at high temperature
during casting solidification. The results show that the center segregation of the billet can
be inherited by the middle part of the plate after rolling [14]. The micro-segregation of 7B05
aluminum alloy shows a zonal distribution of elements corresponding to the distribution
characteristics of the microstructure [15].

At present, the problems of low stability and poor durability seriously restrict the
localization process of aluminum alloy materials for high-speed rail. The fundamental
reason for this is that the internal micro-scale composition and structure of the material have
low control accuracy and experience large fluctuations. Therefore, it is of great significance
to study the uniformity of aluminum alloys in terms of the microscopic composition and
structure. However, the existing characterization methods of composition and structure
cannot achieve continuous data acquisition, and can only obtain local information to
replace the overall state of the material, ignoring the influence of the inhomogeneity of
the material itself. In this study, the concepts of material genetic engineering and big
data [16–21] were adopted, and a high-throughput method was selected to characterize the
structure–composition–property distribution and obtain the information of the continuous
distribution of samples. At the same time, an original statistical spatial mapping method is
proposed to establish the correlation between heterogeneous data.

The commonly used quantitative methods of organizational structure are usually
implemented by image processing software along with manual participation. This process
requires significant time and labor inputs; thus, the statistical results are acquired only
from limited features and regions [22–24]. In view of the above shortcomings, in this study,
image acquisition instruments were combined with computer vision methods, and a high
throughput method of quantitative identification and statistical analysis of the aluminum
alloy microstructure was devised based on deep learning [25,26]. After verification, this
method was found to be accurate and comprehensive for the statistics of massive organi-
zational data; please refer to our published articles, for the specific research process and
results [27].

The common analysis methods for component distribution, such as scanning electron
microscopy, energy spectrum analysis and electron probe microanalysis, are only aimed at
micro-area test, with slow analysis speed and low quantitative sensitivity [28–30]. Spark
spectrometry and ICP are discontinuous measurement techniques, so the global content dis-
tribution cannot be obtained [31,32]. Original position statistic distribution analysis (OPA)
via spark source and via laser-induced breakdown spectroscopy (LIBS-OPA) can realize
continuous distribution analysis in a large range, but creates the problem of surface damage.
In contrast, microbeam X-ray fluorescence spectrometry has the advantages of high micro-
area resolution, fast analysis speed, lack of surface damage and sustainable testing [33–35].
It has been widely used in the fields of material, archaeology and geological research.

Original statistical spatial-mapping technology is characterized by the originality,
in-situ properties and statistics of information, which can reflect large-scale statistical dis-
tribution trends of the composition and microstructure of metal materials [36–39]. In this
study, the deep learning method was used to quantitatively characterize the microstruc-
ture characteristics of four aluminum alloy pillow beams. The element distribution was
characterized by microbeam X-ray fluorescence spectrometry. Using the idea of original
statistical spatial-mapping characterization, the correlations among composition, hardness
and microstructure from multi-source heterogeneous data sets were analyzed.
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2. Materials and Method
2.1. Experimental Samples

The 7B05 aluminum alloy of the same brand and four specifications for commercial
sleeper beams was used in the experiment. This high-speed rail material was provided
by China Railway Rolling Stock Corporation (CRRC, Qingdao, China). After hot rolling,
the material was heat treated with natural aging (T4) and artificial aging (T5). Its chemical
composition is shown in Table 1. Samples were cut from the rolled aluminum plate with a
size of 10 mm × 10 mm × 6 mm, 10 mm × 10 mm ×10 mm and 10 mm × 10 mm × 15 mm
(thickness), and the sampling surface remained perpendicular to the rolling direction.
Depending on heat treatment and sheet thickness, these four aluminum alloys were named
T4-6, T4-15, T5-10, and T5-15.

Table 1. Chemical composition of four aluminum alloys (wt%).

Material Zn Mg Cu Fe Si Mn Cr Zr Ti

T4-6 4.53 1.1 0.23 0.17 0.088 0.34 0.18 0.12 0.046
T4-15 4.39 1.38 0.022 0.16 0.067 0.35 0.084 0.071 0.02
T5-10 4.31 1.01 0.15 0.17 0.062 0.37 0.23 0.097 0.05
T5-15 4.23 1.09 0.16 0.17 0.058 0.37 0.22 0.11 0.048

2.2. Quantitative Method of Insoluble Phases Using High Throughput Scanning
Electron Microscope

The polished sample was placed in the Navigator OPA high throughput scanning
(NCS Testing & Technology Co., Ltd., Beijing, China) electron microscope to collect images.
The acquisition field sizes were as follows: T4-6 aluminum alloy, 10 mm × 6 mm; T4-15
aluminum alloy, 10 mm× 15 mm; T5-10 aluminum alloy, 10 mm× 10 mm; T5-15 aluminum
alloy, 10 mm × 15 mm. The number of images collected from each of the four samples was
3362 (T4-6), 11,508 (T4-15), 7056 (T5-10) and 10,668 (T5-15), and the pixel size of each image
was 4096 × 4096. The magnification of T4-15, T5-10 and T5-15 images was 2800 times, and
of the T4-6 image was 2000 times.

The quantitative statistical characterization method of the second phase was estab-
lished based on the deep learning algorithm. The experimental process is shown in Figure 1.
The main steps are as follows: building the image recognition framework (U-Net) based on
an artificial neural network [40–42], making the training set, training the feature data set
to obtain the U-Net segmentation model, inputting the sequence test images obtained by
high-throughput scanning electron microscopy into the trained model, extracting the image
features to be tested, and evaluating the randomly selected test results through common
segmentation indexes to ensure the accuracy of the quantitative method.

The network we constructed in the dotted box based on the original U-Net architecture
consisted of a contracting path and an expanding path [43–45]. The segmented image data
set was processed by the connected-region algorithm, and the feature distribution data
set was characterized by the mathematical statistical method. The location information
of extracted features was restored to the aluminum alloy section, and the quantitative
statistical results with spatial distribution information could be obtained. For verification
of the method accuracy and results, refer to the previous results published by our research
group [46].
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Figure 1. Quantitative characterization process of second phases and architecture of neural network
employed in our method.

2.3. Quantitative Method of Gray Value Using Optical Microscopy

Firstly, samples were polished with 400#, 800#, 1200#, 2500# and 4000# sandpaper, and
then polished with 0.5 µm silicon dioxide and a fine polishing cloth until the surface scratches
were completely removed. Secondly, samples were eroded with the erosion solution “Keller
reagent”, and the erosion time was about 40 s. Microstructure images were acquired using the
Leica DM6000 metallurgical (Leica Microsystems CMS GMBH, Wetzlar, Germany) microscope
with autofocus and continuous acquisition mode. The field sizes were as follows: T4-6
aluminum alloy, 10 mm × 6 mm; T4-15 aluminum alloy, 10 mm × 15 mm; T5-10 aluminum
alloy, 10 mm × 10 mm; T5-15 aluminum alloy, 10 mm × 15 mm. The magnification was
50 times, the number of images collected from the four samples was 24 (T4-6), 50 (T4-15),
35 (T5-10) and 50 (T5-15), and the pixel size of each image was 2400 × 1800. Then, the same
parameters were set to stitch images so that a full-field image could be obtained for one
sample. Finally, the stitched image was processed to increase the contrast. According to
the threshold of micro-area division, the image matrix was divided by MATLAB software
(Matlab R2021a, Mathworks, Nedick, MA, USA.), and the average gray value of each
micro-area was obtained.

2.4. Instruments and Conditions of Composition Test

The element composition distribution of the aluminum alloy section was analyzed by
microbeam X-ray fluorescence spectrometer (M4 tornado, Bruker, Karlsruhe, Germany).
The detailed parameters were as follows: X-ray tube voltage was 50 kV, current was 150 µA,
target material was Rh, beam spot size was 20 µm, beam spot collection interval was 10 µm,
scanning time per pixel was 100 ms, and sample chamber vacuum was 20.1 mbar.

2.5. Instruments and Conditions of Hardness Test

According to the ISO 6507-1-2005 standard, a Vickers hardness tester (Qness Q10,
Qness GmbH, Salzburg, Austria) was used to measure the hardness of the aluminum
alloy section. The multi-point measurement mode was adopted to ensure that the distance
between the centers of two hardness points was greater than 3 times the diagonal distance.
The test load was 10 N and the loading time was 10 s. The hardness matrix data with
equal intervals on the sample surface was processed by interpolation, and the interpolation
matrix could be considered to represent the actual hardness distribution of the sample cross
section. Taking T5-10 as an example, the measurement area was 10 mm × 10 mm, and the
number of hardness points was 4150.



Materials 2022, 15, 5767 5 of 19

2.6. Instruments and Conditions of Electron Back Scattered Diffraction (EBSD)

After cutting, the sample was polished with 400#, 800#, 1200#, 2500# and 4000#
sandpaper, and then polished with aluminum oxide and a velvet cloth until the surface
scratches were completely removed. In order to further eliminate the residual stress on
the surface of the sample, electrolytic polishing was carried out. The polishing liquid was
25% H3PO4 + 25% C2H5OH + 50% H2O mixed solution. The electrolysis voltage was 15 V,
and the electrolysis time was 30 s. EBSD was observed by a TESCAN S8000G (Tescan
GmbH, Brno, Czech Republic) scanning electron microscope; the scanning working distance
was 14 mm, the acceleration voltage was 20 KV, the current was 3 nA, the step size was
0.5 µm, and the scanning area size was 500 pixels.

3. Experimental Results
3.1. Microscopic Morphology and Characteristics of Aluminum Alloy
3.1.1. Morphology and Characteristics of Crystallography

The surface layer structure is composed of equiaxed crystals and abnormal grains
grown after recrystallization, as shown in Figure 2a,e,i,m, because more deformation energy
stored in the surface during rolling and heat treatment leads to re-nucleation and growth
of grains. As shown in Figure 2b,f,g,n, the center grains are significantly elongated along
the rolling direction, showing obvious fiber characteristics. The grain size is not completely
uniform, and there is a certain level of mixed crystal phenomenon. Figure 2 shows that the
recrystallization degree of the thick plate is limited, and most areas are still dominated by
deformed sub crystals.

It can be seen from IPF that the maximum orientation densities of the surface and the
center of the two materials T4-6 and T5-10 are quite different. Because of the thickness
of the sheet, T4-6 and T5-10 are more significantly affected by hot rolling deformation.
Figure 2a–d shows that the orientation of T4-6 is the transition direction from <001> to
<111>, and the orientation density of the center is greater than that of the surface layer.
Figure 2i–l shows that the main orientation of the surface is relatively dispersed, and
its distribution is the transition direction of <101> to <111>, the transition direction of
<001> to <101> and the transition direction of the <111> direction, and the middle layer is
concentrated in the <101> direction. T4-15 and T5-15 alloys have more dispersed surface
and intermediate microstructure orientations. T4-15 is mainly distributed in the transition
direction, whereas T5-15 is mainly concentrated in <101> and <111> orientations.

As is conveyed by Figure 3b,e,h,k and Figure 3c,f,i,l, the white area in the middle layer
is generated from the growth in recrystallized grains, which are resistant to corrosion due to
their low internal crystal defects and dislocation density. The gray-black area in the middle
layer has fine grains and is composed of deformed sub-grains. Due to crystal defects and
dislocation density, a large number of sub-grain boundaries are formed, which are easily
corroded, so that the structure appears black. The surface structure is also gray-black after
corrosion, and its gray value is much smaller than that of the sub-grains in the middle
layer. The white area is mainly composed of large grains and shows similar topological
morphology to that of the matrix. After corrosion, the white area is smooth and the grain
boundary is irregular. The gray-black area has fine grains, and the surface is uneven after
corrosion. The grain boundaries in the gray-black area are not fully revealed, and some
grains still maintain the slender crystal state.
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1 
 

 
Figure 2. Orientation maps of 7B05 aluminum alloy based on EBSD measurements: (a) T4-6 sur-
face microstructure, (b) T4-6 center microstructure, (c) T4-6 IPF of surface, (d) T4-6 IPF of center;
(e–h) the corresponding T4-15 EBSD microstructures; (i–l) the corresponding T5-10 EBSD microstruc-
tures; (m–p) the corresponding T5-15 EBSD microstructures.
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Figure 3. Micrographs of different sections in 7B05 aluminum alloy: (a) parallel rolling direction
of T4-6, surface, (b) parallel rolling direction of T4-6, center, (c) vertical rolling direction of T4-6,
center; (d–f) the corresponding T4-15 microstructures; (g–i) the corresponding T5-10 microstructures;
(j–l) the corresponding T5-15 microstructures.

The dislocation angle distribution and grain size of the surface and center layers of
the 7B05 material in the range of 500 µm × 500 µm are shown in Figure 4. As can be seen
from Figure 4a,b, a small angle grain boundary is dominant in both the surface layer and
central layer. When the grain boundary is larger than 15 ◦, the proportion of the large angle
grain boundary decreases rapidly. The proportion of the large angle grain boundary in
the surface layer is larger than that in the central layer. Figure 4a,b shows that the degree
of recrystallization of the surface layer is greater than that of the middle layer. As can be
seen from Figure 4c,d, when the grain diameter is greater than 4.56 µm, the proportion
of grains decreases rapidly. The proportion of grains larger than 4.56 µm in T4 material
is 0.08~0.45, while the proportion in T5 material is 0.2~0.63. The number of large grains
formed by recrystallization of T5 material is more than that of T4. When the surface grain
size of T4-15 is greater than 20.56 µm, there is a sudden-change point, which is related to
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the abnormally grown structure formed by surface recrystallization. The corresponding
dislocation angle of T4-15-E becomes larger in the range of 35◦–50◦, as shown in Figure 4a.
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Figure 4. Distribution trend of misorientation and grain size of 7B05 aluminum alloy, where E
represents the surface layer of the rolled plate, C represents the center layer of the rolled plate:
(a) misorientation distribution of T4; (b) misorientation distribution of T5; (c) diameter distribution of
T4; (d) diameter distribution of T5.

3.1.2. Morphology and Characteristics of Insoluble Phase

Figure 5 shows the morphology of undissolved and coarse second phases in the
backscattering mode. The refractory phases distributed on the matrix are mainly white and
gray. The sizes of the inclusion phases are different, their shapes are an irregular polygon,
and their distribution at different positions of the rolled plate section is not uniform. Since
the Cu content in 7B05 is small, only 0.022–0.23%, as shown in Table 1, the white inclusion
components may exist in the form of Fe and Si compounds, such as AlFeMnCr, AlFeMnCrSi,
and Al7Cu2Fe. The black inclusion phases have high content of Mg and Si and may exist in
the form of compound Mg2Si.

3.2. Statistical Results of Second Phase Distribution

The U-Net target model based on deep learning was used to segment the image to be
measured. After segmentation, the full field (60~150 mm2) distribution of the second phase
on the sections of four aluminum alloy rolled plates was counted. Figure 6 shows the total
insoluble phase number, area and average size per 512 pixels along the thickness direction.
It can be seen from the figures that there are insoluble phases at different thickness positions,
and the area, number and density of the second phase show different distribution trends
with the change in thickness.
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direction in 7B05 aluminum alloy: (a–c) T4-6; (d–f) T4-15: (g–i) T5-10; (j–l) T5-15.

For T4 materials experiencing natural aging, the total area, quantity and average area
have a basically symmetrical distribution. The area of insoluble phases from surface to
heart decreased slightly; the number of insoluble phases decreased significantly from the
surface to the heart, but increased near the central layer; and the change trends of the
average area in these two T4 materials are the same, rising from the surface layer at 1.5 and
1 µm2, to the center 3 µm2. Two higher peaks appear near the central layer, then extend to
the central layer, and there is a “valley” with decreasing average area.

The total area, quantity and average area of T5 artificial aging materials are asymmet-
rically distributed. The area change trend of the insoluble phase from the surface layer
to the central layer is more significant compared with T4. The amount of insoluble phase
decreases from the surface layer to the central layer. The average area of the insoluble phase
increases from surface to center. During the hot forming process of the rolled sheet, the
surface layer and the middle layer are subjected to different forces and different holding
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times. As a result, the deformation degree of different parts of the rolled sheet is different,
and the degree of fragmentation of the intermetallic compound is different. In addition,
the holding time and element segregation will also affect the quantity and area of the
insoluble phase.

3.3. Statistical Results of Element Distribution

The element mapping of each position was performed in the 10 mm × 15 mm section
of T4-15 aluminum alloy by means of microbeam X-ray fluorescence, and the composition
distribution is shown in Figure 7. The results show that there is a segregation zone in the
central layer region, where Al, Cr, and Zr elements show positive segregation, and Fe and
Zn elements show negative segregation. The content of Fe element in the segregation area
is low and the distribution is uneven, the distribution is relatively uniform in the area near
the surfaces, and the distribution on the cross-section is point-like aggregation. There is
no obvious segregation band in the central layer of Mn element, but there is a strip-like
aggregation distribution with high content.
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Figure 7. The mapping of T4-15 element contents measured by X-ray fluorescence: (a) sample; (b) Al
element; (c) Cr element; (d) Zr element; (e) Fe element; (f) Mn element; (g) Zn element; (h) Cu element.

As can be seen from Figure 8, the contents of Al, Ti, Zr, Zn and Cu elements in the
surface layer have a small variation range and relatively uniform distribution. The low-
content and high-content elements in the segregation area are distributed alternately, and
the distribution state is band-shaped. Based on the scanning spot of 20 µm, the scanning
distance was set to 10 µm, and the crystal grain size was in the micron level; therefore,
it is judged that the micro-segregation morphology is similar to the distribution of the
structure. When the alloy sheet is calendered, the distribution of stress and temperature
on the surface and center layers are not uniform, and the surface in contact with the roller
cools fast, causing the alloy elements to be strongly dissolved in the upper and lower layers
of the sheet. Therefore, the surface layer has a high content of alloy elements that are
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solid-dissolved in the matrix and are evenly distributed. Extending from the surface layer
to the inside, the cooling rate of the rolled plate slows, so that the solute redistribution
of the alloying elements occurs, and the elements of the central layer continue to diffuse
during the deformation process. In the central part where the temperature is high and the
holding time is long, the contents of Ti, Zr, Zn, Cu and other alloying elements dissolved in
the matrix decrease, and the elements exist in the form of precipitation, so that the contents
of elements in the segregation zone vary greatly.
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Figure 8. The mapping of T5-10 element contents measured by X-ray fluorescence: (a) sample;
(b) Al element; (c) Zn element; (d) Cr element; (e) Zr element; (f) Fe element; (g) Cu element; (h) Mn
element; (i) Ti element.

The precipitation characteristics of Fe element are different from those of other ele-
ments, and are mainly related to the impurity phase. The distribution of Fe exhibits point
aggregation, and surfaces contain evenly distributed Fe with high content. Due to the high
temperature and long holding time of the interlayer, the content of solid solution in the
matrix decreases, and the second phase is fully precipitated and easy to grow. The content
of Fe in the precipitated phase differs greatly from that in the matrix.

3.4. Statistical Results of Hardness Distribution

The distribution trend of 7B05 section hardness is shown in Figure 9, and its charac-
terization section is the same as the interface used in the above element distribution and
microstructure characterization. Figure 9a,b shows that the hardness value of T4 section
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is in the range of 120–140 HV, the central layer has a low hardness area, and the hardness
value below 125 is basically distributed in this area. As shown in Figure 9c,d, the hardness
value of the entire T5 section is in the range of 90–120 HV, and the distribution along the
thickness direction is not symmetrical. Taking T5-10 as an example, the stable thickness
is close to 2 mm, whereas, on the other side, it is about 0.5 mm. In addition, the hardness
distribution is also not uniform: the surface hardness is low, and the transition zone has
high hardness and large fluctuations. There are band-shaped low-hardness zones on the
middle layer, and the values below 100 are basically distributed in this area.
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Figure 9. Hardness mapping of 7B05 aluminum alloy section: (a) T4-6; (b) T4-15; (c) T5-15; (d) T5-10.

4. Statistical Mapping Trend Analysis
4.1. Analysis of Insoluble Phase-Structure Statistical Mapping Trend

As mentioned in Section 3.1.1, the gray value of the material under the light microscope
is determined by the structure. The recrystallized organization is white after corrosion
and has a large gray value; the deformed sub-grain is gray-black after corrosion and has a
small gray value; the surface recrystallized organization is black after corrosion and has the
smallest gray value. The morphology and grayscale of four aluminum alloys sections after
corrosion are shown in Figure 10. However, the grayscale change in T4-15 after etching
is opposite to that of other materials, which is presumed to be related to the abnormally
coarse recrystallized structure in the surface layer, as shown in Figures 2e and 4a,c.

The abscissa in Figure 11 is the number of images divided along the thickness direction,
with 512 pixels as the threshold, representing the thickness of the rolled plate; the ordinates
are the average area of the insoluble phase and the average gray value corresponding to
each row of images. The distribution of the average area of the insoluble phase in the T4
and T5 materials along the thickness direction is related to the average grayscale change of
the samples, showing a trend of a low surface layer and a high middle layer; see Figure 11.
The aluminum plate in contact with the roller is subjected to forces such as rolling pressure,
shearing force, and tension during rolling. With the increase in deformation degree, brittle
intermetallic compounds tend to break into small and continuous undissolved phases. Due
to the frictional force, the surface layer bears greater shear stress, and deforms more than
the middle layer. Therefore, the T4 and T5 materials have more insoluble phases on the
surface layer. When the surface is extremely cold, the precipitated insoluble phase has no
time to grow. The middle layer has a long holding time, and the insoluble phase is easy to
grow. However, T4 shows a low point in average area near the center layer. Combining
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Figures 6 and 7, Fe element starvation and Zr and Ti element enrichment occur at this
position, and there is a peak in the number of the second phase. We speculate that the
number and size of the insoluble phase in the central layer is changed due to the segregation
of solute elements.

Materials 2022, 15, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 10. The surface morphology and grayscale of the four aluminum alloy sections after corro-

sion: (a) T4-6; (b) T4-15; (c) T5-15; (d) T5-10. 

The abscissa in Figure 11 is the number of images divided along the thickness direc-

tion, with 512 pixels as the threshold, representing the thickness of the rolled plate; the 

ordinates are the average area of the insoluble phase and the average gray value corre-

sponding to each row of images. The distribution of the average area of the insoluble 

phase in the T4 and T5 materials along the thickness direction is related to the average 

grayscale change of the samples, showing a trend of a low surface layer and a high middle 

layer; see Figure 11. The aluminum plate in contact with the roller is subjected to forces 

such as rolling pressure, shearing force, and tension during rolling. With the increase in 

deformation degree, brittle intermetallic compounds tend to break into small and contin-

uous undissolved phases. Due to the frictional force, the surface layer bears greater shear 

stress, and deforms more than the middle layer. Therefore, the T4 and T5 materials have 

more insoluble phases on the surface layer. When the surface is extremely cold, the pre-

cipitated insoluble phase has no time to grow. The middle layer has a long holding time, 

and the insoluble phase is easy to grow. However, T4 shows a low point in average area 

near the center layer. Combining Figures 6 and 7, Fe element starvation and Zr and Ti 

element enrichment occur at this position, and there is a peak in the number of the second 

phase. We speculate that the number and size of the insoluble phase in the central layer is 

changed due to the segregation of solute elements. 

Figure 10. The surface morphology and grayscale of the four aluminum alloy sections after corrosion:
(a) T4-6; (b) T4-15; (c) T5-15; (d) T5-10.

The number of insoluble phases is also low in the position (image sequence number 200,
400, 600) where the gray value drops sharply based on Figure 11c. The average gray varies
in a manner consistent with the average area of the insoluble phase, with a distribution
trend of increasing–maintaining–decreasing along the thickness direction. Since the gray
value is determined by the size and proportion of the recrystallized grains, the growth
process of the insoluble phase is synchronized with the changes in recrystallization ratio
and grain size. It is difficult to characterize the wide-ranging recrystallized grain size and
the grain change process, whereas it is relatively easy to characterize the change trend
of the insoluble phase. Therefore, this conclusion can be used to judge the change in the
recrystallized grain size.

4.2. Analysis of Structure-Composition Statistical Mapping Trend

It is difficult to use a point-to-point method to explore the correlation between the two
sets, since the component and grayscale data are two sets of data having different scales
and different types. This study used the micro-region–micro-region method to explore the
data rules and determine the degree of correlation between the two sets. The T5-10 section
(10 mm × 10 mm) was divided into a 14 × 14 micro region, and the element content and
grayscale data of 186 areas at the corresponding positions were extracted. The relationship
between grayscale and element content is shown in Figure 12. Cr, Ti and Zr have similar
data distributions, and Zn and Cu have similar data distributions.
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It can be seen from Figure 12 that the areas with high average gray values have high
contents of Al and Cr, indicating that the contents of Al, Cr, Ti and Zr in the recrystallized
grains are high after forming and heat treatment, and these elements exist in the form of
microscopic positive segregation. The areas with high average gray values have low Zn and
Cu contents, indicating that the recrystallized grains have low Zn and Cu element contents,
and these elements exist in the form of microscopic negative segregation. The wide range
of micro-segregation of aluminum alloy seriously affects the morphology of the structure
and the comprehensive performance. This conclusion is important for characterizing the
degree of recrystallization segregation of aluminum alloy.

With the increase in gray value, the contents of Cr, Ti and Zr in the front part decrease
first and then increase. The locations with the lowest gray values are distributed near
the surface, and the degree of solid solution is the highest in this area. In the process of
centripetal extension, the decrease in the content caused by the weakening of the solid
solution is greater than the increase in the content caused by the proportion of recrystal-
lization. Therefore, the front part of the fitting lines of Cr, Ti and Zr elements shows a
decreasing trend. However, there is no change in the solid solubility of the Al element, and
the distribution shows a slowly increasing trend. The statistical mapping trend of T4 is
similar to that of T5, as shown in Figure 13.
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Figure 13. Statistical mapping diagram of grayscale and component data in the T4-6 aluminum alloy
microregion. (a) Al element; (b) Cr element; (c) Zn element; (d) Fe element.

4.3. Analysis of Structure-Hardness Statistical Mapping Trend

The section was divided into micro-areas for mapping, the gray value and hardness
data of the corresponding micro-areas were extracted, and the abnormal data having a
value of less than one tenth was filtered out. The relationship between gray value and
hardness is shown in Figure 14. Figure 14a shows that the hardness value and gray value of
T4-6 change in the same way, and the gray and hardness are both low on the surface layer
and the near-intermediate layer. Figure 14b shows that the hardness value and gray value
of T4-6 have opposite trends. The above results prove that the formation of the central low
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hardness is not determined by the gray value. The composition segregation near the central
layer is significant (Figure 7), and the Zn element, which plays the main strengthening role,
exhibits negative segregation here [44]. Therefore, the low-hardness zone in T4 is mainly
caused by the negative segregation of alloy elements.
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Figure 14. Statistical mapping diagram of gray and hardness data in four aluminum alloy microregion:
(a) T4-6; (b) T4-15; (c) T5-10; (d) T5-15.

Figure 14c,d shows that, for the cross section of T5 material, the surface layer of the
rolled sheet with the lowest gray value and low hardness consists of equiaxed grains formed
by recrystallization. As the gray value increases, the hardness reaches the maximum. At
this time, the structure is composed of a certain proportion of recrystallized grains and
fine sub-crystals, and the grains are significantly elongated along the rolling direction,
showing obvious fiber characteristics. When the gray value continues to increase, the
hardness begins to decrease, and the position with a band-like distribution and the smallest
hardness appears inside the section. The structure here is dominated by the deformed
coarse recrystallization, and it is also the region where the component segregation is the
most significant.

In summary, the hardness distribution is related to the structure. The surface equiaxed
crystal has a small hardness value and uniform distribution; with the occurrence of T5
material recrystallization, the hardness in the transition zone rises to the highest value; when
the recrystallization ratio is the highest, the hardness is the lowest. The recrystallized grain
size on the intermediate layer of T4 material is smaller than that of T5 (Figures 2 and 4), and
there is no low-hardness zone with a band-like distribution. The low-hardness zone is
mainly caused by the negative segregation of alloy elements.



Materials 2022, 15, 5767 17 of 19

4.4. Correlation among Composition, Hardness and Microstructure Using Original Statistical
Spatial-Mapping Method

The original statistical mapping technique used in this study is based on the iden-
tification of intrinsic heterogeneity to characterize aluminum alloy samples with high-
throughput and cross-scale statistical distribution, resolving the correlation building prob-
lem among element distribution, properties and microstructure over a large area. The
region–region original statistical mapping method was selected, and the original data set
was divided by selecting an appropriate region as the minimum unit. The characterization
parameters of the micro-area in the muti-source data set were extracted; this process is
a nonlinear down-sampling function, which reduces the space size in exchange for the
increase in the dimension of parallel representation data. Through the mining of multi-
source heterogeneous data sets, the correlation model between each data set was finally
established, as shown in Figure 15.
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Figure 15. Spatial-mapping model of composition–structure–hardness in 7B05 aluminum alloy.

5. Conclusions

(1) The number of insoluble phases in T4 and T5 has the same variation trend, with more
in the surface layer and fewer in the middle. The average area of the insoluble phase
in two T4 materials increases from 1.5 and 1 µm2 in the surface layer, to 3 µm2 in the
center layer. The anomalous decrease in the insoluble phase area near the center is
related to the center segregation. The growth in the insoluble phase of T5 materials is
synchronized with the growth process of recrystallization.

(2) The surface of the rolled sheet has a high degree of solid solution, and the composition
is evenly distributed; for T5 material, there is positive segregation of Al, Cr, Ti and Zr,
and negative segregation of Zn, Cu and Fe in the recrystallized grains of the middle
segregation zone; T4 material has genetic center segregation caused by casting and
hot rolling process.

(3) The hardness value of the surface composed of equiaxed and coarse recrystallized
grains is small and the distribution is uniform; the band-like hardness distribution
in the T5 intermediate layer is related to the recrystallization proportion and the size
of the recrystallized grains. The coarse grain in the T4 intermediate layer is smaller
than that of the T5 material; therefore, there is no low-hardness zone with a band-like
distribution. The low hardness region with a value below 125 in T4 is mainly caused
by the negative segregation of alloying elements. Values below 100 are basically
distributed in this area.

(4) The original statistical spatial-mapping method demonstrated the feasibility of ana-
lyzing the correlation among massive multi-source heterogeneous data, including for
composition–microstructure–performance.



Materials 2022, 15, 5767 18 of 19

Author Contributions: Conceptualization, H.W.; Data curation, D.S., C.D. and W.W.; Investigation,
D.L., B.H. and L.Z.; Software, W.W. and D.L.; Supervision, L.Z. and H.W.; Writing—original draft,
B.H.; Writing—review & editing, D.S. and C.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by Independent Research and Development Program of China
iron and steel research institute group (No. KNJT01-JT0M-22018). This work was supported by the
National Key Research and Development Program of China (No. 2021YFB3702103).

Institutional Review Board Statement: The study did not require ethical approval.

Informed Consent Statement: Written informed consent has been obtained from the patient(s) to
publish this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guo, F.B.; Zhu, B.H.; Jin, L.B.; Guo, F.-B.; Zhu, B.-H.; Jin, L.-B.; Wang, G.-J.; Yan, H.-W.; Li, Z.-H.; Zhang, Y.-A.; et al. Microstructure

and mechanical properties of 7A56 aluminum alloy after solution treatment. Rare Met. 2021, 40, 168–175. [CrossRef]
2. Dai, X.; Xia, C.; Peng, X.; Ma, K. Structure and properties of an ultra-high strength 7xxx aluminum alloy contained Sc and Zr.

J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. 2018, 15, 276–279. [CrossRef]
3. Srinivasa Rao, T.; Madhusudhan Reddy, G.; Koteswara Rao, S.R. Microstructure and mechanical properties of friction stir welded

AA7075–T651 aluminum alloy thick plates. Trans. Nonferrous Met. Soc. China 2015, 25, 1770–1778. [CrossRef]
4. Hidalgo-Manrique, P.; Cepeda-Jiménez, C.; Orozco-Caballero, A.; Ruano, O.; Carreño, F. Evolution of the microstructure, texture

and creep properties of the 7075 aluminium alloy during hot accumulative roll bonding. Mater. Sci. Eng. A 2014, 606, 434–442.
[CrossRef]

5. Engler, O.; Crumbach, M.; Li, S. Alloy-dependent rolling texture simulation of aluminium alloys with a grain-interaction model.
Acta Mater. 2005, 53, 2241–2257. [CrossRef]

6. She, X.-W.; Jiang, X.-Q.; Wang, P.-Q.; Tang, B.-B.; Chen, K.; Liu, Y.-J.; Cao, W.-N. Relationship between microstructure and
mechanical properties of 5083 aluminum alloy thick plate. Trans. Nonferrous Met. Soc. China 2020, 30, 1780–1789. [CrossRef]

7. Ao, M.; Dong, C.; Li, N.; Wang, L.; Ji, Y.; Yue, L.; Sun, X.; Zou, S.; Xiao, K.; Li, X. Unexpected Stress Corrosion Cracking
Improvement Achieved by Recrystallized Layer in Al-Zn-Mg Alloy. J. Mater. Eng. Perform. 2021, 30, 6258–6268. [CrossRef]

8. Ji, Y.; Dong, C.; Chen, L.; Xiao, K.; Li, X. High-throughput computing for screening the potential alloying elements of a 7xxx
aluminum alloy for increasing the alloy resistance to stress corrosion cracking. Corros. Sci. 2021, 183, 109304–109314. [CrossRef]

9. Liu, P.; Hu, L.; Zhao, X.; Zhang, Q.; Yu, Z.; Hu, J.; Chen, Y.; Wu, F.; Cao, F. Investigation of microstructure and corrosion behavior
of weathering steel in aqueous solution containing different anions for simulating service environments. Corros. Sci. 2020, 170,
108686–108700. [CrossRef]

10. Deschamps, A.; Ringeval, S.; Texier, G.; Delfaut-Durut, L. Quantitative characterization of the microstructure of an electron-beam
welded medium strength Al–Zn–Mg alloy. Mater. Sci. Eng. A 2009, 517, 361–368. [CrossRef]

11. Luo, R.; Cao, Y.; Bian, H.; Chen, L.; Peng, C.-T.; Cao, F.; Ouyang, L.; Qiu, Y.; Xu, Y.; Chiba, A.; et al. Hot workability and dynamic
recrystallization behavior of a spray formed 7055 aluminum alloy. Mater. Charact. 2021, 178, 11203–11215. [CrossRef]

12. Huo, M.S.; Zhao, J.W.; Xie, H.B.; Jia, F.; Li, S.; Zhang, H.; Jiang, Z. Effects of micro flexible rolling and annealing on microstructure,
microhardness and texture of aluminium alloy. Mater. Charact. 2019, 148, 142–155. [CrossRef]

13. Han, B.; Sun, D.D.; Wan, W.H.; Wang, H.; Dong, C.C.; Zhao, L.; Wang, H.Z. Element Segregation of Cast-Rolled 7B05 Aluminum
Alloy Basedon Microbeam X-Ray Fluorescence. Spectrosc. Spectr. Anal. 2022, 42, 1413–1419.

14. Li, D.-L.; Liu, Z.-X.; Zhao, L.; Shen, X.-J.; Wang, H.-Z. Characterization of the elemental distribution of superalloy composite
powders by micro beam X-ray fluorescence and laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc.
2020, 169, 105896–105910. [CrossRef]

15. Wang, H.; Jia, Y.; Li, Y.; Zhao, L.; Yang, C.; Cheng, D. Rapid analysis of content and particle sizes of aluminum inclusions in low
and middle alloy steel by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2020, 171, 105927–105934.
[CrossRef]

16. Azimi, S.M.; Britz, D.; Engstler, M.; Fritz, M.; Mücklich, F. Advanced Steel Microstructural Classification by Deep Learning
Methods. Sci. Rep. 2018, 8, 2128–2142. [CrossRef]

17. Chowdhury, A.; Kautz, E.; Yener, B.; Lewis, D. Image driven machine learning methods for microstructure recognition. Comput.
Mater. Sci. 2016, 123, 176–187. [CrossRef]

18. Staniewicz, L.; Midgley, P.A. Machine learning as a tool for classifying electron tomographic reconstructions. Adv. Struct. Chem.
Imaging 2015, 1, 9. [CrossRef]

19. Bulgarevich, D.S.; Tsukamoto, S.; Kasuya, T.; Demura, M.; Watanabe, M. Pattern recognition with machine learning on optical
microscopy images of typical metallurgical microstructures. Sci. Rep. 2018, 8, 2078–2086. [CrossRef]

20. Chen, X.; Zhao, L.; Jiang, L.; Wang, H. Microstructure and properties of Cu-rGO composites prepared by microwave sintering.
Materials 2021, 14, 4899. [CrossRef]

http://doi.org/10.1007/s12598-017-0985-7
http://doi.org/10.1016/S1005-8850(08)60052-3
http://doi.org/10.1016/S1003-6326(15)63782-7
http://doi.org/10.1016/j.msea.2014.03.105
http://doi.org/10.1016/j.actamat.2005.01.032
http://doi.org/10.1016/S1003-6326(20)65338-9
http://doi.org/10.1007/s11665-021-05856-4
http://doi.org/10.1016/j.corsci.2021.109304
http://doi.org/10.1016/j.corsci.2020.108686
http://doi.org/10.1016/j.msea.2009.03.088
http://doi.org/10.1016/j.matchar.2021.111203
http://doi.org/10.1016/j.matchar.2018.12.007
http://doi.org/10.1016/j.sab.2020.105896
http://doi.org/10.1016/j.sab.2020.105927
http://doi.org/10.1038/s41598-018-20037-5
http://doi.org/10.1016/j.commatsci.2016.05.034
http://doi.org/10.1186/s40679-015-0010-x
http://doi.org/10.1038/s41598-018-20438-6
http://doi.org/10.3390/ma14174899


Materials 2022, 15, 5767 19 of 19

21. Chen, X.B.; Zhao, L.; Li, D.L.; Jiang, L.; Wang, H. Characteristic of microwave melting H13 steel powder with different tungsten
contents. Mater. Lett. 2021, 294, 129803–129808. [CrossRef]

22. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.
[CrossRef]

23. Garcia-Garcia, A.L.; Dominguez-Lopez, I.; Lopez-Jimenez, L.; Barceinas-Sanchez, J.O. Comparative quantification and statistical
analysis of η′ and η precipitates in aluminum alloy AA7075-T651 by TEM and AFM. Mater. Charact. 2014, 87, 116–124. [CrossRef]

24. Albuquerque, V.H.C.; Silva, C.; Menezes, T.I.D.S.; Farias, J.P.; Tavares, J.M.R.S. Automatic Evaluation of Nickel alloy secondary
phases from SEM images. Microsc. Res. Tech. 2011, 74, 36–46. [CrossRef] [PubMed]

25. Wan, W.H.; Li, D.L.; Wang, H.Z.; Zhao, L.; Shen, X.; Sun, D.; Chen, J.; Xiao, B. Automatic identification and quantitative
characterization of primary dendrite microstructure based on machine learning. Craystals 2021, 11, 1060. [CrossRef]

26. Li, W.; Li, W.; Qin, Z.; Tan, L.; Huang, L.; Liu, F.; Xiao, C. Deep Transfer Learning for Ni-Based Superalloys Microstructure
Recognition on Y′ Phases. Materials 2022, 15, 4251. [CrossRef]

27. Wan, W.H.; Li, D.L.; Zhou, Q.Q.; Zang, Q.; Xue, X.; Shi, H.; Wang, H. Quantitative characterization of the Y′ phases distribution in
the large-scale area of the Second-Generation Nickon-based single crystal blade DD5. Craystals 2021, 11, 1399. [CrossRef]

28. Xie, F.; Yan, X.; Ding, L.; Zhang, F.; Chen, S.; Chu, M.G.; Chang, Y. A study of microstructure and microsegregation of aluminum
7050 alloy. Mater. Sci. Eng. A 2003, 355, 144–153. [CrossRef]

29. Eskin, D.G.; Nadella, R.; Katgerman, L. Effect of different grain structures on centerline macrosegregation during direct-chill
casting. Acta Mater. 2008, 56, 1358–1365. [CrossRef]

30. Guo, F.; Wang, X.; Liu, W.; Shang, C.; Misra, R.D.K.; Wang, H.; Zhao, T.; Peng, C. The Influence of Centerline Segregation on the
Mechanical Performance and Microstructure of X70 Pipeline Steel. Steel Res. Int. 2018, 89, 1800407. [CrossRef]

31. Lee, S.; Bi, X.; Reed, R.B.; Ranville, J.F.; Herckes, P.; Westerhoff, P. Nanoparticle Size Detection Limits by Single Particle ICP-MS
for 40 Elements. Environ. Sci. Technol. 2014, 48, 10291–10300. [CrossRef]

32. Stratis, D.N.; Eland, K.L.; Angel, S.M. Enhancement of Aluminum, Titanium, and Iron in Glass Using Pre-ablation Spark
Dual-Pulse LIBS. Appl. Spectrosc. 2000, 54, 1719–1726. [CrossRef]

33. Solé, V.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence
spectra. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 63–68. [CrossRef]

34. Potts, P.J.; Webb, P.C. X-ray fluorescence spectrometry. J. Geochem. Explor. 2012, 44, 251–296. [CrossRef]
35. Paunesku, T.; Vogt, S.; Maser, J.; Lai, B.; Woloschak, G. X-ray fluorescence microprobe imaging in biology and medicine. J. Cell.

Biochem. 2006, 99, 1489–1502. [CrossRef] [PubMed]
36. Bahn, C.B.; Kasza, K.E.; Shack, W.J.; Natesan, K.; Klein, P. Evaluation of precipitates used in strainer head loss testing: Part II.

Precipitates by in situ aluminum alloy corrosion. Nucl. Eng. Des. 2011, 241, 1926–1936. [CrossRef]
37. Li, L.L.; Desouza, A.L.; Swain, G.M. In situ pH measurement during the formation of conversion coatings on an aluminum alloy

(AA2024). Analyst 2013, 138, 4398–4403. [CrossRef]
38. Zhao, L.; Jiang, L.; Yang, L.; Wang, H.; Zhang, W.; Ji, G.; Zhou, X.; Curtin, W.; Chen, X.; Liaw, P.; et al. High throughput synthesis

enabled exploration of CoCrFeNi-based high entropy alloys. J. Mater. Sci. Technol. 2021, 15, 269–282. [CrossRef]
39. Cao, Y.; Zhu, P.; Shi, W.; Hua, G.; Wang, H.; Qiu, M. Correlation between X-Ray diffraction pattern and microstructure of surface

of E690 high-strength steel induced by laser-shock processing. Vacuum 2021, 195, 110595. [CrossRef]
40. Zhang, Q.; Cui, Z.; Niu, X.; Geng, S.; Qiao, Y. Image Segmentation with Pyramid Dilated Convolution Based on ResNet and U-Net.

In Proceedings of the 24th International Conference, ICONIP 2017, Guangzhou, China, 14–18 November 2017; Volume 10635,
pp. 364–372. [CrossRef]

41. Devalla, S.K.; Renukanand, P.K.; Sreedhar, B.K.; Subramanian, G.; Zhang, L.; Perera, S.; Mari, J.M.; Chin, K.S.; Tun, T.A.;
Strouthidis, N.G.; et al. DRUNET: A dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical
coherence tomography images. Biomed. Opt. Express 2018, 9, 3244–3265. [CrossRef]

42. Zhang, Z.X.; Liu, Q.J. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [CrossRef]
43. Norman, B.; Pedoia, V.; Majumdar, S. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus

Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry. Radiology 2018, 288, 177–185. [CrossRef]
[PubMed]

44. Dong, H.; Yang, G.; Liu, F.; Mo, Y.; Guo, Y. Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully
Convolutional Networks. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Edinburgh,
UK, 11–13 July 2017; Springer: Cham, Switzerland, 2017; Volume 723, pp. 506–517.

45. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Med. Image Comput.
Comput.-Assist. Interv. 2015, 9351, 234–241.

46. Han, B.; Wan, W.-H.; Sun, D.-D.; Dong, C.-C.; Zhao, L.; Wang, H.-Z. A deep learning-based method for segmentation and
quantitative characterization of microstructures in weathering steel from sequential scanning electron microscope images. J. Iron
Steel Res. Int. 2022, 29, 836–845. [CrossRef]

http://doi.org/10.1016/j.matlet.2021.129803
http://doi.org/10.1038/nmeth.2089
http://doi.org/10.1016/j.matchar.2013.11.007
http://doi.org/10.1002/jemt.20870
http://www.ncbi.nlm.nih.gov/pubmed/21181708
http://doi.org/10.3390/cryst11091060
http://doi.org/10.3390/ma15124251
http://doi.org/10.3390/cryst11111399
http://doi.org/10.1016/S0921-5093(03)00056-X
http://doi.org/10.1016/j.actamat.2007.11.021
http://doi.org/10.1002/srin.201800407
http://doi.org/10.1021/es502422v
http://doi.org/10.1366/0003702001948871
http://doi.org/10.1016/j.sab.2006.12.002
http://doi.org/10.1016/0375-6742(92)90052-A
http://doi.org/10.1002/jcb.21047
http://www.ncbi.nlm.nih.gov/pubmed/17006954
http://doi.org/10.1016/j.nucengdes.2011.01.004
http://doi.org/10.1039/c3an00663h
http://doi.org/10.1016/j.jmst.2021.09.031
http://doi.org/10.1016/j.vacuum.2021.110595
http://doi.org/10.1007/978-3-319-70096-0_38
http://doi.org/10.1364/BOE.9.003244
http://doi.org/10.1109/LGRS.2018.2802944
http://doi.org/10.1148/radiol.2018172322
http://www.ncbi.nlm.nih.gov/pubmed/29584598
http://doi.org/10.1007/s42243-021-00719-7

	Introduction 
	Materials and Method 
	Experimental Samples 
	Quantitative Method of Insoluble Phases Using High Throughput Scanning Electron Microscope 
	Quantitative Method of Gray Value Using Optical Microscopy 
	Instruments and Conditions of Composition Test 
	Instruments and Conditions of Hardness Test 
	Instruments and Conditions of Electron Back Scattered Diffraction (EBSD) 

	Experimental Results 
	Microscopic Morphology and Characteristics of Aluminum Alloy 
	Morphology and Characteristics of Crystallography 
	Morphology and Characteristics of Insoluble Phase 

	Statistical Results of Second Phase Distribution 
	Statistical Results of Element Distribution 
	Statistical Results of Hardness Distribution 

	Statistical Mapping Trend Analysis 
	Analysis of Insoluble Phase-Structure Statistical Mapping Trend 
	Analysis of Structure-Composition Statistical Mapping Trend 
	Analysis of Structure-Hardness Statistical Mapping Trend 
	Correlation among Composition, Hardness and Microstructure Using Original Statistical Spatial-Mapping Method 

	Conclusions 
	References

