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Abstract: As one of the most important prototypical chromium-based MOFs, MIL-101(Cr) is well-
studied and widely employed in various scientific fields. However, due to its small capture window
sizes and curved internal apertures, its application in large molecular removal is quite limited, and
given its high stability and high synthetic temperature (>200 °C), it is difficult to achieve hierarchically
porous MIL-101(Cr). In our study, hierarchically porous MIL-101(Cr) involving a high macro-/meso-
/micropores ratio was designed and synthesized using acetic acid as an additive and silicon dioxide
(SiO2) nanoparticles as a template. The optimal hierarchically porous MIL-101(Cr) (A-4) possessed a
high specific surface area (2693 m2 g−1) and an abundant macro-/mesoporous structure with the
addition of SiO2 of 200 mg. Compared with the control sample (A-0) with a less macro-/mesoporous
structure, A-4 showed good adsorption properties for both coomassie brilliant blue R-250 (CBB,
82.1 mg g−1) and methylene blue (MB, 34.3 mg g−1) dyes, which were 1.36 times and 9.37 times
higher than those of A-0. Moreover, A-4 also had good recyclability, and the removal rate of CBB was
still higher than 85% after five cycles of adsorption.

Keywords: MIL-101(Cr); SiO2; dye adsorption; template

1. Introduction

Different synthesis methods greatly influence the morphology, specific surface, and
crystallinity of metal–organic framework materials (MOFs) [1]. The common synthesis
methods of MOFs include hydrothermal synthesis [2,3], the solvent heat method [4,5], the
microwave-assisted method [6], and the template method [7]. The template method is an
important strategy for controlling the crystals’ morphology and size. It is divided into
hard and soft templates, depending on the characteristics of the template itself and its
domain-limiting ability [8,9]. In general, the template method is commonly used to prepare
hierarchically porous MOFs (HP-MOFs), which improve the performance of MOF materials
and expand their application fields [7,10]. The prefabricated template is directly added to
the precursor solution of the MOFs material, and the MOFs crystals are then grown directly
on the surface of the template [11]. The template occupies space in the crystal framework
of MOFs, and the removal of the template results in the HP-MOFs containing extra porous
structures such as mesopores or macropores [12,13].

The hierarchically porous materials are comprised of a multimodal hierarchically
porous structure made of interconnected pores with different lengths, ranging from micro-
(<2 nm) to meso- (2–50 nm) to macropores (>50 nm). Compared with conventional MOFs
and microporous structures, HP-MOFs have a specific morphology and size, larger spe-
cific surface area, and greater pore volume [14,15]. HP-MOFs not only maintain the basic
properties of the related pristine MOFs but also construct macro/mesoporous structures on
the basis of micropores, which reduce macromolecular diffusion barriers and optimize the
deficiencies of microporous pristine MOFs [16,17]. The HP-MOFs demonstrate excellent
performance in the utilization of gas storage and separation [18], catalysis [19], drug miti-
gation [20], and adsorption [21–23]. Thus, the design and synthesis of HP-MOF materials
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with unique morphology and hierarchical pores are also crucial for many applications in
specific fields (e.g., drug transport, adsorption, catalysis, etc.).

MIL-101(Cr) is a classical chromium-based MOF with an ultra-high specific surface
area (SBET > 4000 m2 g−1) and excellent chemical/water stability. It is widely used in many
fields, including catalysis [24,25], contaminant adsorption [26–30], detection [31,32], and
drug transport [33,34]. MIL-101(Cr) is a typical mesoporous MOF with a maximum pore
size of 34 Å. However, its biggest capture window is only ~16 Å, which is not conducive
to the rapid diffusion and transport of molecules, especially in terms of applications for
the transportation of large molecules. This greatly hinders the practical application of MIL-
101(Cr) [35,36]. Hence, the synthesis of MIL-101(Cr) with a hierarchical pore structure using
the template method not only preserves the excellent original properties of MIL-101(Cr)
but also relieves the restriction on the applications involving large molecules.

With the development of industry and cities, environmental pollution is a growing
concern. Specifically, the incomplete treatment of wastewater from the textile, leather,
paper, printing, dye, plastic, and pharmaceutical industries can lead to serious pollution
and harmful for human bodies [37–40]. Discharging organic dyes into the environment
poses a significant risk to the environment and to human health due to the dyes’ toxicity
and potential carcinogenicity. Methylene blue (MB) and coomassie brilliant blue R-250
(CBB) are the most commonly used dyes in the textile industry, and they are toxic and
hard-to-degrade organic pollutants [38,41]. Diverse approaches for the removal of dyes
from wastewater have been developed, including adsorption, degradation, coagulation,
and sedimentation [42–44]. The adsorption method is one of the most commonly used
methods due to its high efficiency, economic feasibility, and simplicity of equipment [45].
Due to its high porosity and stability, MIL-101(Cr) is widely used as an adsorbent for
the adsorption/removal of dyes from water. For instance, Zhang [46] reported that the
charge and size of MIL-101 (Cr) greatly affect its sorption performance. In their study,
the positively charged MIL-101(Cr) hardly adsorbed the cationic dye methylene blue
(MB), and the adsorption of the more negatively charged and aromatic ringed anionic dye
congo red (CR) (1367.1 mg g−1) was also significantly higher than that of methyl orange
(MO) (455.2 mg g−1). Mahmoodi [47] found that MIL-101 (Cr) exhibited good adsorption
capacity for two dyes, direct red 80 (DR80) and acid blue 92 (AB92), in an aqueous solution,
with maximum adsorption capacities of 227 and 185 mg g−1, respectively. Shen et al. [48]
reported the adsorption removal of methyl orange and methylene blue from aqueous
solutions using hierarchical pore MIL-101(Cr) synthesized with different mineralizing
agents. The adsorption of MB by MIL-101(Cr) synthesized using sodium acetate was much
higher than that of MIL-101(Cr) synthesized using HF, roughly 3.2 times higher. For the
removal of MB, MIL-101(Cr) containing a mesoporous structure has a higher removal of
dyes than that of conventional microporous MIL-101(Cr), and the higher the mesoporous
ratio is, the better the adsorption performance of MIL-101(Cr) is.

In our previous study, a template-free method was reported for producing nanofused
hierarchically porous MIL-101(Cr) (A-0) with the presence of acetic acid [25]. However,
due to MIL-101(Cr)’s small pores and low meso-/micropores ratio, its capability to remove
large dye molecules, such as CBB or MB, is limited [25]. Herein, we propose a template
method for the design and synthesis of HP-MIL-101(Cr) with a high meso-/micro-pores
ratio, which shows a high adsorption capacity toward large toxic dyes. Compared with
the HP-MIL-101(Cr) and template-free method (A-0), the obtained HP-MIL-101(Cr) with
template method (A-4) exhibited a high adsorption capacity for the large dyes of CBB and
MB, specifically, 1.36 times and 9.37 times higher than that of A-0, respectively.

2. Experimental Section
2.1. Raw Materials and Reagents

Cr(NO3)3·9H2O (99.5%, AR), terephthalic acid (H2BDC, 99%, AR), N, N-dimethylformamide
(DMF, 99.5%, AR), acetic acid (99.5%, AR), nano-silica (SiO2, 99.8%, 15 nm), methylene
blue (MB, AR), Coomassie Brilliant Blue R-250 (CBB, AR), and anhydrous ethanol were all
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purchased from Aladdin Chemical Reagent Co. All chemicals were used as obtained from
commercial sources without further purification.

2.2. Characterization and Analysis

X-ray diffraction tests were performed on an X-ray diffractometer (D8 Advance,
Bruker, Karlsruhe, Germany). A scanning electron microscope (Gemini 300, Zeiss, Jena,
Germany) and transmission electron microscope (Talos F200X, FEI, Hillsboro, OR, USA)
were used to characterize the samples’ microscopic morphology and particle size. The
BET-specific surface area and pore volume of the samples were determined via nitrogen ad-
sorption/desorption experiments with a fully automated specific surface area and porosity
analyzer (NOVA-4200e, Quantachrome, Boynton Beach, FL, USA). A UV-Vis spectropho-
tometer (UV-2600, Shimadzu, Suzhou, China) was employed to monitor the concentration
of dyes during the adsorption experiments. All samples followed the same pretreatment
before measurements.

2.3. Synthesis and Purification of Samples

To synthesize MIL-101 (Cr), we added 800 mg of Cr(NO3)3·9H2O (2 mmol), 332 mg of
H2BDC (2 mmol), 8 mmol of acetic acid, and 0~200 mg SiO2 (15 nm) to 10 ml of deionized
water and stirred for 30 min. The mixture was then transferred into a polytetrafluoroethy-
lene (PTFE) autoclave (20 mL, Youmai, Shanghai, China) and placed in the oven at 200 ◦C
for 8 h. After the reaction, the autoclave was slowly cooled down to ambient tempera-
ture, and the green product was collected for purification. Samples of 0 mg, 50 mg, 100
mg, 150 mg, 200 mg, and 250 mg of SiO2 were named A-0, A-1, A-2, A-3, A-4, and A-5,
respectively. However, adding 250 mg of SiO2 into the autoclave would have filled the
whole container and overflowed when stirred. Thus, for security consideration, an A-5
experiment was not conducted, and 200 mg of SiO2 was the largest sample in our study.

For purification, the green products were gathered and washed with hot DMF (70 ◦C)
and hot ethanol (60 ◦C) twice (1 h each). The samples were the washed with HF aqueous
(1%) for 12 h to remove SiO2. Finally, the solids were rinsed with deionized water at least
5 times to remove residual HF. The final products were dried in a vacuum oven at 120 ◦C
for 12 h.

2.4. Material Adsorption Performance Test
2.4.1. Dye Adsorption Experiments

We added 2.5 mg of adsorbent to 10 mL of dyes (MB and CBB) with different initial
concentrations at ambient temperature. The mixture was then placed into an ultrasonicator
and shaken for an appropriate time (~10 min). After centrifugation, the supernatant was
taken for an absorbance test using a UV spectrophotometer. The remaining concentration
of dyes in the supernatant was measured using a UV spectrophotometer.

2.4.2. Adsorption Amount and Adsorption Model

1. Adsorption capacity

The adsorption capacity qe (mg g−1) of the adsorbent for the dyes was calculated using
the formula shown in Equation (1) [49].

qe =
v(c0 − ce)

m
(1)

where c0 and ce are the initial and equilibrium concentrations of the dye’s aqueous solution
(mg L−1), respectively. v is the volume of the dye solution (L), m is the mass of the adsorbent
(g), and qe is the adsorption amount of the adsorbent on the dye molecules at adsorption
equilibrium (mg g−1).
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2. Kinetic study of adsorption

(1) Pseudo-first-order kinetic model

The pseudo-first-order kinetic model considers a physical adsorption process between
the adsorbent and the adsorbate [50,51]. It assumes that a diffusion step controls the arrival
of the adsorbate from the solution to the adsorbent surface and that there is only one active
site on the adsorbent surface. The linear expressions of the pseudo-first-order kinetic mode
model are shown in Equation (2) [52].

ln(qe − qt) = ln qe − k1t (2)

where t is the adsorption time (min), qe is the adsorbed amount of adsorbent on the
adsorbent’s surface (mg g−1), qt is the adsorption amount of the dye molecule by the
adsorbent at moment t (mg g−1), and k1 (min−1) is the adsorption rate constant for the
pseudo-first-order kinetic model.

(2) Pseudo-second-order kinetic model

The pseudo-second-order kinetic model considers the chemisorption process between
the adsorbent and the adsorbate [53,54]. It assumes that the chemisorption mechanism con-
trols the adsorption rate and that there are two binding sites on the adsorbent surface. The
linear expressions of the pseudo-second-order kinetic model are shown in Equation (3) [53].

t
qt

=
1

k2q2
e
+

t
qe

(3)

where t is the adsorption time (min), qe is the adsorbed amount of the adsorbent on the
adsorbent’s surface (mg g−1), qt is the adsorption amount of the dye molecule by the
adsorbent at moment t (mg g−1), and k2 (g mg−1 min−1) is the adsorption rate constant for
the pseudo-second-order kinetic model.

3. Isothermal adsorption model

(1) Langmuir model

The Langmuir model is one of the commonly used adsorption models. It assumes
that adsorption occurs uniformly on all active sites of the adsorbent and that the adsorbate
is adsorbed on the surface of the adsorbent as a single molecular layer [55]. The linear
expression of the Langmuir model is shown in Equation (4) [56].

ce

qe
=

ce

qm
+

1
kLqm

(4)

where qm is the maximum adsorption of the adsorbent on the adsorbent’s surface (mg g−1),
ce is the concentration of the solution at the adsorbent’s surface when it reaches adsorption
equilibrium (mg L−1), and kL is the Langmuir equilibrium constant (L mg−1).

(2) Freundlich model

The Freundlich model is based on the facts that the surface energy of the adsorbent is
inhomogeneous and that the adsorption of the adsorbent on the adsorbent’s surface is not
a single monomolecular layer adsorption, but a multimolecular layer adsorption [57]. The
linear expression of the Freundlich model is shown in (5) as follows [58].

ln qe = ln kF +
1
n

ln ce (5)

where qe is the adsorbed amount of adsorbent on the adsorbent’s surface (mg g−1), ce is
the concentration of the solution at the adsorption equilibrium on the adsorbent’s surface
(mg L−1), kF is the Freundlich equilibrium constant representing the adsorption capacity
(mg g−1), and n is the Freundlich equilibrium constant for the adsorption strength.
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3. Results

X-ray diffraction (XRD) plots showed that all of the experimentally prepared samples
were highly consistent with the simulated XRD pattern generated from the deposited X-ray
data file at the Cambridge Structure Database (CSD-Refcode OCUNAK) using the Mercury
program. Thus, all the samples were confirmed to be pure MIL-101(Cr) [59] (Figure 1).
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The nitrogen adsorption–desorption curves of the samples are shown in Figure 2,
and the adsorption and desorption curves of the samples did not completely overlap.
The hysteresis loops indicated that the pore structures of the samples were irregular and
contained two or more types of pore structures [60]. The pore structure information of
each sample is shown in Table 1. The specific surface area of the MIL-101(Cr), synthesized
using only acetic acid as the modulating agent, was 3006 m2 g−1. However, the addition of
SiO2 decreased the specific surface area of MIL-101(Cr). In particular, when the addition
amount of SiO2 was 200 mg, the BET-specific surface area of A-4 was 2693 m2 g−1. Interest-
ingly, adjusting the amount of SiO2 increased the ratio of macro-mesopores to micropores
(Smacro-meso/Smicro). The Smacro-meso/Smicro ratio increased from 4.62:1 to 12.8:1 when the
addition amount of SiO2 was raised from 50 mg to 200 mg (see Table 1). Combined with the
Barret–Joyner–Halenda (BJH) pore size distribution curves of the samples (Figure 2b), we
found that involving the addition of SiO2 as a template created more macro-/mesopores.
Thus, A-4 had the highest Smacro-meso/Smicro ratio among all samples. The specific surface
area was influenced by many factors, such as particle size and pore structure. In general,
the smaller the particle size was and the simpler the pore structure of MIL-101(Cr) was,
the higher its specific surface area was. In our study, A-4 contained the most abundant
macro-/mesoporous structure and the most relatively large particle size; thus, it possessed
relatively low specific surface area.

Table 1. The pore structure information of each sample.

Sample SBET (m2 g−1) a SLangmuir (m2 g−1) Vpore (cm3·g−1) b Smacro-meso/Smicro
c

A-0 3006 4269 1.71 4.62:1
A-1 2873 4079 1.67 6.17:1
A-2 2989 4243 1.75 7.35:1
A-3 2979 4254 1.72 6.80:1
A-4 2693 3668 1.69 12.8:1

a Calculated from the N2 adsorption/desorption curves in the relative pressure range of 0.05 < p/p0 < 0.2, with
an error of ± 50 m2 g−1. b Calculated from the N2 adsorption/desorption curves at 77 K and a relative pressure
of p/p0 = 0.95. c Calculated from the BJH desorption curves by integrating over the micropore and mesopore
intervals Smacro-meso/Smicro.
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Scanning electron microscope (SEM) and transmission electron microscope (TEM) im-
ages of the samples showed that the SiO2-free sample A-0 presented a uniform particle
size of ~138 nm with a relatively regular morphology (Figure 3a,d and Figure S1a in the
Supplementary Section). There was a weak nanofusion phenomenon at the boundary of the
crystals and a trace of mesoporous structure (red dashed area). Samples A-2 and A-4 showed
irregular polyhedral morphology, with the adjacent crystals showing nanofusion and forming
mesoporous structures (Figure 3b,c,e,f). The difference was that A-4 had a higher degree of
nanofusion and formed more abundant mesoporous structures (red dashed area).Materials 2022, 15, x FOR PEER REVIEW 7 of 12 
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The adsorption properties of A-0, A-2, and A-4 were tested using aqueous solutions of
methylene blue (7.9 Å × 16.3 Å, Figure S2a) and Coomassie Brilliant Blue (15.1 Å × 24.1 Å,
Figure S2b in the Supplementary Section). A-4 showed the best adsorption capability
toward CBB and MB among all of the samples, with the adsorption amounts of 82.1 mg g−1

and 34.3 mg g−1 (Figure 4), respectively, attributable to its high Smacro-meso/Smicro ratio
structure. The more mesopores that a sample had, the better that the large molecular
dyes were adsorbed. Hence, we were not surprised that A-4, which possessed the highest
Smacro-meso/Smicro ratio, exhibited the best adsorption capacity for the large molecular dyes
in CBB and MB.
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The effects of time and dye concentration on the adsorption capacity of A-4 were
investigated, and the results are presented in Figure 5. During the first 60 min was the
rapid adsorption phase, when the adsorption amount increased rapidly from 0 mg g−1 to
154.5 mg g−1 for CBB and from 0 mg g−1 to 50.0 mg g−1 for MB. This was followed by a
slow increase until it finally reached the adsorption equilibrium, after which the adsorption
amount was essentially unchanged. This was considered to be the maximum adsorption.
Figure 5b shows the adsorption capacity of A-4 for different initial concentrations of CBB
and MB (100 mg L−1~500 mg L−1 with an adsorption time of 24 h). As the dye concentration
increased, the adsorption of A-4 on the dye molecules also increased, while the adsorption
increment decreased. It is noteworthy that the adsorption capability of A-4 for CBB is much
higher than that of MB (Figure 5). This phenomenon may be caused by the positive charge
of A-4 (Figure S3 in the Supplementary Section) and the negative charge of the anionic dye
CBB, which induces a strong electrostatic interaction between them. In contrast, since there
was no such electrostatic interaction between the cationic dye MB and A-4, A-4 had better
adsorption of CBB.

The results of fitting the above adsorption data using adsorption kinetics and adsorp-
tion isotherms are shown in Figure 6 and Table S1 in the Supplementary Section. The
correlation coefficients R2 of the pseudo-second-order kinetic fits of A-4 for the adsorp-
tion processes of CBB and MB were 0.993 and 0.989, which were higher than those of the
pseudo-first-order kinetic fits (0.936 and 0.956). Furthermore, the theoretical adsorption
amount of the pseudo-second-order kinetic was close to the actual adsorption amount,
indicating that the adsorption processes of A-4 on CBB and MB were more consistent with
the secondary kinetic model. For the adsorption isotherms, the correlation coefficients
R2 of the Langmuir model were 0.999 (CBB) and 0.982 (MB), respectively, much higher
than those of the Freundlich model (0.689 and 0.888); the theoretical values were also very
close to the actual values. This indicated that the Langmuir model could more accurately
describe the adsorption process of A-4 on CBB and MB. Additionally, the cyclicity of A-4
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was conducted using CBB as the model, and the results are presented in Figure S4 in the
Supplementary Section [21,48,61–65]. After five cycles, the removal efficiency of A-4 for
CBB still reached more than 85%, indicating that A-4 had good reusability.
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4. Conclusions

In summary, hierarchically porous MIL-101(Cr) containing a rich macro-/mesoporous
structure can be obtained by using SiO2 as a template, whose Smacro-meso/Smicro ratio could
be up to 12.8:1. Under optimal synthesis conditions, the obtained HP-MIL-101(Cr) (A-4)
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possessed a relatively high specific surface area and a large molecular dyes’ adsorption
capacity toward CBB and MB. Compared with non-template synthesized MIL-101(Cr) (A-0),
the significantly enhanced adsorption capability of A-4 for dyes was attributed to the richer
macro-/mesoporous structure, which could notably increase the mass transfer capacity
of MIL-101(Cr) in aqueous solutions. The demonstrated template synthesis broadened
the application of MIL-101(Cr) in effluent treatment fields, especially in terms of large
molecular organic dyes’ removal.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15165763/s1, Figure S1: Particle size distribution of the samples:
(a) A-0, (b) A-2, (c) A-4; Figure S2: Molecular diagrams of (a) methylene blue dye and (b) coomassie
brilliant blue dye; Figure S3: Zeta potential of A-4; Table S1: Fitting parameters of Langmuir,
Freundlich, and Temkin models for sample A-4; Figure S4: Cycle adsorption efficiency of A-4
adsorbed CBB.
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