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Abstract: The effect of severe plastic deformation by the conforming process of equal channel angular
extrusion (ECAE-Conform) followed by cold rolling on the microstructures developed in a Cu-
0.1Cr-0.1Zr alloy was investigated. Following the ECAE-Conform of 1 to 8 passes (corresponding
strains were 0.8 to 6.4) cold rolling to a total strain of 4 was accompanied by substantial grain
refinement and strengthening. An average grain size tended to approach 160 nm with an increase in
the rolling reduction. An increase in the ECAE-Conform strain promoted the grain refinement during
subsequent cold rolling. The fraction of the ultrafine grains with a size of 160 nm after cold rolling to
a strain of 4 increased from 0.12 to 0.52 as the number of ECAE-Conform passes increased from 1 to 8.
Correspondingly, the yield strength increased above 550 MPa. The strengthening could be expressed
by a Hall–Petch type relationship with a grain size strengthening factor of 0.11 MPa m0.5.

Keywords: copper alloy; severe plastic deformation; grain refinement; strengthening

1. Introduction

A significant breakthrough in recent years in the field of new materials and processing
methods is associated with the development of severe plastic deformation (SPD), which
can be used to obtain new materials with multifunctional properties [1,2]. In particular,
SPD is expected to result in an optimal microstructural design providing high strength.
The latter is important for conductive materials that require high strength along with
electro-conductivity [3–5]. The promising microstructures of copper and its alloys with
high strength and conductivity involve the ultrafine grains (UFG) containing dispersed
nanosized particles [3–9]. The UFG microstructure with a high dislocation density increases
the strength by a factor of 2–3 with a slight decrease in electrical conductivity by 5–10%
IACS [3–11]. Dispersed particles are effective obstacles to the movement of grain boundaries
and dislocations, providing thermal stability of the material and strengthening it [12–16].
On the other hand, the particle precipitation removes the solutes from the copper matrix
and increases the electrical conductivity of the alloy [17,18]. The dispersion strengthened
copper alloys are alloyed by elements having a low equilibrium concentration at room
temperature and the highest possible solubility at temperatures close to the melting point
of copper. Those are Cr, Zr, Hf, Ti, Ag, etc. [19–26]. Recently, much attention has been paid
to alloys with Cr and Zr that could be strengthened by 100–150 MPa with a little effect on
their conductivity [3,4].

High-pressure torsion (HPT) is an effective SPD method [3,9,14,27,28]. HPT for one
revolution at room temperature may produce an UFG microstructure in small cylindrical
specimens of various copper alloys [3,9,14,29]. The main disadvantage of HPT is the
difficulty of scaling it up for industrial applications. Another effective SPD method is
equal channel angular extrusion/pressing (ECAE/P) [30–34]. The ECAE modification
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using the Conform scheme ensures the production of long billets for the manufacturing
of wire rods/wires [35,36]. ECAE-Conform results in the grain refinement and makes it
possible to obtain long billets with a UFG microstructure. The development of an equiaxed
UFG microstructure during ECAE is associated with the formation of a 3D network of
new strain-induced grain boundaries as a result of the grain subdivision owing to the
action of different slip systems within one grain [32,33]. Thus, the new grain evolution
results from a kind of continuous strain-induced reaction and can be considered as a
continuous dynamic recrystallization (DRX), which consists in the formation of low-angle
boundaries (LAB) followed by an increase in their misorientations and transformation to
high-angle boundaries (HAB) with straining. The grain size achievable by continuous DRX
is controlled by the size of subgrains evolved at earlier stages of deformation [4,37,38].
The size of deformation grains and subgrains depends on the temperature/strain rate
conditions. A decrease in deformation temperature leads to a decrease in the size of the
formed crystallites [38–40]. The grain size of 300 nm can be attained in low-alloy copper
alloys by ECAE at room temperature [3]. The dislocation density also tends to saturate after
strains of 2–4 [4,37,38], which can be explained in accordance with the Taylor model by the
relation between the subgrain size and the dislocation density [41]. As a result, stabilization
of the strength properties is observed [3,4].

It can be assumed that additional grain refinement can be achieved by changing the
deformation scheme. A combination of ECAE-Conform with other methods of plastic
deformation may be quite beneficial. Rolling is one of the industrially significant methods
of plastic deformation and has proven to be an effective one for the hardening of copper
alloys [42–46]. The formation of a sharp texture during rolling makes it possible to imple-
ment an additional textural strengthening [47]. However, studies devoted to the effect of
combined treatments on the microstructure and properties of copper alloys are poorly cov-
ered in the literature. Kapoor et al. showed that rolling led to pronounced grain refinement,
increasing the dislocation density and hardening of a copper alloy [48]. Yuan et al. studied
the effect of one ECAE-Conform and extrusion on the microstructure and properties of
copper alloys [49–52]. Asfandiyarov et al. reported about the implementation of the ECAP-
Conform process and extrusion for Cu-Cr alloys in one installation [53]. Processing ensures
the achievement of high strength up to 550 MPa with an electrical conductivity of 70–75%
IACS. However, the distribution of temperature and strain over the cross section of the
sample subjected to ECAE-Conform and rolling was not uniform [54]. The development
of a homogeneous microstructure can be promoted by increasing the number of ECAE
passes before cold rolling. Moreover, an increase in the number of ECAE passes should
strengthen the copper alloy owing to grain refinement. Therefore, the purpose of this work
is to study the microstructural changes during cold rolling of a Cu-Cr-Zr alloy subjected
to ECAE-Conform to different total strains and to reveal the effect of the developed mi-
crostructures on the mechanical properties. It should be noted that the selected object of the
investigation is of a great practical importance. The studied combination of ECAE-Conform
and cold rolling is very promising processing method, because it can be easily scaled up to
commercial production. Elaborating the regularities of the microstructure evolution and
properties of an advanced material subjected to ECAE-Conform followed by cold rolling
allows us solving the problem of producing the innovative materials.

2. Materials and Methods

A copper alloy with 0.096 wt.% Cr and 0.07 wt.% Zr was produced by direct chill
casting. The alloy was solution treated at 920 ◦C for 1 h followed by water quenching and
then aged at 500 ◦C for 4 h. The starting microstructure was characterized by an average
grain size of about 100 µm (Figure 1a) and the finely dispersed particles with a size of
9 nm (Figure 1b) and volume fraction of 6.72 × 10−4 as revealed through decomposition
of solid solution according to the Matthiessen’s equation [13,17]. The precipitates in this
alloy are mainly represented by Cr-rich particles as have been detailed elsewhere [13]. The
rod samples with a cross section of 11 × 11 mm2 were subjected to ECAE-Conform by the
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so-called route A [31,32] with channel intersection at 120◦. The corresponding strain after
one pass was about 0.8. The used ECAE-Conform device has been detailed elsewhere [35].
The samples were subjected to 8 passes of ECAE-Conform. Then, several sets of samples
after 1, 4 or 8 ECAE-Conform passes were cold rolled to different total strains of 0.6 to 4.
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Figure 1. Initial microstructure (a) and dispersed particles (b) of a Cu-Cr-Zr alloy after solution
treatment at 920 ◦C and aging at 500 ◦C.

The developed microstructures were investigated by a Quanta 600 scanning electron
microscope (SEM) equipped by an electron backscattering diffraction (EBSD) analyzer
incorporating orientation imaging microscopy (OIM) with TSL OIM Analysis 6 software on
the longitudinal section parallel to the plane of channel axes in the ECAE-Conform samples
or that is normal to the transverse direction (TD) in the rolled samples. The OIM images
were subjected to a cleanup procedure, setting 5 points for the grain dilation. The grain
size was measured by the linear intercept method counting high-angle boundaries (HAB)
with misorientations of θ ≥ 15◦ as an average of long and short intercept. The internal
distortions were evaluated by means of kernel average misorientations (KAM) divided
by OIM step size (h). The specimens with a gauge length of 12 mm and a cross section of
1.5 mm × 3 mm were subjected to tensile tests along the rolling direction using an Instron
5882 tensile machine at an initial strain rate of 2 × 10−3 s−1. At least two tensile specimens
were tested per each data-point.

3. Results
3.1. Deformation Microstructures

Typical microstructures developed in the studied Cu-Cr-Zr alloy at various stages
of the present severe plastic deformation process are shown in Figure 2. ECAE-Conform
results in the development of strain-induced grain boundaries arranged in deformation
microbands. The number of microbands and corresponding number density of the strain-
induced grain boundaries in the microbands increase with an increase in the number
of ECAE-Conform passes. The frequent development of grain boundaries leads to the
formation of ultrafine grains within the deformation microbands. Thus, the fraction of
ultrafine grains increases with straining. Subsequent cold rolling is accompanied by the
development of layered microstructure composed of interleaved bands of ultrafine grains
and remnants of original grains. The evolution of the layered microstructure involves
microshear bands arranged at about 30◦ to the rolling direction. Such microshearing
provides the ultrafine grain formation in the remnants of original grains and leads to the



Materials 2022, 15, 5745 4 of 13

development of lamellar-type microstructure consisting of pancaked ultrafine grains after
sufficiently large rolling reductions.
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The quantitative changes in the microstructure during cold rolling are represented
in Figure 3 as the strain dependencies of the mean grain size, the fraction of HAB, and
the internal distortions, KAM/h. The grain size gradually decreases approaching 160 nm
(Figure 3a), while the fraction of HAB increases to a saturation level of approximately 0.75
(Figure 3b) during cold rolling to a total strain of 4. Similar behavior for the grain size and
the HAB fraction was reported in other studies on severe plastic deformation [37,55–57].
Namely, the rate of grain refinement gradually decreased during deformation [57], while
the HAB fraction exhibited almost linear increase with strain [56]. An increase in the
number of ECAE-Conform passes promotes the evolution of the finally attainable grain
size and an increase in the HAB fraction to saturation upon subsequent cold rolling. The
effect of the ECAE-Conform strain on the kinetics of these microstructural changes consists
in an apparent change of initial level of microstructural parameters that start to evolve
during cold working.
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Figure 3. The change in the grain size (a), the HAB fraction (b), and the internal distortions as a
KAM/h ratio (c) in a Cu-Cr-Zr alloy subjected to 1 to 8 passes of ECAE-Conform followed by cold
rolling to various total strains.

An increase in the internal distortions during cold rolling also significantly depends on
the number of previous ECAE-Conform passes. In contrast to the grain size and the HAB
fraction, the internal distortions exhibit strong dependence on the cold rolling strain in the
case of 1 pass of ECAE-Conform, whereas the samples processed by 4 and 8 ECAE-Conform
passes are characterized by almost the same distortion level irrespective of cold rolling
strain. It is worth noting that this level of the internal distortions matches that evolved in
the sample cold rolled to large strains following 1 pass of ECAE-Conform. Such behavior
of internal distortions corresponds to common concept of work hardening that implies a
rapid increase in the dislocation density at early deformation followed by approaching a
saturation at large strains [58,59].

The deformation textures evolved in a Cu-Cr-Zr alloy by ECAE-Conform and sub-
sequent cold rolling are shown in Figure 4. ECAE-Conform results in the development
of typical pure shear texture, which has been frequently observed in various face cen-
tered cubic (fcc) metals/alloys subjected to ECAE/ECAP [60]. In spite of the relatively
monotonous deformation by route A, the texture intensity does not depend remarkably on
the number of ECAE-Conform passes. Probably, a maximal intensity of about 4 corresponds
to a saturation level that can be attained in such copper alloys during ECAE. On the other
hand, except for the sample cold rolled to a strain of 1 after 1 pass of ECAE-Conform, cold
rolling is accompanied by the development of a rather strong copper texture during rolling
to a strain of 1 followed by a progressive imposition of a brass texture with increasing the
rolling strain, resulting in a predominance of S texture component after large strains. Such
evolution of the rolling texture has been reported for fcc-metallic materials with medium
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stacking fault energy (SFE), when the dominant texture has changed from copper through
S to brass with a decrease in SFE [61]. An exception for the sample subjected to relatively
small strain is associated with rather coarse grained microstructure, the texture of which,
obtained by a local OIM analysis, is significantly affected by an orientation of separate
large grains. The prevalence of the brass texture component in a cold rolled precipitation
strengthened copper alloy has been attributed to the development of numerous microshear
bands at large strains [62]. The strong texture in the cold rolled samples results in a rather
high Taylor factor of about 3.24 for tension along the rolling direction.

Materials 2022, 15, x FOR PEER REVIEW 6 of 14 
 

 

hand, except for the sample cold rolled to a strain of 1 after 1 pass of ECAE-Conform, 
cold rolling is accompanied by the development of a rather strong copper texture during 
rolling to a strain of 1 followed by a progressive imposition of a brass texture with in-
creasing the rolling strain, resulting in a predominance of S texture component after large 
strains. Such evolution of the rolling texture has been reported for fcc-metallic materials 
with medium stacking fault energy (SFE), when the dominant texture has changed from 
copper through S to brass with a decrease in SFE [61]. An exception for the sample sub-
jected to relatively small strain is associated with rather coarse grained microstructure, 
the texture of which, obtained by a local OIM analysis, is significantly affected by an 
orientation of separate large grains. The prevalence of the brass texture component in a 
cold rolled precipitation strengthened copper alloy has been attributed to the develop-
ment of numerous microshear bands at large strains [62]. The strong texture in the cold 
rolled samples results in a rather high Taylor factor of about 3.24 for tension along the 
rolling direction. 

 
Figure 4. Deformation textures evolved in a Cu-Cr-Zr alloy during 1 to 8 passes of ECAE-Conform 
followed by cold rolling to a strain of 1 to 4. ED and ND indicate the extrusion and normal direc-
tions, respectively, for the ECAE-Conform samples according to commonly accepted approach 
[60]. TD and RD correspond to the transverse and rolling directions, respectively, for the rolled 
samples. 

3.2. Mechanical Properties 
The stress–elongation curves obtained by tensile tests of the Cu-Cr-Zr alloy sub-

jected to various strains by ECAE-Conform and cold rolling are shown in Figure 5. Cold 
working substantially strengthens the Cu-Cr-Zr alloy similar to other studies on severe 
plastic deformation [4,28,57]. The ultimate tensile strength records almost 600 MPa after 8 

Figure 4. Deformation textures evolved in a Cu-Cr-Zr alloy during 1 to 8 passes of ECAE-Conform
followed by cold rolling to a strain of 1 to 4. ED and ND indicate the extrusion and normal directions,
respectively, for the ECAE-Conform samples according to commonly accepted approach [60]. TD
and RD correspond to the transverse and rolling directions, respectively, for the rolled samples.

3.2. Mechanical Properties

The stress–elongation curves obtained by tensile tests of the Cu-Cr-Zr alloy subjected
to various strains by ECAE-Conform and cold rolling are shown in Figure 5. Cold working
substantially strengthens the Cu-Cr-Zr alloy similar to other studies on severe plastic
deformation [4,28,57]. The ultimate tensile strength records almost 600 MPa after 8 ECAE-
Conform passes followed by cold rolling to a strain of 4. An increase in the yield strength
is more pronounced as compared to the ultimate tensile strength. Hence, the yield strength
tends to approach the ultimate tensile strength with an increase in total strain by ECAE-
Conform followed by cold rolling. Following the yielding, the flow stresses quickly increase
to their maximum, followed by gradually decreasing due to necking. The strengthening
is accompanied by a degradation of plasticity, especially after cold rolling, when total
elongation decreases about twofold as compared to the previous ECAE-Conform.
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Figure 5. Tensile stress—elongation curves for a Cu-Cr-Zr alloy subjected to 1 (a), 4 (b), and 8 (c)
passes of ECAE-Conform followed by cold rolling to the indicated strains (ε).

The strain effect on the main tensile properties is represented in Figure 6. An increase in
the rolling strain results in almost the same linear increase of both the yield strength and the
ultimate tensile strength. An apparent decrease in the strengthening rate at large strains of
3 to 4 reflects common attenuation behavior for strain hardening of polycrystalline metallic
materials [57]. In contrast, total elongation sharply drops after small rolling reductions,
and then seems to stabilize at a level of 10% irrespective of rolling strain. Hence, the
strengthening of the present Cu-Cr-Zr alloy during cold rolling to severely large strains is
not accompanied by a remarkable decrease in plasticity.
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ECAE-Conform.

4. Discussion
4.1. Grain Refinement

The development of ultrafine grains in the present Cu-Cr-Zr alloy during severe plastic
deformation by ECAE-Conform followed by cold rolling is closely connected with strain
localization in the microshear bands. The strain-induced ultrafine grains readily evolve in
the microshear bands and their intersections very similar to other studies on nanocrystalline
structures produced by severe plastic deformation [57]. The progressive microshear band-
ing increases the number of new ultrafine grains as strain increases. The grain refinement
during severe plastic deformation, therefore, results from continuing to increase in the
fraction of strain-induced ultrafine grains. This mechanism of microstructure evolution that
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is caused by continuous strain-induced reactions has been defined as continuous DRX [57].
However, the heterogeneous development of new grains associated with strain localization
makes it possible using a Johnson–Mehl–Avrami–Kolmogorov equation [38], which has
been recently modified to express the fraction of ultrafine grains (FUFG) as a function of
total strain (ε) during continuous DRX [63].

FUFG = 1 − exp(-kεn), (1)

Here, k and n are constants depending on material and processing conditions.
Then, assuming that the new ultrafine grains with a size of DUFG develop in an initial

coarse grained microstructure, i.e., D0>>DUFG, the mean grain size (Dε) evolving upon
straining has been expressed as follows [64].

Dε = DUFG(1 − exp(-kεn))−0.5, (2)

Taking DUFG = 160 nm, the relationship between ln(ε) and ln(–ln(1 − DUFG
2Dε

−2)) is
represented in Figure 7a, where the experimentally measured values are indicated by the
symbols, and the lines correspond to linear fit using Equation (2). Using the values for numer-
ical parameters obtained in Figure 7a, the grain refinement for the present Cu-Cr-Zr alloy by
means of large strain cold rolling is quantitatively represented as the strain dependencies of
the mean grain size and the ultrafine grain fraction in Figure 7b,c, respectively. The lines in
Figure 7b correspond to values predicted by Equation (2), whereas symbols indicate experi-
mentally measured grain sizes. Good correspondence between the predicted and measured
values establishes the speculation above. In spite of apparent simplicity, the developed models
(Equations (1) and (2)) adequately predict the kinetic of grain refinement during severe plastic
deformation. A special advantage of the present approach is a feasibility to quantitatively
take into account the effect of initial microstructure. Although the positive influence of pre-
refinement of initial microstructure on the ultrafine grain evolution by subsequent severe
plastic working has been suggested in previous studies [56,57], such an approach was not
elaborated before.
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Figure 7c suggests that the grain refinement kinetics during large strain cold rolling
can be significantly accelerated by an appropriate preliminary treatment of the original
microstructure. The present results indicate that the ultrafine grained microstructure with
a grain size as small as 160 nm can be obtained by ordinary cold rolling. Such fine grains
comprise more than 50% in the microstructure evolved by cold rolling to a total strain of 4
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following ECAE-Conform, although ECAE-Conform itself does not reduce the mean grain
size below 1 µm even after eight passes.

4.2. Strengthening by Severe Plastic Deformation

The grain refinement in the present Cu-Cr-Zr alloy by severe plastic deformation
is accompanied by significant increase in the tensile strength to almost 600 MPa. The
relationship between the yield strength and the mean grain size, which was calculated
by Equation (2), is presented in Figure 8. The present data obey a Hall–Petch-type plot
with grain boundary strengthening factor of 0.11 MPa m0.5. This value lies in the range of
0.09 MPa m0.5 to 0.14 MPa m0.5 reported in other studies for copper and its alloys [39,64–66].
The relatively high value of 319 MPa for the first term in the Hall–Petch-type relationship in
Figure 8 can be attributed to additional strengthening by dispersed particles and dislocation
density. Assuming an Orowan mechanism for the dislocation–particle interaction, the
dispersion strengthening (σOr) can be calculated as follows [67].

σOr = 0.55 Gb λ−1 (ln(0.5dP*/b) + 0.7), (3)

where G is the shear modulus, b is the Burgers vector, λ is the edge-to-edge particle spacing,
and dP* depends on the mean particle size (dP) and can be calculated as dP* = (dP

−1 + λ−1)−1.
Hence, the dispersion strengthening of the present alloy comprises 84 MPa. The dislocation
strengthening reportedly varied from about 100 MPa to 250 MPa in pure copper and Cu-
Cr-Zr alloys, respectively, subjected to severe plastic deformation [39,64,65]. Therefore,
the present strengthening of about 200 MPa, which can be related to the high dislocation
density evolved by ECAE-Conform, is in good agreement with previous studies.
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Figure 8. Relationship between the yield strength (σYS) and the grain size (Dε) in a Cu-Cr-Zr alloy
subjected to ECAE-Conform (1 to 8 passes) followed by cold rolling (up to total strain of 4). Note that
the grain size was calculated by Equation (2).

The beneficial effect of the severe plastic deformation as a combination of ECAE-
Conform followed by cold rolling is illustrated in Figure 9, which shows the strength
of the Cu-Cr-Zr alloy achieved in the present work in comparison with other published
results for copper alloys with different alloying extent [4,5,8,29,39,68–80]. Colors in Figure 9
indicate processing method to simplify consideration. The samples processed by HPT are
characterized by higher strength as compared to those after accumulative roll-bonding
(ARB) or ECAP. The latter has a little advantage owing to, probably, the larger strains
imposed. The most interesting samples obtained in the present study are remarkably
superior in strength to others with the same alloying extent. The higher strength can
be attained in copper alloys with only much larger alloying content. Note here that the
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strength of the present samples exceeds even that in similar copper alloy processed by
dynamic channel angular pressing by means of an explosion technique [78].

Materials 2022, 15, x FOR PEER REVIEW 10 of 14 
 

 

The beneficial effect of the severe plastic deformation as a combination of 
ECAE-Conform followed by cold rolling is illustrated in Figure 9, which shows the 
strength of the Cu-Cr-Zr alloy achieved in the present work in comparison with other 
published results for copper alloys with different alloying extent [4,5,8,29,39,68–80]. 
Colors in Figure 9 indicate processing method to simplify consideration. The samples 
processed by HPT are characterized by higher strength as compared to those after ac-
cumulative roll-bonding (ARB) or ECAP. The latter has a little advantage owing to, 
probably, the larger strains imposed. The most interesting samples obtained in the pre-
sent study are remarkably superior in strength to others with the same alloying extent. 
The higher strength can be attained in copper alloys with only much larger alloying 
content. Note here that the strength of the present samples exceeds even that in similar 
copper alloy processed by dynamic channel angular pressing by means of an explosion 
technique [78]. 

The revealed regularities of the microstructure evolution in a copper alloy during 
severe plastic deformation, taking into account the effect of initial microstructure, i.e., 
pre-deformation history, combined with the observed structural dependence of the 
strengthening makes it possible to develop the processing methods involving severe 
plastic deformation in order to obtain the material with desired properties, at least, a 
copper alloy of certain strength. A special benefit of the present elaboration is that the 
present approach can be expanded to other materials and processing techniques. There is 
no doubt that the established relationships will promote the implementation of novel 
processing technologies for ultrafine grained metals/alloys with outstanding properties. 

 
Figure 9. Relationship between the strength and the alloying content in copper alloys subjected to 
severe plastic deformation [4,5,8,29,39,68–80]. 

5. Conclusions 
The regularities of microstructure evolution and the strengthening of a 

Cu-0.1Cr-0.1Zr alloy subjected to ECAE-Conform followed by cold rolling were studied. 
The main results can be summarized as follows. 

An ultrafine grained microstructure could be obtained in the alloy by severe plastic 
deformation. An average grain size tended to approach 160 nm with an increase in the 
rolling reduction. The grain refinement during cold rolling could be related to total strain 
through the modified Johnson–Mehl–Avrami–Kolmogorov equation with fitting param-
eters depending on the preceding ECAE-Conform. 

An increase in the number of ECAE-Conform passes significantly accelerated the 
development of ultrafine grained microstructure upon subsequent cold rolling. The frac-
tion of the ultrafine grains with a size of 160 nm after cold rolling to a strain of 4 increased 
from 0.12 to 0.52 as the number of ECAE-Conform passes increased from one to eight. 

The grain refinement during severe plastic deformation was accompanied by sig-
nificant strengthening. The yield strength increased above 550 MPa after eight 
ECAE-Conform passes followed by cold rolling to a strain of 4. The strengthening 

Figure 9. Relationship between the strength and the alloying content in copper alloys subjected to
severe plastic deformation [4,5,8,29,39,68–80].

The revealed regularities of the microstructure evolution in a copper alloy during
severe plastic deformation, taking into account the effect of initial microstructure, i.e., pre-
deformation history, combined with the observed structural dependence of the strength-
ening makes it possible to develop the processing methods involving severe plastic defor-
mation in order to obtain the material with desired properties, at least, a copper alloy of
certain strength. A special benefit of the present elaboration is that the present approach
can be expanded to other materials and processing techniques. There is no doubt that the
established relationships will promote the implementation of novel processing technologies
for ultrafine grained metals/alloys with outstanding properties.

5. Conclusions

The regularities of microstructure evolution and the strengthening of a Cu-0.1Cr-0.1Zr
alloy subjected to ECAE-Conform followed by cold rolling were studied. The main results
can be summarized as follows.

An ultrafine grained microstructure could be obtained in the alloy by severe plastic
deformation. An average grain size tended to approach 160 nm with an increase in the
rolling reduction. The grain refinement during cold rolling could be related to total strain
through the modified Johnson–Mehl–Avrami–Kolmogorov equation with fitting parameters
depending on the preceding ECAE-Conform.

An increase in the number of ECAE-Conform passes significantly accelerated the
development of ultrafine grained microstructure upon subsequent cold rolling. The fraction
of the ultrafine grains with a size of 160 nm after cold rolling to a strain of 4 increased from
0.12 to 0.52 as the number of ECAE-Conform passes increased from one to eight.

The grain refinement during severe plastic deformation was accompanied by signifi-
cant strengthening. The yield strength increased above 550 MPa after eight ECAE-Conform
passes followed by cold rolling to a strain of 4. The strengthening throughout cold rolling
following ECAE-Conform could be expressed by a Hall–Petch-type relationship with a
grain size strengthening factor of 0.11 MPa m0.5.
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