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Abstract: The aim of this study is the analysis of the multiple pelvis fracture mechanism in side-
impact dynamic load cases. The elaborated numerical model of a pelvis complex includes pelvic and
sacral bones as well as soft tissues such as ligaments and cartilages. The bone has been modelled as a
viscoelasticity material based on the Johnson–Cook model. The model parameters have been chosen
based on the experimental data. The uniqueness of a presented approach refers to the selection of
crack criteria for the bone. Thus, it was allowed to analyse the process of multiple fractures inside the
pelvic bones. The analysis was evaluated for the model in which the deformation rate influences the
bone material properties. As a result, the stress distributions inside particular bones were changed. It
has been estimated that the results can vary by 50% or even more depending on the type of boundary
conditions adopted. The second step of work was a numerical analysis of military vehicle subjected
to an IED. An analysis of the impactor’s impact on the pelvis of the Hybrid ES-2RE mannequin was
conducted. It was shown that the force in the pelvis exceeds the critical value by a factor of 10. The
results of the numerical analysis were then used to validate the model of a military vehicle with a
soldier. It was shown that for the adopted loading conditions, the critical value of the force in the
pelvis was not exceeded.

Keywords: pelvic; bone structure; fracture bone mechanism; Johnson–Cook material model; LS-
DYNA; impact load

1. Introduction

The validated model made possible an analysis of various load variants. The explicit
algorithm for finite element method (FEM) is useful in model preparation. The models,
among others, are used to model a fracture mechanism in the body, but the analysis quality
depends on the material behaviour under impact load. As a result of a side impact, the
passengers of a vehicle are usually injured in the body segment, such as the abdomen,
chest, and head due to the high energy. Fractures are also associated with the pelvis. Using
a numerical method, a better understanding of the bone fracture mechanism is possible.
The body model with appropriate boundary conditions should be prepared and validated
based on experimental data [1]. The energy transfer to passengers through the vehicle’s
elements under a side-impact crash is typically analysed using FEM [2]. According to
previous studies, the influence of the impulse loads acting on a passenger’s body during a
traffic accident depends on the vehicle’s velocity during a collision [3]. The distribution
of passengers in a vehicle, the type of a vehicle, as well as age, growth, and weight of
passengers influence the type of injuries [4,5]. Similar factors also have an influence on
soldiers travelling in a military vehicle.

The safety of a passenger during a side impact is an important issue. The force acting
on the pelvis in the lateral direction generates a lateral compression of the pelvic ring,
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which causes a pelvic bone rotation inwards. This motion may cause damage to the pubic
bone under a side impact. If the posterior cruciate ligaments remain intact, the internal
pelvic rotation causes further fractures of the anterior sacrum part and the hip plate, known
as a Malgaigne fracture [6]. If the loading is focused at the height of a pubic symphysis,
the previously listed injuries are observed on the side opposite to the working force [7].
The mechanism of these fractures remains unclear and makes developing effective vehicle
protection more difficult. The numerical analysis of the bone’s fracture mechanism in a
pelvic ring indicates that the structures are the most susceptible to injury in the following
order: first the right pubic ramus and ischium, next the left pubic ramus and ischium, finally
fractions of the left iliac fossa and acetabulum [8]. The bending stress due to out-of-loading
was analysed by Majumder et al. [9].

The numerical simulation of pelvic destruction requires a special approach in three
basic aspects: modelling of multiple fragment fractures, soft tissue structures as energy
dissipating elements, mechanical properties dependent on a bone deformation rate and
different stiffness as a result of density distribution inside the bone. The external layer of
the cortical bone has the maximum strength with ultimate stress of 135 MPa, and usually
the highest stresses are concentrated in this layer [10]. The numerical analysis argued that
the stresses are mainly concentrated in cortical bone with higher stiffness. The pelvic ring
stiffness changes after bone fracture [1]. The set of the bones after fracture creates a different
load distribution state, in which some part of the energy is dissipated, and a stiffness set is
much smaller. The bone’s mechanical strength is strongly dependent on the deformation
rate. The experiments performed by Martin et al. suggested that the bone reaction is
greater for high impactor speed [11]. One of the assumptions of bone modelling is an
approximation of a bone structure as a fibre-reinforced composite with different density
inside and outside its geometry. The mean values of the Young modulus of the osteonal and
interstitial bone can be assumed as 20 GPa [12,13], but the density distribution influences
the differences of stiffness and stress concentration. In consequence, stress accumulation
affects fracture propagation in the bone.

The discussion about property relations in the bone is helpful in the development
of numerical models for the prediction of damage and strength of bones. The bone’s
susceptibility to fracture is related to biomechanical properties, which depend on bone
density, age, and health. Usually, the bone’s resistance to failure is defined by the ultimate
strength resulting from maximum stress inside the structure existing under load [12].
However, the ultimate failure of a bone may be related to the maximum tensile or shear
strain. The experimental investigations have shown that bone stiffness strongly depends on
the deformation rate. The determination of a bone strength, among others, can be realised
by the definition of a compressive yield strain for cancellous bone assumed as 0.7% [14]
and the ultimate compressive strain as 1.5% [15]. The tensile strain in a sacrum is about
0.8%, but the ultimate compressive strain is 2.4% [16].

The bone is the most investigated material for which the experimental data are used to
formulate material models defining the bone’s behaviour in FEM analyses. The experimen-
tal data were obtained for long bones during tension [17]. Very important information is
the yield (ultimate) stress, and the maximal strain in a failure moment because, in practice,
these parameters define bone strength [18]. The strain-stress relationship (SSR) shown that
the bone is similar to the yielding materials, for which, after reaching the yield point, the
strain increases but the force value not. The yield point is closely related to the deformation
rate for the bony structures. The relationship between the ultimate stress and strain rate
could define a stress failure criterion [19].

Thus, this paper presents the application of a yielding material model to simulate a
multiple fragment fracture mechanism inside pelvic bone under side impact load. The
Johnson–Cook (J–C) material model describes nonlinear strain hardening and strain-rate
sensitivity. For this material model, the bone behaviour parameters were calculated based
on the experimental stress-strain data for different deformation rates. The elaborated
numerical model of the pelvic complex (PC) includes the most important details responsible
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for its rigidity and strength, including pelvic and sacral bones. The model also includes a
soft tissue such as ligaments and cartilages. The bone material properties for the cortical
layer were assumed based on the J–C model, for which the parameters were calculated
based on experimental data presented in the literature. The obtained model was used to
show the fracture process in a pelvic ring during side-impact. The proposed simulation
method was used to investigate the interaction between the body and the seat, which
influence the size of damages in the PC structure.

Finally, the results obtained were used to determine the risk of injury to a soldier
in a military vehicle in the event of the detonation of an explosive device placed next to
the vehicle. For this purpose, a vehicle model was used that was previously subjected to
validation [20]. There was a Hybrid ES-2RE dummy in the vehicle, which made it possible
to relate the results of numerical simulations of the impact of an explosive charge on a
vehicle to a detailed pelvic model, which is the main purpose of this publication. The
problem of numerical analysis in which of the human body is acting by the dynamic load
is presented. The distribution stress in the selected segments of the body is helpful as an
example in the safety analysis, but the right results from numerical analysis are strongly
dependent on the modelling process. One of the important elements is the material and its
representation in the model. Dynamic processes running in a short time cause some parts
of the object to be deformed at different rates. The authors used the J–C material model to
evaluate the model in the strain rate. The parameters of the J–C model were selected based
on the bone tensile test. As a result, the damage to the pelvis in the given specific military
accident are similar to the damage created in real conditions reported from battlefields.

2. Materials and Methods

A geometric model of the pelvic complex includes the skeletal, muscular, and liga-
ment elements stabilising the pelvis. The model was elaborated based on the computed
tomography images of a 25 year old patient. The simulations were realised by applying
the impactor represented by force changed in time. In practice, the body mass is not
rigidly fixed to the car and is not stiff, which suggests that the load force acting on the
pelvis is less. The experimental data give that the minimal force value needed for pelvic
damage is about 15 kN [9]. The load force in the simulation was defined as the function
dependent on the time, changed from the initial value (15 kN) to zero. The decreasing
force time influences the impact energy and the deformation rate. In the simulations, three
different force decreasing times were selected. The vehicle inspection indicates that the
door deflection caused the acting force on the passenger’s body, loading the femur and
pelvic rim. A model was developed for reconstructing the passenger body load and the
injury fracture mechanism in a simulated way.

2.1. Pelvic Bone Model Preparation

The geometry of the numerical model was obtained based on the tomography data.
The sacroiliac joint was modelled as the frictional contact with a ratio of 0.01 [21]. The
sacroiliac joint stabilisation was obtained by ligament stiffness. The pubic symphysis tissue
was modelled as the set of one-dimensional links connecting two sides of the pelvic bones.

The stiffness of the links was calculated based on the data presented by Zaharie et al. [22].
The sacroiliac and pubic cartilages were defined as a solid isotropic material with Young
modulus 11.6 and 10.1 MPa [10], respectively. The Poisson ratio for articular cartilage was
assumed to be 0.49 [4]. The main pelvic ligaments are presented in Table 1.
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Table 1. Main pelvic ligaments included in the FEM model [22].

Ligament Stiffness [N/mm]

Anterior sacroiliac ligament 700
Sacroiliac interosseous ligament 2800

Long posterior sacroiliac ligament 1000
Short posterior sacroiliac ligament 400

Sacrospinous ligament 1400
Sacrotuberous ligament 1500

Superior pubic ligaments 500
Arcuate pubic ligaments 500

The designed model (Figure 1) includes the following ligaments: sacroiliac, pubic,
inguinal, sacrospinous, and sacrotuberous, for which the material data were assumed
based on experiments presented in [22]. The ligaments were prepared as the set of links
for which the ligament stiffnesses were divided by the number of links representing the
particular ligament. The pubic symphysis was modelled as the set of links. The stiffness
of 120 N/mm was calculated based on the elastic module and mean cross-section area for
the pubic symphysis. The cortical structures in the sacrum and pelvic bones were assumed
to be the viscoelastic material dependent on the deformation rate modelled by the J–C
material model. The mechanical properties of the ligaments were assumed based on Shi
et al. work [23]. Table 1 includes the stiffness of the main ligaments used in the model [24].
These parameters were obtained in the test results for a female cadaver pelvis.
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Figure 1. Model of pelvic ring with ligaments. (a) Pelvis model: 1—Pelvic bones, 2—Sacrum,
3—Ligaments, (b) Trabecular bone map: 4—cortical bone, 5—trabecular bone.

The bones in the model were divided into cortical and trabecular structures (Figure 1b).
Both structures were modelled by solid elements in the common mesh differing only in
their material properties. The trabecular bone was modelled as an isotropic elastic structure
with the Young modulus equal to 400 MPa and Poisson ratio v = 0.2 [25].

2.2. Cortical Bone Characteristics

The mechanical properties of the cortical bone were selected based on the J-C model
used by Alam et al. [12]. The material model behaviour was compared with the SSR for
the human femur bone. For comparison, the geometry of a typical tensile test specimen
was prepared. The mechanical model property was investigated as a result of tension
experiments calculated for the typical specimens used in a tensile test. Figure 2 presents the
SSR for different deformation rates given by Viano et al. [26]. Curves (a) and (b) described
cortical bone strength for deformation rates 300 and 1500 1/s, respectively. Next, curves c,
d, and e present the SSR for lower deformation rates. These parameters were obtained as a
result of testing a female cadaver pelvis. The ultimate stress is between 250 and 300 MPa.
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The ultimate strain for the presented data is in the range of 0.0072 to 0.014 mm/mm. The
results suggested that, if the deformation rate increased, the Young modulus generally
increased, but the yield strain decreased. Morgan and Keaveny [14] investigated the
relationship between yield stress and density. The results suggested that the yield stress for
different places has changed by 20% for trabecular bone.
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Majumder et al. considered the trabecular and cortical bone as a bilinear elastoplastic
model [16]. The experimental data also suggested that the tensile strain is more than the
compressive strain. The mean strain value for the sacrum is equal to 1.6% and is shown in
Figure 2. The J–C model described the yield point related to the strain rate according to
equation [27]:

σ(ε)yeld = (A + Gεn)

(
1 + Cln

( .
ε
.

ε0

))
(1)

where σ is the equivalent stress and ε is the equivalent plastic strain.
The J–C material constraints are A, B, n, and C. A is the yield stress of the material

under reference, B is the strain hardening constant, n is the strain hardening coefficient, and
C is the strengthening coefficient of strain rate. Equation (1) does not include the member
dependent on temperature. The material model was verified by the simple tension test for
different deformation rates. (J–C) model of cortical bone was used for cutting simulation
by Alam et al. [12]. The parameters for material in case I were A = 100 MPa, B = 51 MPa,
C = 0.03 and n = 0.08. The bulk modulus for the cortical bone was assumed as 15 GPa, and
the shear modulus was selected as 3.3 GPa [28].

According to Equation (1), the C parameter is important in defining a SSR for different
deformation rates. The analysis made by Alam et al. [12] concerns on cutting process for
which the specimens were tested between 0.00001 1/s and 1 1/s strain rate. The cortical
bone parameters for the J–C material model proposed by Alam et al. were selected for low
deformation rates. The deformation of pelvic bones during side impact calculated during
hitting is much higher. The parameters of cortical bone for both material cases are shown
in Table 2 which include the parameters of the J–C model used in this analysis. The first
line in the table includes the parameters assumed by the Alam et al. [12]. The parameters in
the second line were taken from the numerical analysis for the model presented in Figure 3.
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The second parameters of the J–C material model were selected based on the Stress-Strain
relationship given by Viano [26]. The material parameters for material II were selected as a
result of numerical analysis. The fitting process relied on comparing the results given by
Viano with results obtained from the numerical tensile test for the sample model presented
in Figure 3, and was obtained based on the solution of the simple optimisation problem
without any constraints, in which the purpose function was defined as the mean differential
between the Stress-Strain curve for the material from experiment described in [26] and the
curve resulting from the numerical investigation. For the next step of the investigation the
material model parameters for the minimum value of the purpose function was used. The
error of fitting was omitted.

Table 2. J–C model parameters for bone.

Material Case A B C n

Material I 50 101 0.03 0.08
Material II 50 101 0.15 0.08
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The strain rate during impact is usually higher. It is suggested that the parameters in
the model proposed by Alam et al. are not enough for higher deformation speeds. Figure 3
presents the stress-strain relationship analysed for two material models.

The numerical experiments were calculated for three deformation rates. Compared to
the result presented in Figure 3 [26], the material II behaviour is similar to the bone tensile
test presented by Viano.
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2.3. Boundary Conditions

In the sitting position, a passenger inside a vehicle has contact between buttock tissue
and a seat. The interaction is mostly dependent on the inertia force and the body position.
Figure 4 presents two cases of sitting positions.
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impact support case I, (b) support on two pelvis bones support case II.

The first position (Figure 4a) suggests that the pelvic support is placed only on the
pelvic bone fixed in the ischium opposite the impact. In the support case II, a seat is
adjusted to the body shape, and both ischium bones are fixed (Figure 4b).

In most cases, a seat during sitting is deformed; consequently, any body movements
related to the seat are difficult or impossible. During the seat design process, the emphasis
is mainly placed on comfort, primarily associated with physiological and biomechanical
factors. This is increasingly important because people spend the most time in this position.
The study indicates that in order to obtain safety, a seat must be fixed to a body [29,30]. To
achieve these priorities, immobilisation as fixed support was selected. The main limitations
in the model are the result of boundary conditions in which the pubic arch is fixed to the
seat. The model does not extend to the situation in which the body can move on the seat
balanced of the reactions creating from the belts. In the paper the model includes two
situations: body supported on one or two pubic arches, which is the situation that most
often exists in the military accidents.

The load condition was represented by the maximal force acting on the PC. A person
sitting in a car during a side impact is mainly loaded by a door deformation. The peak
force value is dependent on the factors such as vehicle speed, body stiffness, shape, and
mechanical properties of the seat. In this paper, the force value 15 kN was assumed as an
average value of peak forces in the experimental tests presented in [16,31,32].

Significantly shorter times of impact peak are observed for loading generated by
the blast wave propagation [33–36]. Based on the experimental and numerical data, the
impulse period was assumed as the force 15 kN converged to 0 in three other impulse
periods times 1 ms, 2 ms, and 4 ms, respectively. This solution involves the changes in the
total velocity measured in the impacted place.

2.4. Validation Process

The validation process was similar to the method proposed by Hu et al. and was
used successfully for a pelvic numerical model elaborated by Arkusz et al. [37]. Figure 5
shows the comparison data obtained for the presented PC model acting by the side force
in the range from 100–600 N. For six different checkpoints placed on the pelvic bone, the
differences between results obtained from the model and data given by Hu et al. [25] were
calculated. The results are presented in Figure 5. The maximal error for the model was
less than 7%. The results were similar for both analysed materials. In Figure 5, the lines
represent the result for the elaborated model, and the points indicated by a cross come from
the data presented by Hu et al.
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Figure 5. Validation of elaborated FE model for six points [25].

2.5. Results and Discussion

The numerical experiments were planned in four steps. The first step focused on
checking how the impact generated by the load force influences the velocity for the bone
structure. All calculations were realised in the Explicit Dynamic module as part of Ansys
C software. The next two steps are referred to the damage analysis of the bone for two
support cases. The experiments have been done for the material II based on the J–C model
and are presented in Table 2. The last step is a correlation of analyses carried out during the
first three steps and another simulation using a vehicle and hybrid ES-2RE dummy for side
impacts. Figure 6 presents the average velocity in a hip joint acetabulum after applying the
force for a different impulse period time.
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The impact force acting on the analysed model converged from 15 kN to 0 kN in
1 ms, generating the maximal deformation velocity 8 m/s. If the force is converged to
0 kN, in longer time the impact energy is greater, and the velocity measured in a hip joint
acetabulum is increased to higher than 20 m/s. For the support case II the deformation
velocity was smaller and similar independent to the load impulse characteristic. The results
presented in Figure 6c are not dependent on material properties. Generally, the changes in
the material model parameters, in reaction to the deformation rate, have not influenced the
deformations in the force acting place.

2.6. Bone Fracture Analysis

The fracture mechanism was investigated for two support cases and for selected
materials. The cortical bone called material II was defined by the parameters from Table 2.
Figure 7 presents the maximal pelvis deformations presented at the moment of maximal
load and on the same real scale. For the first variant of boundary conditions, a maximum
displacement of 66 mm was obtained.
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Figure 7. Displacements in the pelvis model for first support case for load impulse period time:
(a) 4 ms, (b) 2 ms, (c) 1 ms.

For low deformation rates, the injuries inside the bones existed on the pelvic bone
opposite to the load side. The peak force of 15 kN decreasing to 0 in 1 ms accelerate the
bone to about 8 m/s. Figure 8 presents the progress in pelvic fractures under load for the I
load case. The arrows show the next damage states in time.

For the maximal deformation rate, the failure of the bone was indicated as the stem of
the left pubic bone, the right superior pubic ramus, and the left interior ramus (Figure 8). In
each case, the pubic symphysis deformations were larger than the ultimate stress calculated
by Li et al. [38]. The maximal strain rates exceeded 2620 1/s for load period time 1 ms and
2970 1/s for load period time 4 ms.

For the second support case, the maximal deformations are smaller, and the injuries
created under loading are similar for different load cases. For load case III, the pelvis is not
destroyed (Figure 9). The double support of pelvic bones suggested that the damages and
bone depositions are smaller. The loading velocity changes the deformation map, mainly
in the pelvic bones.
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For the second support case, the deformation rates are at least 50% smaller (Figure 
9). It is possible because the pelvic ring is stiffer, and as a result the reaction force on the 
impact is higher but the deformation rate is lower. For the second variant of the boundary 
conditions, a maximum displacement of 18.913 mm was reached. 

Figure 8. The steps in pelvic fracture for first support case: (a) below yield stresses in cortical bone,
(b) the advantage of compressive forces in left superior pubic ramus, (c) Failure of the cortical bone
forces in left superior pubic ramus, (d) Failure of the cortical bone forces in right superior pubic
ramus and the left interior ramus.
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(a) 4 ms, (b) 2 ms, (c) 1 ms.

For the second support case, the deformation rates are at least 50% smaller (Figure 9).
It is possible because the pelvic ring is stiffer, and as a result the reaction force on the
impact is higher but the deformation rate is lower. For the second variant of the boundary
conditions, a maximum displacement of 18.913 mm was reached.

Figure 10 presents the progress in pelvic fractures under load for the II load case. The
arrows show the next damage states in time.

The maps of normal stresses suggested that a seat is better adjusted to a body. The
results for this support case indicate less injury. The maximum strain rate for load period
time 1 ms is 1320 1/s but for load period 4 ms is 2220 1/s. The differences in strain rates
suggest that, for the typical impact loads occurring during a crash with an impactor velocity
of 10 m/s, the body support and the contact between a body and a seat have an important
role in the risk of an injury, but for higher velocity this influence is not considerable.
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Figure 10. The steps in pelvic fracture for second support type and load impulse period time 1 ms.
Map of normal stresses in next steps: (a) below yield stresses in cortical bone, (b) the advantage of
compressive forces in left superior pubic ramus, (c) Failure of the cortical bone forces in left superior
pubic ramus, (d) Failure of the cortical bone forces in right superior pubic ramus and the left interior
ramus.

3. Analysis of Risk of Pelvic Injuries Caused by IED

The aim of the next stage of the study was to analyse the risk of a possible pelvic injury
in a soldier in a vehicle in the event of a pressure wave applied to his structure from the
explosion of a charge placed next to the vehicle. For numerical analyses carried out in the
LS-Dyna environment, a Hybrid ES-2RE dummy model was used, seated on a stiff chair,
which was then subjected to the impact of an impactor. A view of the prepared model is
shown in Figure 11.
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According to the approach of the authors of the publication [16], the mass of the
impactor was 12 kg and its initial velocity was equal to 13.54 m/s. A numerical analysis
with a length of 50 ms was performed, during which the contact force was measured. The
sequence of shots from the course of the impact is presented in the Table 3.
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Table 3. A sequence of photos from the stages of numerical analysis of the impactor’s impact on the
dummy.

T = 0 ms T = 10 ms T = 20 ms
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pelvic force versus time for the first 50 ms during the dummy load analysis with use of an 
impactor. 
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As a result of the analysis, the impact force resulting from the contact of the impactor
and the dummy with a value of 13 kN was measured. In the case of military tests, one of
the normative documents defining the test conditions is the document AEP-55 Procedures
for Evaluating the Protection Level of Armoured Vehicles. The document specifies, for
example, critical values for individual parts of the soldier’s body for which there is a risk of
injury. In the case of the pelvis, this is pelvis force, which determines the peak value of the
lateral force measured on the pubic symphysis (pelvis). The maximum value of the pubic
force is specified as 2.6 kN. Figure 12 shows the characteristics of the change in pelvic force
versus time for the first 50 ms during the dummy load analysis with use of an impactor.

The maximum force in the dummy’s pelvis of 25.3 kN was recorded. This means that
the critical value specified in the AEP-55 document was exceeded by a factor of 10.

For the model of the vehicle with the dummy in the passenger seat, which was
described in more detail in the publication [20], an analogous measurement of the force in
the dummy’s pelvis was carried out. In this case, the vehicle was loaded with a pressure
wave from an explosion of a 15 kg TNT equivalent charge, according to the diagram shown
in Figure 13 below.

The conditions of the analysis were performed in a manner analogous to the exper-
imental tests described in the publication [20]. For the prepared variant of loading the
vehicle with the pressure wave from the explosion of a 15 kg TNT charge, the maximum
value of the force in the dummy’s pelvis was 0.116 kN and the minimum was −0.123 kN.
Under the given conditions of numerical analysis, there is no contact between the dummy’s
pelvis and the structural elements inside the vehicle. The results obtained in Figure 14 are
much below the critical value specified in AEP-55.
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sitting position. The changes in the force values generate different velocities in the acting 
force place. As a result, the bones are stressed at different deformation rates. The displace-
ments are lower than the simple seats in which the pelvis is supported by the one side 
opposite to the load source. The displacements in the short time generate high defor-
mation rates, which are the main source of high-stress concentration and bone fractures. 
As the cortical bone fracture criteria, the ultimate strain value equal to 1.5% was selected. 

In a numerical analysis of the Hybrid ES-2RE dummy load using a 12 kg impactor 
with an initial velocity of 13.54 m/s, a force in the dummy’s pelvis of 25.3 kN was meas-
ured, which exceeds the allowable force by a factor of 10. 

For the case of loading a military vehicle with a pressure wave resulting from the 
explosion of a charge of 15 kg TNT, the maximum value of the force in the dummy’s pelvis 
was measured to be 0.116 kN and the minimum value of −0.123 kN. Both values are much 
below the critical value, according to AEP-55. Analysing the results, it can be concluded 
that for the adopted loading conditions there is no risk of pelvic bone fracture. 

Author Contributions: Conceptualisation, T.K., K.A., G.S., P.M. and R.B.; methodology, K.A. and 
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4. Conclusions

In conclusion, this study aimed to develop the multi-fracture mechanism in the pelvis
ring under side impact load using numerical analysis. An innovative feature of this study
has been focused on bone behaviour when the strain rate depends on strength. Based on
computed tomography, the developed model of the pelvic complex was characterised by
considering all bone structures and ligaments. Moreover, the viscoelastic deformation of
the pelvic complex was included in the modelling, which makes the developed model one
of the most accurate so far.

The obtained results made it possible to determine the order of damage in the pelvic
structure and the propagation of stresses depending on the working impactor and the sitting
position. The changes in the force values generate different velocities in the acting force
place. As a result, the bones are stressed at different deformation rates. The displacements
are lower than the simple seats in which the pelvis is supported by the one side opposite
to the load source. The displacements in the short time generate high deformation rates,
which are the main source of high-stress concentration and bone fractures. As the cortical
bone fracture criteria, the ultimate strain value equal to 1.5% was selected.

In a numerical analysis of the Hybrid ES-2RE dummy load using a 12 kg impactor with
an initial velocity of 13.54 m/s, a force in the dummy’s pelvis of 25.3 kN was measured,
which exceeds the allowable force by a factor of 10.

For the case of loading a military vehicle with a pressure wave resulting from the
explosion of a charge of 15 kg TNT, the maximum value of the force in the dummy’s pelvis
was measured to be 0.116 kN and the minimum value of −0.123 kN. Both values are much
below the critical value, according to AEP-55. Analysing the results, it can be concluded
that for the adopted loading conditions there is no risk of pelvic bone fracture.
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