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Abstract: A geometric partitioning strategy was proposed to evaluate the mechanical properties
of three-dimensional needled composites. The microstructure of the composite was divided to
accurately characterize the mesoscopic damage in the needling regions and the macroscopic damage
in the un-needling regions, to balance the computational accuracy and efficiency. The general method
of cells (GMC) models along with the damage criteria were established for different material phases in
the needling regions, while the continuum damage mechanics (CDM) model was adopted to portray
the damage evolution in the un-needling regions. Through conducting the multi-scale simulation,
the mechanical properties of the needled composites were predicted, based upon which the effect
of repeated needling on the mesoscale damage process was further investigated. Results showed
that the predictions are in good agreement with the experiments, with a relative error of 2.6% for
strength and 4.4% for failure strain. The proposed approach can provide guidance for the process
optimization and design of needled composites.

Keywords: the general method of cells model; continuum damage mechanics model; needled
composite; geometric partitioning strategy

1. Introduction

Carbon fiber-reinforced ceramic matrix composites (carbon/silicon carbide, C/C-SiC)
have gained wide attentions due to their excellent mechanical properties, high temperature
resistance, and superior friction properties [1–3]. In order to match the usage requirements
of various structures, different composite forms have been developed such as laminates [4]
and multi-dimensional weaving [5]. Among them, the three-dimensional (3D) needled
composite, which is processed by introducing in-plane fibers into the thickness direction
through the needling process, is superior in its interlayer properties and simple process.
Currently, the needled composites have been widely utilized in braking systems, rocket
engine nozzle throats and exit cones [6].

Needled composites can be geometrically divided into the needling regions and the
un-needling regions. Since the needled composites are composed of multiple material
phases, it is difficult to model and simulate the mechanical properties. Based on the well-
developed laminate theory, several analytical approaches have been deployed to simulate
the mechanical properties, including the methods of characteristic variables [7], inclusions
equivalence [8], and irregular beams model [9]. However, modified theoretical methods
are usually associated with long periods and high costs in conjunction with extensive
basic experiments to determine the model parameters. Furthermore, these approaches are
generally based on empirical mixture rules, failing to reflect the failure mechanisms of
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needled composites [10,11]. In contrast, finite element (FE) methods are more promising for
complex geometrical analysis [12]. Alternately, the nonlinear damage constitutive theories
have been proposed on the macroscopic scale. For instance, Xie et al. [13] investigated the
mechanical behavior of needled composites based on the elastoplastic theory of metals.
Despite the fact that the model exhibits some abilities in the damage characterization, it
has limitations especially considering that the progressive damage of composites does not
involve a distinct yielding stage [14]. Inspired by this, the continuum damage mechanics
(CDM) model was developed as a flexible tool for strength analysis of unidirectional
plies [15], laminates [16], and braided composites [17], by introducing the damage tensor
to depict the anisotropic damage. From the framework of thermodynamics, the damage
equation constructed based on the principle of minimum dissipation has the capability
of reflecting the macroscopic damage mechanism of the composites. Therefore, the CDM
model is introduced in this work to accurately portray the nonlinear damage behavior of
the un-needling regions.

For the needling regions, the needling process inevitably results in mesoscopic fiber
damage, thus degrading the material strength [18]. Moreover, the needling fibers in the
thickness direction transform the material from a planar periodic to a 3D non-periodic
structure. In this condition, the CDM model is no longer applicable, since it cannot express
the local micromechanical characteristics [19]. Meanwhile, experiments [20–22] showed
that the stress concentration regions around the needling holes would generate the local
mesoscopic damage, which would eventually evolve into the structural failure. Thus, the
mechanical analysis of needled composites should focus on the damage evolution of the
mesoscopic structure in the needling regions. In this field, Irene et al. [23,24] derived the
stress and displacement redistributions based on the shear-lag theory for a continuous
N-fiber model in unidirectional fibers with an internal notch. Further, Qi et al. [25] estab-
lish the relationship between the stress distribution and needling parameters through a
surrogate model in an attempt to guide the material process. However, shear-lag model as
a static analytical method is unable to predict the microstructural evolution of the mate-
rial under load, which is the mainly failure characteristic of needled composites [26]. At
the same time, the complex composition of needled composites leads to multiparameter,
high-dimensional nonlinear analysis, which is not satisfactorily calculated by surrogate
models considering only a single material phase layer [27]. To address these issues, it is
recommended to develop the separate numerical models for different material phases from
the real microstructure, aiming to accurately characterize the mesoscopic damage behavior
in the needling region.

On the other hand, since the degradation of material properties at the mesoscopic
scale would affect the macroscopic field variables, it is requisite to establish a dynamic
transfer relationship between data at different scales. In this regard, Aboudi [28] proposed
the general method of cells (GMC) to achieve bidirectional transfer of parameters across
scales by establishing a relational equation between macroscopic and mesoscopic field
quantities. Guided by this thought, NASA implemented the software by combining the
GMC program and FE method [29], which has been applied to the analysis of open-
hole laminates [30,31]. Currently, the GMC model is mainly applied to analyzing the
fiber bundles in unidirectional [32] and woven composites [33]. The needled region,
however, has the needling holes and needling fibers in addition to the long fibers and matrix,
which increases the difficulty of GMC modelling and subcells partitioning. Therefore, to
the authors’ knowledge, the GMC model has not been extended to needled composites.
However, in order to accurately characterize the damage processes and failure mechanisms
of needled composites, GMC models for each material phase are required to enable multi-
scale analysis. Nevertheless, the computational cost of multi-scale is clearly higher than
that of CDM due to the mesoscale calculations at each integration point. Thus, in order to
accurately characterize the mesoscopic damage evolution of the needling regions while
maintaining the computational efficiency, it is urgent to apply a geometric partitioning
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strategy in which the needling regions are described by the multi-scale method and the
un-needling regions are covered through the CDM model.

In this context, mesoscopic scale GMC models are constructed for 3D needled com-
posites with different material phases. A geometric partitioning strategy is proposed to
evaluate the mechanical properties of the needled composites: a multi-scale method is
established to simulate the mesoscale damage evolution in the needling regions, and the
CDM model is introduced for characterizing the failure process in the un-needling regions.
The work is constructed as follows: In Section 2, the materials and needling processes are de-
scribed in detail. The geometric partitioning strategy for the needling/un-needling regions
is developed in Section 3, together with the respective damage models. Section 4 presents
the experimental results and discussions. Finally, conclusions are drawn in Section 5.

2. Materials

The 3D needled composites in this paper were provided by the Institute of Metals
Research, Chinese Academy of Sciences [34], in which the needling density and needling
depth are 24.96 punches/cm2 and 3 mm, respectively. During the needling process, the
unique structural features are created, as shown in Figure 1. The needling process contains
two steps: 0◦ weftless ply, short-cut fiber, 90◦ weftless ply, and short-cut fiber are laid
alternately back and forth to shape the needle-punching preform in the first step. The
second step is to punch the needles vertically into the stacked plies after placing each layer
of short-cut fibers. These above two steps are duplicated until a given thickness is achieved,
resulting in a formed preform.
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Figure 1. (a) Schematic illustration of the needling process (b) scanning electron microscope (SEM)
image of the needling region.

The material parameters of the fibers and the matrix are listed in Table 1, in which the
porosity is obtained by threshold segmentation of the micro-computed tomography (µCT)
images [35]. The µCT utilized in this study is conducted with the nanoVoxel equipment
provided by Sanying Precision Instruments Co., Ltd., Tianjin, China.
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Table 1. Material parameters.

Components Parameter Value

Carbon fiber [36]

Longitudinal modulus (GPa) 230
Transverse modulus (GPa) 18.226

Longitudinal Poisson’s ratio 0.27
Transverse Poisson’s ratio 0.3

Longitudinal Shear modulus (GPa) 36.597
Transverse Shear modulus (GPa) 7.01

Fiber volume fraction of weftless plies [25] 0.24
Fiber volume fraction of short-cut fibers [25] 0.045

Matrix
Elastic modulus (GPa) 22.607

Poisson’s ratio 0.218
Porosity Pore volume fraction 0.0985

3. Numerical Simulation Theory and Method
3.1. Mesoscopic Model
3.1.1. Needling Regions Modelling

The needling process left needling holes on the preforms, as shown in Figure 2a. Due
to the repeated needling and the rotation of the preform, the needling holes are distributed
densely and disorderly. Figure 2b depicts the mesoscopic model of the needling region,
including a layer of 0◦ weftless ply, a layer of 90◦ weftless ply, and two layers of short-cut
fibers, ensuring periodicity in the thickness direction. The radius of the needling hole and
the unidirectional fibers are determined by their corresponding volume fractions, which
are measured by the µCT. The scanning sample size is 6.57 × 9.87 × 3.50 mm. The local
distributions of needling and unidirectional fibers in the needling region are presented
in Figure 3, with the average local volume fractions of 18.7% and 76.2% for multiple
measurement points, respectively. As a result, the GMC models are employed to establish
the mesoscopic model of the needling regions. Each model is divided into Nα × Nβ × Nγ

subcells. In Figure 2, O–xyz denotes the global coordinate system, in which α, β, and γ
signify the subcell numbers along the x, y, and z directions, respectively.
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Figure 2. (a) Needling holes on the preform [37] (b) schematic diagram of a needling hole structure
(c) GMC model of 0◦/90◦ weftleshfps plies with a needling hole (d) GMC model of short-cut fibers
with a needling hole.
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Figure 3. (a) µCT image (b) fiber distribution of unidirectional fibers and (c) needling fibers.

In the x−y plane, the model is divided into 72 × 72 = 5184 subcells by considering
the computational efficiency and the fineness of GMC geometry division, as shown in
Figure 2c,d. N0α = N90α = NSα = 72, N0β = N90β = NSβ = 72, where the subscripts 0, 90, and
S indicate 0◦ weftless plies, 90◦ weftless plies, and short-cut fiber plies, respectively. Due
to the uniform random distribution of fibers, the short-cut fiber layers are assumed to be
isotropic [7,38,39]. After the SEM observation of the thickness in each layer, N0γ = N90γ = 4
and NSγ = 1 are measured.

The needling hole in the GMC model shows a stepped shape, whereas the FE model
has a smooth transition, which is generally preferred by scholars. However, the microscopic
observations demonstrated that the needling holes appeared irregular and rough [9,40],
which is primarily caused by the non-circular needle cross-section and the pores in the
matrix. The geometric conformity and mesoscopic structure characterization ability of the
GMC model are examined in Reference [41], which also indicated that the GMC model is
consistent with the FE model in simulating the mesoscopic stress distribution.

3.1.2. Mesoscopic Damage Characterization

The damage models are established for the fiber and the matrix, respectively. Carbon
fibers are a type of transversely isotropic material, where the Hashin criterion [42] is com-
monly utilized. The Hashin criterion includes four failure modes: the longitudinal tension
(longitudinal in the fiber direction and transverse perpendicular to the fiber direction),
the longitudinal compression, the transverse tension, and the transverse compression.
The corresponding static strength expressions are shown in Equations (1)–(4). X and Y
represent the strength in the longitudinal and transverse directions, respectively, while the
superscripts “T” and “C” indicate the tension and compression, respectively.
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Damage variables for the longitudinal tension D1T (σ11 ≥ 0) [33]:

D1T =
(σ11

XT

)2
+

α1

(SL)
2

(
σ2

12 + σ2
13

)
, (1)

where σij (i, j = 1,2,3) represents the Cauchy stress component, while SL denotes the
longitudinal shear strength.

Damage variables for the longitudinal compression D1C (σ11 < 0) [33] is:

D1C =
(σ11

XC

)2
. (2)

Damage variables for the transverse tension D23T (σ22 + σ33 ≥ 0) [33] is:

D23T =

(
σ22 + σ33

YT

)2
+

α2

(SL)
2

(
σ2

12 + σ2
13

)
+

α3

(ST)
2

(
σ2

23 − σ22σ33

)
, (3)

where ST expresses the transverse shear strength
Damage variables for the transverse compression D23C (σ22 + σ33 < 0) [33] is:

D23C =

[(
YC

2ST

)2

− 1

]
σ22 + σ33

YC +

(
σ22 + σ33

2ST

)2
+

α2

(SL)
2

(
σ2

12 + σ2
13

)
+

α3

(ST)
2

(
σ2

23 − σ22σ33

)
. (4)

For the ceramic matrix, the Stassi criterion is adopted in view of the brittle nature [43,44],
which is expressed as [45]:

Dm = −3p
[

1
XT

m
− 1

XC
m

]
+ σ2

von
1

XT
mXC

m
, (5)

where Dm is the matrix damage parameter, Dm ∈ [0, 1]. XT
m and XC

m stand for the tensile
strength and the compressive strength, respectively, while p and σvon represent hydrostatic
pressure and the mises stress, respectively. The Stassi criterion enables the evaluation of
the strength properties of inorganic compounds due to the asymmetry of the tensile and
compressive mechanical behavior. Therefore, when XT

m = XC
m, the Stassi criterion devolves

to the form of the von mises criterion.
To define the degradation of fiber properties after damage initiation, a linear-exponential

damage model considering the characteristic element length is applied to accurately charac-
terize the material softening [46]. Meanwhile, the Duvaut–Lions regularization model [47]
is introduced to improve the convergence of the numerical algorithm. As the matrix are
not the main components of the composite load-bearing, the stiffness reduction method is
employed to describe its property degradation.

3.2. Macroscopic Model
3.2.1. FE Modelling

Due to the dense and disorganized distribution of needling holes in the needled
composites, a random sampling method is conducted to simulate the real distribution,
with the side and top view schematics shown in Figure 4a, b, respectively. As depicted in
Figure 4c, considering that the damage and failure of the specimen mainly occur in the
gauge section, the gripping sections are ignored in the model. In order to further improve
the calculation efficiency, half of the gauge section is taken to build the geometric model
with the size of 17 × 10 × 5 mm. Referring to Reference [27], the final established FE
model is shown in Figure 4d. The needling regions are macroscopically represented by
rectangles (marked in green), whose planar dimensions are obtained by averaging multiple
measurements from SEM observations. The length L and width W are both taken to be
1.34 mm, while the height H is the same as the needling depth.
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3.2.2. CDM Model of Un-Needling Regions

A CDM model proposed by Gao et al. [48] is introduced to simulate the stress-strain
behavior of the un-needling regions, in which the damage behavior is driven by thermo-
dynamic conjugate forces. A fourth-order damage tensor Dijkl is used to characterize the
anisotropic of the damage, as:

Dijkl ≡



D1111 D1122 D1133 D1112 D1113 D1123
D2211 D2222 D2233 D2212 D2213 D2223
D3311 D3322 D3333 D3312 D3313 D3323
D1211 D1222 D1233 D1212 D1213 D1223
D1311 D1322 D1333 D1312 D1313 D1323
D2311 D2322 D2333 D2312 D2313 D2323

. (6)

For the convenience of presentation, the damage tensor is replaced by a 6 × 6 matrix
D, as:

D ≡



D11 D12 D13 0 0 0
D21 D22 D23 0 0 0
D31 D32 D33 0 0 0

0 0 0 D44 0 0
0 0 0 0 D55 0
0 0 0 0 0 D66

. (7)

The nonlinear behavior is obtained by Helmholtz free energy Ψ expressions:

ψ =
1

2ρ
ε :
[
C(D) + Ct(D)

]
: ε, (8)

where ε denotes the strain, and ρ represents the material density. C(D) and Ct(D) are the
initial modulus and tangential modulus, respectively.

Thus, the constitutive relationship can be given as:

σ = ρ
∂ψ

∂ε
=
[
C(D) + Ct(D)

]
: ε, (9)

where σ stands the stress.
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On the other hand, the CDM model requires the stiffness matrix as input. Since the
un-needling region embraces both unidirectional and short-cut fiber material phases with a
typical hierarchical structure, a hierarchical modelling approach is adopted [49,50], as shown
in Figure 5. For the short-cut fiber plies, the random sequential adsorption (RSA) algorithm
is implemented to generate the representative volume element (RVE) model [51], while
the fiber-based RVE is applied for unidirectional fibers [52]. The differential method [53] is
utilized to quantify the degree of matrix stiffness reduction by pores, yielding the stiffness
of the matrix with pores as an input to the elastic constant calculation. The FE results of the
equivalent elastic properties calculations are presented in Figure 6 and the predicted results
are listed in Table 2. Due to the random orientation of the RSA-generated fibers, multiple
models are created, with the average of the elastic constants calculated multiple times being
applied as the final result for the short-cut fiber plies [54]. The unidirectional and short-cut
fiber layers are simplified to homogeneous layers, followed by homogenization to obtain
the elastic properties in the un-needling regions.
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Table 2. Predicted material elastic properties (unit of elastic modulus and shear modulus: GPa).

Ex Ey Ez νxy νxz νyz Gxy Gxz Gyz

Weftless ply 81.45 21.69 21.69 0.231 0.231 0.268 13.06 13.06 5.54
short-cut fibers 20.59 20.37 19.65 0.215 0.221 0.216 7.96 7.52 6.85

un-needling region 59.93 59.93 20.02 0.230 0.251 0.255 14.27 11.01 10.95

3.3. Multi-Scale Method

The concept of multi-scale simulations is elaborated in this section. In order to establish
a link between mesoscale and macroscale data of needling regions damage, a local volume
average method is proposed. An integration point (marked as a red point in Figure 7) in
the macroscopic model is presented below as an example.

1. The position sequence number of the integration point (Ni, Nj) is determined by the
coordinate relationship with the center point of the needling hole;

2. The GMC model is divided into blocks to identify the corresponding local regions
(marked as red rectangles in Figure 7) and subcell sequences of macroscopic model
integration points;

3. The macroscopic field magnitude at (Ni, Nj) is obtained by volume average of the
local region.
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The relationship between the macroscopic stress σij, the strain εij of the needling

regions and the mesoscopic stress σ
(αβγ)
ij , the strain ε

(αβγ)
ij of the subcell is as follows:

σij =
1
V

N(αβγ)
i +δ

∑
α=N(αβγ)

i −δ

N(αβγ)
j +δ

∑
β=N(αβγ)

j −δ

N0γ+N90γ+2NSγ

∑
γ=1

vαβγσ
(αβγ)
ij (10)

εij =
1
V

N(αβγ)
i +δ

∑
α=N(αβγ)

i −δ

N(αβγ)
j +δ

∑
β=N(αβγ)

j −δ

N0γ+N90γ+2NSγ

∑
γ=1

vαβγε
(αβγ)
ij , (11)

where V represents the volume of the mesoscopic local region corresponding to the macro-
scopic model integration point, and vαβγ denotes the subcell volume.

(
N(αβγ)

i , N(αβγ)
j

)
is

the central subcell sequence of the mesoscopic local region, and 2δ represents the number
of subcells in the local region.
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The calculation of the mesoscopic stress can be expressed as [36]:

σ(αβγ) = C(αβγ)ε(αβγ), (12)

where C(αβγ) is the subcell stiffness matrix. At the same time, the subcell strain needs to be
available through the macroscopic strain response [36]:

ε(αβγ) = A(aβγ)ε(I + H(αβγ)), (13)

where A(αβγ) and H(αβγ) denote the strain concentration coefficient matrix. The stress-strain
relationship after volume average is achieved by coupling Equations (10), (12) and (13).

σ =

 1
V

N(αβγ)
i +δ

∑
a=N(αβγ)

i −δ

N(αβγ)
j +δ

∑
β=N(αβγ)

j −δ

N0γ+N90γ+2NSγ

∑
γ=1

vaβγC(αβγ)A(αβγ)(I + H(aβγ))

ε. (14)

In summary, the main ideas of multi-scale simulation are as follows. Firstly, the
strain increments at the integration points are given by macroscopic model calculations.
Subsequently, the strain increments of subcells in the local region are calculated by Equation
(13), which is used to solve the subcell stresses with Equation (12). In the next section, the
subcell stiffness matrix is updated according to the damage criterion defined in Section 3.1,
after which the damage matrix is determined based on the degradation of the stiffness
matrix compared to the initial stiffness matrix. Finally, the macroscopic stress and stiffness
matrices are updated using Equation (14), during which process the macroscopic damage
of the needling region is evaluated.

4. Results and Discussions

The commercial FE software ABAQUS™ (V6.11, Beijing, China) [55] is utilized for
macroscopic simulations, while the mesoscopic mechanical response of needling regions
is calculated with a FORTRAN [56] coded program for GMC models. The user-defined
material (UMAT) suboutline is used as the interface for macroscopic and mesoscopic data
transfer. In-plane tensile load is applied to the macroscopic model. For any increment in
ABAQUS™, the macroscopic strain of the needling regions at the integration point is passed
through UMAT to the GMC program, where the mesoscopic simulation is performed and
the volume average is transferred to ABAQUS™.

Figure 8 represents the stress distribution for each material phase at strain εx = 0.1%.
The fiber breakage in the weftless ply due to the needling process caused a reduction of the
in-plane load-bearing capacity in the needling hole. As can be observed in Figure 8a1–a3, a
stress redistribution occurred around the needling hole, resulting in a stress concentration
area at the fibers on both sides of the hole. The high-stress area is consistent with the
experimental observations by Nie et al. [17]. When the fibers are perpendicular to the
tensile direction, as shown in Figure 8b1–b3, the matrix stress is higher since the fibers
cannot carry the load. Since the short-cut fibers are approximately in-plane isotropic
materials, the stress distribution exhibits the same properties in Figure 8c1–c3.

Macroscopic simulations of the needled composites are carried out by applying tensile
loads in the x-direction, of which the damage evolution process is exhibited in Figure 9.
The φf is defined as the damage variable, φf = εx/ε f x where ε f x is the failure strain. It aims
to visually represent the correspondence between the contour and the damage level. The
failure is presumed to occur when the damage at the material point exceeds one. During
the process of tensile loading, the damage accumulates significantly faster in the needling
regions than that in the un-needling regions, due to the stress concentration generated by
the manufacturing defects. Thus, the failure occurs firstly in the needling regions, and then
gradually become contiguous, leading to the structural failure.
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Figure 9. Damage evolution process in macroscopic model of 3D needled composites.

The damage process of the needling regions in the 0◦ weftless ply is displayed in
Figure 10, where (a) to (f) indicate the different stages of damage initiation, propagation,
and final failure. The damage is much higher in the needling holes than in continuous
fiber parts owing to being carried only by the matrix. As shown in Figure 10a, b, the stress
concentration areas on both sides fail first, followed by the matrix around the needling
fibers. Afterwards, Figure 10c–e illustrate the rapid propagation of matrix cracks along the
fiber direction. With the progressive failure of the matrix, the medium for transferring the
load between the fibers is deprived. The fiber damage gradually accumulates as the load
further increases, resulting in the failure of the needling hole, as depicted in Figure 10f.
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Figure 10. Damage evolution of the needling region in 0◦ unidirectional fiber ply (a) damage initiation
(b) needling hole failure (c) matrix damage on both sides of the hole (d) failure of matrix between
unidirectional fibers begins (e) complete failure of the matrix (f) fibers failure.

The tensile experiment is then carried out, while the strain is measured by the exten-
someter. The loading rate of the machine chuck is 0.5 mm/min. The tensile specimens,
experiment fixtures, and the extensometer are shown in Figure 11a. Experimental results
show that the measured tensile strength and failure strain are 103.16 MPa and 0.426%,
respectively. Figure 11b plots the in-plane tensile stress-strain curves obtained from the
simulation (red line) and experiments (green line). The results are further compared with
the test points (marked in blue) in Reference [46]. The relative error between predicted
strength and experimental results is 2.6%, while the failure strain prediction error is about
4.4%. The high prediction is probably due to the presence of repeated needling in the
same region. Nevertheless, the proposed method agrees well with the experimental results,
providing a reasonable description of the nonlinear deformation behavior and failure limits
for the needled composites.
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Considering the randomness and compactness of the needling location, there is a
certain probability of repeated needling. Therefore, the damage process in the repeated
needling region requires attention as well. A schematic diagram of the repeated needling
region is given in Figure 12. Assuming that the repeated needling is performed twice,
a partial overlap of the needling holes can be modeled. LD indicates the diameter of
the needling hole, where LC is the distance between the centers of the two holes. The
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dimensionless length L0 is defined to quantify the overlapping size of the two holes. L0
= LC/LD, L0∈ [0, 1], where the upper and lower limits indicate complete overlap and
separation of the two holes, respectively. The parameter θ represents the angle between the
loading direction and the line connecting the two center points.

Materials 2022, 15, x FOR PEER REVIEW 13 of 17 
 

 

Figure 11. (a) The tensile specimens, experiment fixtures, and the extensometer (b) comparison of 

simulation and experimental results for tensile stress-strain curve [57]. 

Considering the randomness and compactness of the needling location, there is a cer-

tain probability of repeated needling. Therefore, the damage process in the repeated nee-

dling region requires attention as well. A schematic diagram of the repeated needling re-

gion is given in Figure 12. Assuming that the repeated needling is performed twice, a 

partial overlap of the needling holes can be modeled. LD indicates the diameter of the nee-

dling hole, where LC is the distance between the centers of the two holes. The dimension-

less length L0 is defined to quantify the overlapping size of the two holes. L0 = LC/LD, L0 

[0, 1], where the upper and lower limits indicate complete overlap and separation of the 

two holes, respectively. The parameter θ represents the angle between the loading direc-

tion and the line connecting the two center points. 

 

Figure 12. Schematic diagram of repeated needling region. 

The damage process in the repeated needling region when L0 = 0.5 and θ = 45° is 

depicted in Figure 13, where (a), (b), and (c) indicate the stages of damage initiation, prop-

agation, and final failure, respectively. The damage evolution is similar to that of a single 

one: the needling region fails first, leading to matrix cracking in the high stress area on 

both sides, which subsequently involves fiber fracture causing loss of load carrying ca-

pacity. However, the larger manufacturing defect of the double holes accelerates the dam-

age accumulation rate. As seen in Figure 11b, the tensile strength, as well as the failure 

strain, obtained through the double-hole damage simulation (orange line) is significantly 

lower than that of a single hole. Such results indicate that multiple needling at the same 

location should be avoided as far as possible during the actual processing. 

 

Figure 13. Damage evolution in the repeated needling region under tensile load (a) damage initia-

tion and needling hole failure (b) failure of matrix between unidirectional fibers begins (c) fibers 

failure. 

Figure 14a illustrates the damage process at different L0, where Dave denotes the vol-

ume-averaged damage of the needling region mesoscopic model. The damage curve rep-

resents a two-stage property: in the first stage, the damage accumulates rapidly, while the 

structure fails mostly after the turning point is exceeded; while in the second stage, the 

Figure 12. Schematic diagram of repeated needling region.

The damage process in the repeated needling region when L0 = 0.5 and θ = 45◦ is
depicted in Figure 13, where (a), (b), and (c) indicate the stages of damage initiation,
propagation, and final failure, respectively. The damage evolution is similar to that of a
single one: the needling region fails first, leading to matrix cracking in the high stress area
on both sides, which subsequently involves fiber fracture causing loss of load carrying
capacity. However, the larger manufacturing defect of the double holes accelerates the
damage accumulation rate. As seen in Figure 11b, the tensile strength, as well as the failure
strain, obtained through the double-hole damage simulation (orange line) is significantly
lower than that of a single hole. Such results indicate that multiple needling at the same
location should be avoided as far as possible during the actual processing.
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Figure 13. Damage evolution in the repeated needling region under tensile load (a) damage initiation
and needling hole failure (b) failure of matrix between unidirectional fibers begins (c) fibers failure.

Figure 14a illustrates the damage process at different L0, where Dave denotes the
volume-averaged damage of the needling region mesoscopic model. The damage curve
represents a two-stage property: in the first stage, the damage accumulates rapidly, while
the structure fails mostly after the turning point is exceeded; while in the second stage, the
damage increases flatly. As the L0 increases, the distance between the two holes grows,
meaning that the defect area becomes larger. The increased defect area also indicates an
increased number of broken fibers, resulting in more severe stress concentrations in the
needling regions. Therefore, it can be found that the larger the L0 the earlier the turning
point appears, meaning that the sooner the structural failure occurs. The variation law of
the failure value with θ is shown in Figure 14b, where Dult

ave indicates the damage value at
failure. With the increase of θ, the more broken fibers caused by repeated needling, leading
to an enlarged Dult

ave in the needling region.
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5. Conclusions

In this paper, a geometric partitioning strategy is employed for the mechanical prop-
erty’s simulation of 3D needled composites: the un-needling regions are characterized by
the CDM model. Then, the GMC models containing needling holes and needling fibers are
developed for different material phases in the needling regions, with multiscale damage
quantification achieved by the local volume average method. Subsequently, the stress
distribution and damage mechanism in the needling region are described. The numerical
results of the proposed method are compared with experimental data to verify the accuracy.
Finally, a series of simulations are carried out using a needling double-hole model to quan-
tify the effect of repeated needling on damage evolution. The conclusions are summarized
as follows:

1. Based on the µCT tomography tests, the local volume fractions of weftless ply and
needling fibers around the needling holes are measured evenly to be 76.2% and 18.7%,
respectively. Accordingly, the GMC models of three material phases, i.e., 0◦/90◦ unidi-
rectional fibers and short-cut fibers, are established. The Hashin criterion provides a
good description of the failure mechanism in the needling region: stress concentrations
firstly appear on both sides of the needling hole perpendicular to the loading direction,
followed by the gradual failure of the needling hole and the matrix between the fibers.
Eventually, the fibers fracture after the removal of the load transfer medium;

2. After conducting the geometric partitioning strategy, the needling regions are de-
scribed by the multi-scale method, while the un-needling regions are covered through
the CDM model. By using the established simulation strategy, the relative errors
of the predictions are 2.6% for strength and 4.4% for failure strain in unidirectional
tension compared with experimental results. Meanwhile, the proposed approach
reveals the damage evolution law in which the initial damage emerges from the stress
concentration in the needling region, leading to matrix cracking, fiber fracture, and
ultimately structural failure;

3. The damage properties of the repeated needling regions are investigated. The damage
mechanism of the repeated needling model is similar to that of the single-hole model,
but with an enhanced degree of damage. Results show that the damage accumulation
in the repeated needling region is related to the dimensionless overlapping size L0
and loading angle θ. An increase in L0 and θ resulted in a faster rate of damage
accumulation. When θ = 45◦, the degree of damage to the double hole is at most
20.2% (L0 = 1.0) more than the single hole model. Therefore, we recommend that
repeated needling should be avoided as far as possible during the preparation of
needled composites.

Furthermore, it should be mentioned that the above conclusions are based on needled
composites made of alternating 0◦ and 90◦ carbon fiber weftless, short-cut fiber layers.
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Future work would focus on the assessment of the mechanical properties of needled
composites with random distribution of single and multi-hole needled regions, to further
provide the basis and direction for subsequent reliability analyses.
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