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Abstract: To investigate the effect of quenching rate on microstructure, residual stress (RS) and
mechanical properties of a rare-earth wrought magnesium alloy Mg-Gd-Y-Zr-Ag-Er, RS in 20 °C
water quenching (WQ (20 °C)), 100 °C water quenching (WQ (100 °C)) or air cooling (AC) conditions
were measured and compared with the simulation results, corresponding mechanical properties
and microstructure in quenching and aging state were studied. The decrease of quenching rate has
little effect on the grain size but makes the twinning disappear, precipitates increase and the texture
weakened, leading to easier brittle fracture after aging. WQ (100 °C) is the best quenching condition
in this study, with a significant decline in RS and only 4.9% and 3.7% decrease in yield stress (YS) and
hardness compared with WQ (20 °C). The results make it feasible to invent an appropriate quenching
method of greatly reducing RS while maintaining mechanical properties. The research conclusions
would be beneficial to the application of the alloy.

Keywords: rare-earth wrought magnesium alloy; quenching rate; microstructure; residual stress;
mechanical properties

1. Introduction

Magnesium alloys are characterized by low density and high specific strength [1,2],
which have broad application prospects in aerospace, automobile, 3C and other fields.
However, the deformation ability is inadequate at room temperature due to the lack of slip
systems. In recent years, the addition of rare-earth (RE) elements significantly improves
the heat resistance, ductility, creep resistance and specific strength of magnesium alloys
even at high temperature by precipitation and hardening [3], grain sizes refining [4] and
texture weakening [5], which notably extend the application range.

Solution treatment followed by quenching, plus artificial aging, are commonly applied
to alloys to enhance the mechanical properties. In the processes, alloy components are
dissolved into the alloy matrix to form a supersaturated solid and this state is maintained to
room temperature [6], while the following artificial aging causes solute atoms to precipitate
in the form of the second phase, and the pinning effect of the second phase hinders
dislocation and grain boundary movement [7]. During quenching and cooling, on the other
hand, the large temperature gradient brings about inhomogeneous plastic deformation
and induces residual stress (RS), which reduces mechanical properties [8], dimensional
stability [9], fatigue properties [10] and corrosion resistance [11]. Thus, quenching has both
advantages and disadvantages to material properties, and the quenching rate is the key
factor to mediate the contradiction between mechanical properties and RS [12].
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In the aerospace manufacturing industry, the quenching RS should be reduced to
the minimum to prevent excessive deformation in subsequent mechanical processing due
to the release of RS, which will affect the accuracy of the final product and even cause a
scrap of parts. Moreover, magnesium alloy is easy to crack during quenching compared
with steel and aluminum alloy, while quenching combined with aging treatment can
effectively improve the mechanical properties; therefore, it is very important to research
the variation of RS under different quenching conditions and investigate the mechanical
properties simultaneously. RS reduction and mechanical properties enhancement after
heat treatment had been studied for years. Gao [13] applied thermal vibratory stress relief
(TVSR) method to evidently reduce RS, Robinson [14] employed natural aging and cold
compression for stress relieving, Dong [15] proposed rotating backward extrusion (RBE)
technique to produce high performance AZ80 alloy cylindrical tubes by decreasing grain
size and weakening texture and Zhou [16] applied hot isostatic pressing (HIP) to enhance
the integrity and reliability of GW63 alloy. Asl [17] focuses on the effect of deep cryogenic
treatment (—196 °C) on microstructure and mechanical properties of AZ91 magnesium
alloy. Either reducing RS or enhancing mechanical properties have been studied; however,
both aspects should be taken into account as a whole in practice.

The aims of the research are to investigate the effect of quenching rate on microstruc-
ture, RS and mechanical properties of a newly developed high-strength heat resistant
rare-earth wrought magnesium alloy Mg-Gd-Y-Zr-Ag-Er, and to explore whether it is
possible to reduce RS while maintaining mechanical properties. Experiments of solution
treatment prior to 20 °C water quenching (WQ (20 °C)), 100 °C water quenching (WQ
(100 °C)) or air cooling (AC) were carried out, and with artificial aging thereafter. The effect
of quenching rate on microstructure, RS and mechanical properties were manifested. The
results would be beneficial to the application of the alloy.

2. Experimental
2.1. Heat Treatment and Mechanical Properties Measurements

The dimension of the as-received extrusion huge sheet was 1300 mm x 300 mm x 20 mm,
three samples in size of 110 mm x 110 mm X 18 mm in extrusion direction (ED), long
transverse direction (LTD) and short transverse direction (STD) were taken out from the
sheet by using a wire cut electric discharge machine (EDM). Solution treatment at 500 °C
for 8 h was conducted in a resistance furnace with a fan, followed by WQ (20 °C), WQ
(100 °C) or AC, the transfer time was less than 10 s. After employing wire EDM to split
the specimens in half, the cross-sections were utilized to calculate RS using the contour
method, which would be covered in Section 2.2. The solution-treated sample was cut into
10 mm x 10 mm X 4 mm cubes and aged at 225 °C for 24 h to attain peak hardness, both
solution-treated and aged cubes were measured with a load of 300 g and a dwell time of
15 s, and five points were measured for each specimen. Tensile specimens were also cut
by wire EDM from solution-treated and aged samples. The size of the sample is shown in
Figure 1, and a tensile test was conducted on the INSTRON-3386 material test machine at a
crosshead speed of 1 mm/min at room temperature.
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Figure 1. Size of the tensile specimen.

2.2. Residual Stress Measurement Methods

As shown in Figure 2, after quenching, considering symmetry, the measurement
methods were used to test the RS on the surface of the sample along the direction from
point A to point B on the red line, with a total of four points at a constant distance.

Z(STD) (mm)

X(LTD)

Figure 2. A schematic showing the dimension of the sample for quenching treatment (white) and
simulation (blue) and RS measurement path (red line).

Both the hole drilling method and the X-ray diffraction (XRD) method were applied to
the surface of the samples. The hole drilling method is to drill a small hole in the sample
which causes RS to release, as illustrated in Figure 3, with the strain gage around the
hole to monitor the value of the strain, and then convert it to the value of RS through
Equations (1) and (2) [18].

A+B B—-A

o= gm (% A 5) @
A+B B—-A

2= g (8 + grgta) @

where ¢ and 0, are in correspondence with the direction of the x-axis and y-axis, respec-
tively, as shown in Figure 3c. A and B are calibration coefficients obtained by the calibration
samples [20], as shown in Figure 4.
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Figure 3. Schematic cross-sections around a hole drilled into tensile RS [19] (a) before and (b) after
hole drilling (c) strain gage arrangement direction.

Figure 4. Calibration samples of calibration coefficients A and B.

The XRD method is widely applied to determine RS in samples without damage. The
most recent XRD technique is the cosa method, which employs a 2D plane X-ray instead of
the point or line in the sin?¥ method, making it more effective and accurate. As shown in
Figure 5, the RS o in the x-direction is:

[(eax — €m+a) + (€—a — €x—a)] 3)

N~

1 =

_E 1 1 odey
1+ vsin2Bsin2¢ dcosa

Ox = 4)
where E is Young’s modulus, v is Poisson’s ratio, and «, § and ¢ are the angles shown in
Figure 5. Additionally, &4, €744, €—4 and e;_, are the strains obtained from diffraction beams
in corresponding angles in Figure 5, where €41 can be calculated according to Equation (3),
and oy can be obtained via Equation (4).

Figure 5. A schematic representation of the measurement of the Debye—Scherrer ring and the four
types of strains used for stress calculation based on the cosa method [1].

The contour method is a relatively new measurement method that can measure the
inner RS of the sample [21]. The procedures are simpler and require fewer instruments
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compared with the deep hole drilling(DHD) method [22] and the deep hole contour (DHC)
method [23]; moreover, the cut plane 2D-RS could be exhibited, and the cut half-samples
were suitable for the comparison of mechanical properties in quenching and aging con-
ditions in Section 2.1. The principle and steps are: (1) Cutting the sample into two same
halves along the AB direction in Figure 2. (2) Releasing the RS perpendicular to the direc-
tion of the cross-section with no more constraint on the new surface, and the deformation
of the cross-section after cutting is measured by the coordinate measurement machine
HEXAGON GLOBAL 575 at a constant distance of 3 mm along the x-axis and 1 mm along
the z-axis. (3) The measured deformation was data processing first and then applied in the
elastic finite element model for the inverse calculation (the red arrows in Figure 6), which
provided that the deformation recovered by an external force equal to RS in numerical
value (red curve in Figure 6), whose direction was normal to the cut plane before cutting,
as illustrated in Figure 6.

cut plane /

) ()

+1 T tensile

step2 step3
deform and deformation
stress relief recovery
: - compressive
2 1 2 1 ; 2

Figure 6. A schematic representation of the principle and steps of the contour method.

2.3. Microstructure Characterizations

Specimens for electron backscatter diffraction (EBSD) measurement were prepared
by argon ion polishing at 4 KV for 4 h, the EBSD measurement for grain morphology and
texture was tested on Gemini300 with an Oxford C-nano probe, and scanning electron
microscopy (SEM) analysis for fracture appearance of tensile specimens was carried out on
ZeissSigma 300.

3. Numerical Simulation

Material parameters experiments are mainly applied for numerical simulation with
the finite element method (FEM). Material parameters of density, thermal conductivity,
expansion coefficient, Yong’s modulus, Poisson’s ratio, etc., at different temperatures
were tested, respectively. The heat transfer coefficient between the surface of the sample
with 20 °C and 100 °C water or air was calculated by the lumped heat capacity method
(LHCM) [24], with a dimension of 120 mm X 120 mm x 40 mm. A hot compression test
with a reduction of 20% was carried out at a temperature of 100-500 °C at an interval
of 50 °C and room temperature, and strain rate of 0.001 s~! to obtain the stress-strain
relationship.

A one-eighth-size model was used to analyze RS in quenching treatment. The coupled
temp-displacement analysis model was used in FEM software ABAQUS. The elastoplastic
model and Huber-Mises—Hencky (H-M-H) yield criterion were applied.

4. Results and Discussion
4.1. Microstructure

WQ (20 °C), WQ (100 °C), AC and WQ (100 °C) with aging conditions were shown
in the EBSD graphs in Figure 7a—d, respectively. Through the linear intercept method,
the grain size of WQ (20 °C), WQ (100 °C) and AC conditions were 37 um, 41 um and
33 um, respectively; there was no significant difference in grain size among these conditions,
while that of WQ (100 °C) with aging afterward was 46 pm, with a growing trend. The
twinning effect was observed in WQ (20 °C), which could be explained by the deformation
caused by the large temperature gradient in the quenching process, while the phenomenon
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disappeared in WQ (100 °C) and AC, indicating the deformations were too small to activate
twinning [25].

0110

Figure 7. Grain information by EBSD in (a) WQ (20 °C), (b) WQ (100 °C), (¢) AC and (d) WQ (100 °C)
with aging.

In WQ (20 °C) and WQ (100 °C), precipitates were none or few; however, there
were large amounts of precipitates in AC, exsolution before aging in AC would reduce
the response to aging hardening, which is detrimental to improving mechanical strength
through heat treatment.

Compared Figure 7b with Figure 7d, the grain size increased a little, while the pre-
cipitates also increased and grew. This was in consistent with the view that precipitation
strengthening played a critical role in improving the strength [26].

The texture is a kind of orientation distribution, which means that the orientation
distribution state of polycrystal can deviate from the random distribution state obviously,
showing certain regularity. The plastic deformation during quenching had an influence on
texture, and texture-induced softening would lead to the reduction of RS [27].

To manifest the relationship between texture intensity and residual stress of WQ
(20 °C), WQ (100 °C) and AC, pole figures are shown in Figure 8, which are widely used
to describe the texture intensity, the max values are 18.03, 10.75 and 7.22, respectively,
the order of the values were as follows: WQ (20 °C) > WQ (100 °C) > AC. This could be
explained by the large quenching rate and temperature gradient, which brought about
large plastic deformation and RS, and the large deformation increases the texture intensity.
It is consistent with the phenomenon that the RS decreased and the texture weakened as
well in the homogenization process prior to extrusion of ME21 magnesium alloy extruded
plates [28].
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Figure 8. Pole figures of (a) WQ (20 °C) (b) WQ (100 °C) (c) AC.

4.2. Residual Stress

The simulation results of quenching RS are shown in Figure 9, only ¢ and oy, are
presented as ¢ is close to zero in all cases because the samples are comparatively thin.
oy and oy, are absolutely the same in value and symmetry in distribution by comparing
(a,c) with (b,d), because the length in the x and y direction of the sample is equivalent, and
the yield criterion is isotropic. oy and ¢y, in (e,f) are virtually zero. The RS generated by
water quenching is compressive on the surface and tensile in the center [29], and has a
layered distribution along the thickness direction of the sample, only near the edge there
is a compressive stress concentration. The RS is mainly due to temperature gradient and
inhomogeneous plastic deformation, at the beginning of quenching, the sample surface
exchanged heat with the surrounding water and cooled rapidly, then the internal heat
was transferred to the surface and exchanged heat with the surrounding water, because
the surface cooled faster than the center, in addition, the heat exchange rate with water
was much larger than heat transfer rate in the sample, a large temperature gradient was
formed, which led to nonuniform thermal strain between surface and center, when the
sample cooled down, RS was formed.

RS was ranging from —69.68 MPa on the surface to 47.05 MPa in the center in WQ
(20 °C), ranging from —48.69 MPa on the surface to 28.09 MPa in the center in WQ (100 °C)
from a to d, and almost zero from e f. RS in WQ (100 °C) has reduced by ~30% on the
surface and ~40% in the center compared with in WQ (20 °C).

For a more quantitative understanding, simulation results of RS in the samples in the
path from A to B were extracted in Figures 10 and 11. The curves of RS in WQ (20 °C) and
WQ (100 °C) have the same trend, namely, in more than half of the dimensions (0-35 mm),
the curves were flat with fluctuations less than 5 MPa, RS in WQ (100 °C) vary from —25
to —20 MPa, and in WQ (20 °C) vary from —45 to —40 MPa. However, the absolute value
of oy declined to zero and ¢y, rose to its maximum fiercer in 35-55 mm. This is because
the surface near the middle can only transfer heat with water in the Z direction, while the
surface near the edge can transfer heat both in the X and Z directions, so the heat exchange
is larger, resulting in a more drastic variation in RS. Moreover, RS in AC was so tiny that
further analysis was unnecessary. Experimental results of RS, both in the hole drilling
method and the XRD method, were also plotted in Figures 10 and 11.
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Figure 9. Simulation results of the distribution of (a) & in WQ (20 °C), (b) ¢y, in WQ (20 °C), (c) oy in
WQ (100 °C), (d) oy in WQ (100 °C), (e) oy in AC and (f) ¢y in AC.
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Figure 10. Simulation and experimental results of RS in hole drilling method along path AB.
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Figure 11. Simulation and experimental results of RS in XRD along path AB.

The points of the experimental values were distributed near the curves of the simu-
lation results, most of their errors were within =10 MPa both in the hole drilling method
and the XRD method, the absolute value of experiment values of RS obeyed the following
orders: WQ (20 °C) > WQ (100 °C) > AC, which were in consistent with the trend of
simulated results. Furthermore, the test results were various between the two methods
even at the same point as the measured depth of RS is different [19].

The inner RS of the samples measured by the contour method were shown in Figure 12a
in WQ (20 °C) and Figure 12c in WQ (100 °C), Figure 12b,d were corresponding simula-
tion results. The edge of the cross-sections could not be measured with the coordinate
measurement machine; therefore, the data processing was not accurate due to outward in-
terpolation; only RS within the range of measurement points in Section 2.2 was considered,
so the tensile RS in the center part of the cross-sections was more accurate than compressive
RS in the edge part of the cross-sections in Figure 12, and tensile RS was the main topic
discussed below.

+4.705e+01
+3.732e+01
+2.75%+01
+1.787e+01
+8.13%e+00
-1.588e+00
-1.132e+01
-2.104e+01
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+1.183e+01
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-3.735e+00
-6.848e+00

1 :930e+01

=rvac e ——>

+2 80%e+01

-4.860e+01

Figure 12. Inner RS of (a) experimental results in WQ (20 °C), (b) simulation results in WQ (20 °C),
(c) experimental results in WQ (100 °C) and (d) simulation results in WQ (100 °C) in contour method.

From Figure 12b,d, it is revealed that RS distribution in the cross-sections was totally
symmetry from the edge to the center, and it was a “runway” type distribution theoretically,
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with compressive outside and tensile inside, the only difference was the maximal tensile
RS value in WQ (20 °C) and WQ (100 °C) were 47.05 MPa and 28.09 MPa, respectively.
However, compared with Figure 11 the RS distribution was still the largest tensile stress
in the middle area of the cross-sections, but it is not regular. The main reason was that
the boundary conditions during quenching are not as symmetric as the finite element
simulation. For example, the generation of bubbles has certain randomness, and the
generation and breakage of bubbles are inconsistent on the upper and lower surfaces.

To quantify the inhomogeneity of temperature decrease which induced RS, cooling
curves of the thermocouple at 1 mm away from the bottom surface (1#) and in the middle
part of the sample (3#) by lumped heat capacity method (together with 2# at 5 mm away
from the bottom surface) in WQ (20 °C), WQ (100 °C) and AC were shown in Figure 13.

(a) (b) (C) Top surface (mm)
i
500 —AC 500 AC
WQ(100°C) ) o
WQQ0°C) ——WQ(100°C) oF
~ - o ——WQ(20°C) ~1 i
¥ L S 400 Quenching surf,
O 3 ; 755
= = I
= 2
= =
Z 300 Esoo
? £ 4#(spare)
v -
= = & 0 (3% |
200 | 200 ~ 44
2# 228 .
100 > 4 L 100 L L
1 10 100 1000 10,000 1 10 100 1000 10,000
Time(s) Time(s) 1

Figure 13. Measured cooling curves in AC, WQ (100 °C) and WQ (20 °C) (a) in the 1 mm deep (1#)

(b) middle part (3#) of the sample by the lumped heat capacity method (c) sample of heat transfer
coefficient experiment.

The overall trend of temperature decrease was slow at first, then fast, and then slowed
again. The calculation of the cooling rate was to take the approximate linear segment of
450-150 °C temperature difference (=300 °C) and then divided it by the corresponding
cooling time under different cooling conditions, as shown in Table 1. Under the same
cooling conditions, there is a temperature difference between the near-surface and the
middle part because of the different cooling rates, which could be listed in the following

orders: WQ (20 °C) > WQ (100 °C) > AC, so was the magnitude relationship of RS under
these conditions.

Table 1. Cooling rates in AC, WQ (20 °C) and WQ (100 °C).

Cooling Rates 1 mm Deep (1#) (°C/s) Middle Part (3#) (°C/s)
WQ (20 °C) 6.38 5.41
WQ (100 °C) 5.36 4.67
AC 0.16 0.14

Nonetheless, the errors between simulation and experimental results were not small
enough both on the surface and in the center, for example, in WQ (20 °C) at A point,
experimental ¢ and ¢y in the hole drilling method were —32.96 MPa and —43.70 MPa,
respectively, while the corresponding simulation value was —41.35 MPa, the maximal
experimental inner RS in WQ (20 °C) was 36.25 MPa, while the corresponding simulation
value was 47.05 MPa; this should mainly attribute to the flowing reasons:

There existed inevitable measurement errors in the experiments of material parameters
varying with temperature. Take constitution equation and heat transfer coefficient as
examples, temperature, strain rate and strain are the major factors affecting the stress-strain
relationship, while the hot compression test didn’t take strain history into account [29]. Heat
transfer coefficient was obtained by lumped heat capacity method under the assumption of
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a one-dimensional heat conduction model through a single-side quenching experiment,
but the size of the experimental sample was restricted, the side and the top surface would
exchange heat with air inevitably, furthermore, the experimental condition of single-side
quenching under one-dimensional heat conduction model was not completely consistent
with that of actual quenching process due to bubble floating on the side and the top surface,
which above would bring about a certain error in simulation. On the other hand, the
elastoplastic model and H-M-H yield criterion assume that the materials are continuous,
homogeneous and isotropic, while grain size would change and texture may vary actually,
making the actual situations and theoretical models different.

4.3. Mechanical Properties

One of the tensile samples under each working condition is selected, and the stress-
strain curves were depicted in Figure 14. In quenching state, the stress increases rapidly
with the increase of strain at first, which is due to the increase of dislocation density caused
by interactions and multiplications [30], then it became stable until fractured, while in aging
state, this phenomenon was not obvious for early fracture. From the fractured position of
the curves, orders of ductility in quenching state were as follows: AC < WQ (100 °C) < WQ
(20 °C), while it was close in aging state, ranging from 1.6% to 1.9%.

(a) (b) 400
250 350 WQ(20°C)
WQ(100°C)
’:?200- ?300- ——AC
A
E = 250
Z 150 | Z
S $ 200
& ; ] wQ(100°C) ¥
; 100 wQ(100°C) e S 150 wQ(20°C)
= —— WQ(20°C) [3 o0
< —— WQ(100°C) 1
) —AC
. J 50
o . . . . . . L 0 . . . .
0 1 2 3 4 5 6 7 0.0 0.5 1.0 15 2.0
True strain(%) True strain(%o)

Figure 14. Stress—strain curves and fractured location of the tensile specimens in (a) quenching state
and (b) aging state.

The fracture modes are mainly divided into dimple and cleavage fractures, and
whether the fracture type is ductile or brittle depends on the plastic strain of the material
before fracture [31]. As illustrated in Figure 14, the ductility of this alloy was lower than
that of the magnesium alloy with LPSO phase [32] and Mg-5Zn-3.55n-1Mn-0.5Ea-0.5Cu
alloy [29], brittle fracture may probably happen in this case. For more detailed information,
SEM images were shown in Figure 15 to explore the microscopic behavior of fracture.

In all the figures, brittle fractures and cracks commonly exist, no matter in what
conditions, dimple fractures representing ductility were seldom observed, which could
explain the poor ductility of the specimens. In quenching conditions, brittle fractures in
Figure 15¢ were more than the other two in Figure 15a,b, which could prove that ductility in
AC was the lowest in quenching states. As the magnification increases, finer dimples were
also found in quenching conditions, while in aging states, finer dimples could be found in
Figure 15d and few or no finer dimples exist in Figure 15e,f, which proved that ductility in
quenching state was better than that in aging state, and reveals that high quenching rates
improve ductility to a certain extent [32].
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Figure 15. SEM images of tensile specimens in (a) WQ (20 °C), (b) WQ (100 °C), (c) AC, (d) WQ
(20 °C) with aging, (e) WQ (100 °C) with aging and (f) AC with aging states.

The hardness in quenching and aging states was shown in Figure 16a, they were 78 Hv,
81 Hv and 83 Hv in WQ (20 °C), WQ (100 °C) and AC, respectively, for quenching after
solution state. However, the corresponding values were 162 Hv, 156 Hv and 135 Hv. The
strength of the alloy was consistent with the hardness in quenching and aging states, as
illustrated in Figure 16b,c; WQ (100 °C) has the highest yield strength (YS) and ultimate
tensile strength (UTS) in the quenching state, while after aging the relationship could be
listed in the following orders: WQ (20 °C) > WQ (100 °C) > AC. The enhancement of YS in
WQ (20 °C), WQ (100 °C) and AC were 137 MPa, 96 MPa and 78 MPa, respectively, and
that of UTS were 124 MPa, 104 MPa and 92 MPa, respectively. The elongation (EI) varied
from 4 to 7% in the quenching state and decreased to 1.87-2% after aging.

The enhancement of strength could be explained by precipitation and hardening
during aging. The Mg-Gd-Y alloys exhibit a remarkable age-hardening response due to
the fine lenticular-shaped B’ precipitates, which can impede dislocation slip effectively [3].
Rapid quenching maintains a supersaturated solid solution state, and while the cooling
rate gets lower, coarser precipitates appear before aging [29,32], the phenomenon has a
negative influence on aging hardening.

Time-temperature—property (TTP) and time—temperature-transformation (TTT) curves
are utilized to evaluate quenching sensitivity for aluminum alloys [33]. Taking that 95%
of the maximum hardness and the critical temperature range varies from 300 to 400 °C
as a given, the corresponding transformation time for 2A14 aluminum alloy is 10 s [34].
However, the TTP and TTT curves are probably not suitable for magnesium alloys as the
diffusion rate of elements in magnesium alloys is considerably slower, and the quenching
sensitivity parameter Q values [26,32] are much less compared with that of aluminum
alloys [35]; hence, 95% of the maximum hardness and strength [36] criterion rather than
time could be a better option to evaluate whether the mechanical properties are qualified.
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Figure 16. (a) Hardness in quenching and aging state (b) strength in quenching state (c) strength in
aging state.

The normalized YS, RS and hardness were depicted in Figure 17 to make a quantitative
comparison. ¢y, of the point A declined greatly to 55.6% in WQ (100 °C) and 3.4% in AC,
while less sensitive as to YS and hardness, with only 4.9% and 3.7% loss on YS and hardness
in WQ (100 °C), with 13.6% and 16.7% loss on YS and hardness in AC. Nevertheless, the
strength loss in AC was still unacceptable according to the view that the strength should
remain no less than 95% of the highest value. So, WQ (100 °C) was the best quenching
condition following solution treatment in this study, and it comes to a conclusion that
it is feasible to invent an appropriate quenching method of greatly reducing RS while
maintaining mechanical properties. The results would be beneficial to the application of
the alloy.

Nomalized Mechanical Properties&RS

WQ(20°C) WQ(100°C) AC

Figure 17. Normalized mechanical properties and RS.
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5. Conclusions

The effect of quenching cooling rate on microstructure, RS and mechanical properties
of a rare-earth wrought magnesium alloy Mg-Gd-Y-Zr-Ag-Er was investigated in the
methods of 20 °C water quenching (WQ (20 °C)), 100 °C water quenching (WQ (100 °C))
or air cooling (AC), and the results revealed that it is possible to invent an appropriate
quenching method of greatly reducing RS while maintaining mechanical properties. The
main conclusions were drawn as follows:

1.  The decrease of quenching rate has little effect on the grain size, but makes the
twinning disappear, precipitates increase and the texture weakened, leading to easier
brittle fracture after aging;

2. WQ (100 °C) has the highest yield strength (YS) and ultimate tensile strength (UTS) in
the quenching state. Cooling rates, RS and mechanical properties after aging could be
listed in the following orders: WQ (20 °C) > WQ (100 °C) > AC;

3. The quenching RS declines greatly in WQ (100 °C) and close to zero in AC compared
with WQ (20 °C) as cooling rates decrease, while YS and hardness only decrease by
4.9% and 3.7% in WQ (100 °C), 13.6% and 16.7% in AC after aging;

4. WQ (100 °C) is the best quenching condition following solution treatment in this
study, and it is feasible to greatly reduce RS while maintaining mechanical properties.
The results would be beneficial to the application of the alloy.
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