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Abstract: Thin elastic periodic plates are considered in this paper. Since the plates have a microstruc-
ture, the effect of its size on behaviour of the plates can play a crucial role. To take into account this
effect, the tolerance modelling method is applied. This method allows us to obtain model equations
with constant coefficients, which involve terms dependent of the microstructure size. Using the model
equations, not only can formulas of fundamental lower-order vibration frequencies be obtained, but
also formulas of higher-order vibration frequencies related to the microstructure. In this paper, the
effect of the material periodic microstructure on free vibration frequencies for various boundary
conditions of the plates was analysed. To obtain proper formulas of frequencies, the Ritz method is
applied. Moreover, some results are compared to the results calculated using the FEM.
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1. Introduction

In this paper, thin elastic plates with a periodic structure in planes parallel to the
plate midplane are the main object under consideration. Plates of this kind are made of
many identical repeatable elements, which are called periodicity cells (marked by dotted
lines in Figure 1). Problems of vibrations of these plates can be analysed using partial
differential equations, having highly oscillating, periodic, and non-continuous functional
coefficients. Because these equations are not good tools to consider special examples of
these plates, various simplified approaches are proposed. These methods make it possible
to obtain governing equations with constant coefficients. Between them, those based on
the asymptotic homogenization should be mentioned, cf. [1]. However, the effect of the
microstructure size is usually omitted in the model governing equations.
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Figure 1. A fragment of a thin periodic plate.

In order to model various mechanical problems of periodic (or microheterogeneous)
structures and composites, other methods are also used. The microlocal parameters ap-
proach was applied to describe such plates, e.g., in [2]. In the paper [3], honeycomb
sandwich composite shells were analysed using the two-scale asymptotic homogenization
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method. Euler–Bernoulli beams were considered in [4], where the relationship between the
3D and the homogenisation approach was presented. The stability of multi-cell thin-walled
columns of rectangular cross-sections was analysed theoretically, numerically, and experi-
mentally in the work [5]. A dynamic critical load for buckling of columns was considered
in [6]. Global and local buckling of sandwich beams and plates were investigated in [7].
A finite element unit-cell method was used in [8] to analyse heterogeneous plates. Brito-
Santana et al. [9] applied an asymptotic dispersive method to the problem of shear-wave
propagation in a laminated composite. Analytical and numerical methods were used to
analyse buckling problems for sandwich beams with variable properties of the core in
papers [10,11]. For laminated composited plates, various approaches were applied, e.g., the
strong formulation isogeometric analysis in the work [12]; a layer-wise theory combined
with a differential quadrature method in [13]. A generalized differential quadrature method
was also used for vibrations of nanocomposite functionally graded shells in a series of
papers [14–16]. An analytical-numerical model based on analytical relations and finite
element method was shown to analyse a torsion of auxetic composite beams with a cellular
structure in [17].

Unfortunately, the proposed modelling methods for microstructured periodic media
usually lead to the model equations without the effect of the microstructure size. On
the other side, this effect can play a crucial role in dynamical problems of these media,
cf. Brillouin [18], where there were observed macro- and microvibrations related to the
macro- and microstructure, respectively. Some special methods were adopted to analyse
some similar problems to describe this effect. For instance, a spectral element method was
proposed to investigate vibration band gap of periodic Mindlin’s plates in [19]. The centre
finite difference method was used in [20] to analyse free flexural vibrations of periodic
stiffened thin plates. The simplified super element method was applied for these plates
filled with viscoelastic damping material in [21]. Problems of wave bandgaps in periodic
plate structures were considered using differential quadrature element in [22].

An alternative approach to analyse various mechanical problems of microstructured
(periodic and non-periodic) media is the tolerance modelling method (or the tolerance method),
cf. the books Woźniak and Wierzbicki [23], Woźniak et al. (eds.) [24]. This method is
general and useful for modelling different problems, which are described by differential
equations with highly oscillating, non-continuous functional coefficients. It leads from
these exact governing equations to the averaged model equations, which have constant
(or slowly-varying) coefficients, some of which explicitly are dependent of the size of
the microstructure.

Various applications of this method for different periodic structures were shown in
a series of papers. Dynamics of some plane periodic structures were analysed in [25].
Vibrations of one-directional periodic plates, having thickness smaller than the length of
the periodic cell, were considered in [26]. Vibrations of periodic wavy-type plates were
investigated in [27]. Dynamics of thin plates reinforced by a system of periodic stiffeners
was presented in [28]. Vibrations of medium thickness periodic plates were considered
in [29]. The buckling of periodic plates interacting with a periodic elastic foundation
was investigated in [30]. Vibrations of thin periodic plates with the microstructure size
of an order of the plate thickness were described in [31]. Stability of periodic shells
was considered in papers [32,33]. Dynamics problems of medium thickness plates on a
periodic foundation were described in [34]. Geometrically nonlinear thin periodic plates
were considered in [35]. Vibration analysis of periodic geometrically nonlinear beams is
shown in [36]. Modelling of vibrations of periodic three-layered plate-type structures were
investigated in [37]. Revisiting version of the modelling for dynamics and stability for
periodic slender visco-elastic beams on a foundation with damping was shown in [38]. A
multi-scale analysis of stress distribution in thin composite periodic plates was considered
in [39].

Moreover, the tolerance method was also successfully used to analyse structures with
non-periodic micro-heterogeneity, which can be treated as being made of functionally
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graded materials in the macro-scale. For instance, dynamics for longitudinally graded
plates was investigated in [40,41], but stability of similar plates in [42]. Modelling of
thin-walled structures with dense system of ribs was shown in [43,44]. Heat conduction
of composite cylindrical conductors with non-uniform distribution of constituents was
analysed in [45,46]. Effect of microstructure in problems of thermoelasticity for transversally
graded laminates was considered in [47]. Dynamics of thin functionally graded plates
with one-directional microstructure was investigated in [48]. Free vibrations of medium
thickness functionally graded plates were analysed in [49]. Dynamics of thin functionally
graded microstructured shells was investigated in [50,51], but dynamics and stability of
them in [52]. Stability problems of functionally graded microstructured thin plates on
elastic foundation were considered in [53]. However, the above-mentioned works do not
cover all the problems that were studied by these authors in the literature on the tolerance
modelling method.

The main aim of this contribution is to apply the tolerance and asymptotic models of
dynamic problems for thin elastic periodic plates, cf. [26,30], to free vibrations of periodic plate
strips with various boundary conditions. The other aim is a certain analysis of the effect
of the material periodic cell structure on free vibration frequencies, formulas of them are
derived using the Ritz method. Some results are compared and justified by the finite
element method.

2. Modelling Foundations
2.1. Preliminaries

Let 0x1x2x3 denote the orthogonal Cartesian co-ordinate system in the physical space
and t be the time coordinate. Subscripts α, β, ...(i, j, ...) run over 1, 2 (1, 2, 3) and indices A,
B, ... (a, b, ...) run over 1, ..., N (1, ..., n). Summation convention holds for all aforementioned
indices. Denote also x ≡ (x1,x2) and z ≡ x3. Let the region Ω ≡ {(x,z): −h(x)/2 < z < h(x)/2,
x ∈ Π} be the undeformed plate, with Π as the midplane, having along the x1- and x2-axis
length dimensions L1 and L2, respectively; and h(x) as the plate thickness.

Plates under consideration are assumed to be periodic in planes parallel to the plate
midplane, with periods l1 and l2 along the x1- and x2-axis directions, respectively. Let ∆ ≡
[−l1/2, l1/2] × [−l2/2, l2/2] denote the periodicity basic cell on 0x1x2 plane. The cell size
can be described by a parameter l ≡ [(l1)2 + (l2)2]1/2, which satisfies the condition max(h) <
l << min(L1,L2), and can be called the microstructure parameter. Denote by (·), α ≡ ∂/∂xα the
partial derivatives with respect to the space co-ordinate, and by the overdots the partial
derivatives with respect to the time co-ordinate.

It is assumed that all plate properties can be periodic functions in x, e.g., thickness
h(x), elastic moduli aijkl = aijkl(x,z), mass density ρ = ρ(x,z). Moreover, these plate material
properties are even functions in z. By aαβγδ, aαβ33, a3333 denote the non-zero components
of the elastic moduli tensor, and also introduce: cαβγδ ≡ aαβγδ − aαβ33aγδ33(a3333)−1.

Let ui, eij and sij denote displacements, strains, and stresses, respectively; and ui and
eij—virtual displacements and virtual strains; and p—loadings (along the z-axis).

Considerations are based on the well-known assumptions of the Kirchhoff-type plate
theory, but they are mentioned below.

• The kinematic assumptions

uα(x, z, t) = −z∂αw(x, t), u3(x, z, t) = w(x, t), (1)

where w(x,t) is the deflection of the midplane. Similar assumptions are made for vir-
tual displacements:

uα(x, z) = −z∂αw(x), u3(x, z) = w(x). (2)

• The strain-displacement relations

eαβ = u(α,β). (3)

• The stress-strain relations
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(with the assumption that the plane of elastic symmetry is parallel to the plane z = 0)

sαβ = cαβγδeγδ, (4)

where:

cαβγδ = aαβγδ − aαβ33a33γδ/a3333, cα3γ3 = aα3γ3 − aα333a33γ3/a3333. (5)

• The virtual work equation

∫
Π

∫ h/2

−h/2
ρ

..
uiuidzda +

∫
Π

∫ h/2

−h/2
sαβeαβdzda =

∫
Π

pu3(x,
h
2
)da , (6)

Which is satisfied for arbitrary virtual displacements (2), under the assumption that
these displacements are neglected on the boundary and sufficiently regular and indepen-
dent functions; moreover: da = dx1dx2.

The plate properties, i.e., stiffness tensor dαβγδ, inertia properties: µ, j, are periodic
functions in x, given by:

dαβγδ(x) =
∫ h/2

−h/2
cαβγδ(x, z)z2dz, µ(x) =

∫ h/2

−h/2
ρ(x, z)dz, j(x) =

∫ h/2

−h/2
ρ(x, z)z2dz. (7)

Combining the above assumptions (1)–(4) together with the virtual work Equation (6),
after some manipulations using the divergence theorem and the du Bois-Reymond lemma
to (6), the governing equation of thin elastic periodic plates takes the form:

(dαβγδw,γδ),αβ
+ µ

..
w− j

..
w,αα = p. (8)

Periodic plates coefficients of Equation (8) are usually discontinuous and highly
oscillating, periodic functions in x. It is very difficult to find solutions to this equation.

Hence, in this note, the original equation is replaced by a system of equations with
constant coefficients, which can describe (or not) the information about the microstructure
using the tolerance averaging method.

2.2. Foundations of the Tolerance Modelling
2.2.1. Introductory Concepts

Some introductory concepts are applied in the tolerance modelling method. These con-
cepts can be found in the book [24] and they are formulated for beams in [38] or for
non-periodic plates in [49,53]. Hence, here they can be only mentioned: the averaging
operator <·>, the tolerance parameter, the tolerance-periodic function TP(Π,∆), the slowly-
varying function SV(Π,∆), the highly oscillating function HO(Π,∆), and the fluctuation
shape function FS(Π,∆). Below, let us restate the averaging operator.

Let ∆(x) = x + ∆ denote a cell at x ∈ Π∆, Π∆ = {x ∈ Π: ∆(x) ⊂ Π}. The averaging operator,
one of the fundamental concepts of the tolerance method, is defined by

< f > (x) = (l1l2)
−1
∫

∆(x)
f (y1, y2)dy1dy2, x ∈ Π∆, y ∈ ∆(x), (9)

for an integrable function f. For function f, being periodic in x its averaged value from (9)
is constant.

A very important concept is a fluctuation shape function. It is a function, g(·), being
continuous together with gradient ∂1g and with a piecewise continuous and bounded
gradient ∂2g; depending on l as a parameter, which satisfies proper conditions, i.e., g ∈
FS(Π, ∆) if conditions hold:

(i) ∂kg ∈ O(lα−k) for k = 0, 1, . . . ,α, α = 2, ∂0g ≡ g,
(ii) < g > (x) ≈ 0 ∀x ∈ Π∆,

(10)
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where l is the microstructure parameter. Condition (10ii) can be replaced by <µg>(x) ≈ 0
for every x ∈ Π∆, where µ > 0 is a certain tolerance-periodic function.

2.2.2. Tolerance Modelling Assumptions

The fundamental tolerance modelling assumptions in their general form are formu-
lated in the book [24]. For thin plates with a microstructure, they can be found, e.g.,
in [26,40,49]. Here, these assumptions are written below in the form for thin periodic plates.

One of these assumptions is the micro-macro decomposition, in which the deflection is
assumed that can be decomposed in the form:

w(x, t) = W(x, t) + gA(x)VA(x, t), A = 1, . . . , N, (11)

with the basic unknowns: W(·,t) called the macrodeflection, VA(·,t) called the fluctuation
amplitudes, W(·, t), VA(·, t) ∈ SV(Π, ∆); and the known fluctuation shape functions
gA(·) ∈ FS(Π, ∆). Fluctuation shape functions can be derived as solutions to eigenvalue
problems posed on the periodicity cell. However, in most cases they can be assumed in an
approximate form as trigonometric functions [26,53] or saw-type functions [49].

Similar assumptions to (11) should be introduced for virtual displacements w(·):

w(x) = W(x) + gA(x)VA
(x), A = 1, . . . , N, (12)

with slowly-varying functions W(·), VA
(·) ∈ SV(Π, ∆).

The second modelling assumption is the tolerance averaging approximation, such that
terms O(δ) are negligibly small in the course of modelling, and they can be neglected in the
following formulas:

(i) < φ > (x) =< φ > (x) + O(δ),
(ii) < φF > (x) =< φ > (x)F(x) + O(δ),
(iii) < φ(gF),γ > (x) =< φg,γ > (x)F(x) + O(δ),

x ∈ Π; γ = 1,α; α = 1, 2; 0 < δ << 1; φ ∈ TP(Π, ∆), F ∈ SV(Π, ∆), g ∈ FS(Π, ∆).

(13)

2.2.3. Outline of the Modelling Procedure

In the modelling procedure, the above concepts and basic assumptions are applied
(11)–(13). The procedure can be divided into a few steps.

The first step stands a substitution of micro-macro decompositions (11) and (12) into
the virtual work Equation (6). In the next step the resulting equation is averaged using
the averaging operation (9) over a periodicity cell, cf. [26]. In the third step, the tolerance
averaged virtual work equation is obtained after using Formula (13) of the tolerance averaging
approximation. Introducing the following denotations of averaged parameters, which can
be stand averaged constitutive relations:

Mαβ ≡ − <
∫ h/2

−h/2
sαβzdz >, MA ≡ − < gA

,αβ

∫ h/2

−h/2
sαβzdz >, (14)

the tolerance averaged virtual work equation takes the form:

∫
Π (< µ >

..
W+ < µgB >

..
V

B
)δWda +

∫
Π (< µgA >

..
W+ < µgAgB >

..
V

B
)δVAda−

−
∫

Π (< j >
..

W ,αα+ < jgB
,α >

..
V

B
,α)δWda +

∫
Π (< jgA

,α >
..

W ,α+ < jgA
,αgB

,α >
..
V

B
)δVAda+

+
∫

Π Mαβ,αβδWda +
∫

Π MAδVAda =
∫

Π pδWda.

(15)

At the end, after some manipulations governing equations of the tolerance model are
obtained using the divergence theorem and the du Bois-Reymond lemma to Equation (15).
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2.3. Governing Equations
2.3.1. Tolerance Model Equations

Let us denote:

Dαβγδ ≡< dαβγδ >, DA
αβ ≡< dαβγδgA

,γδ >, DAB ≡< dαβγδgA
,αβgB

,γδ >,
m ≡< µ >, mA ≡ l−2 < µgA >, mAB ≡ l−4 < µgAgB >,
ϑ ≡< j >, ϑA

α ≡ l−1 < jgA
,α >, ϑAB

αβ ≡ l−2 < jgA
,αgB

,β >,
P ≡< p >, PA ≡ l−2 < pgA > .

(16)

The tolerance modelling procedure leads to the system of equations for the macrode-
flection W and the fluctuation amplitudes of the deflection VA:

(DαβγδW,γδ + DA
αβVA)

,αβ
+ m

..
W + l2mA

..
V

A
− ϑ

..
W ,αα − lϑA

α

..
V

A
,α = P,

DA
αβW,γδ + DABVB + l2mA

..
W + lϑA

α

..
W ,α + l2(l2mAB + ϑAB

αβ)
..
V

B
= l2PA.

(17)

The above Equation (17) has constant coefficients and, together with micro-macro
decompositions (11) and (12), constitutes the tolerance model of thin elastic periodic plates. This
model allows us to describe the effect of the microstructure size on the plate dynamics by
terms with the microstructure parameter l. It can be observed that the basic unknowns
of Equation (17) have to be slowly varying functions in x, W(·, t), VA(·, t) ∈ SV(Π, ∆).
Moreover, there have to be determined boundary conditions for the macrodeflection W.

2.3.2. Asymptotic Model Equations

In order to compare results, the asymptotic model equations can be obtained. These
equations can be derived using the formal asymptotic modelling procedure. However, be-
low this is made by simple neglecting terms of an order of O(ln), n = 1,2,..., in Equation (17).

Hence, after these manipulations, Equation (17) is simplified to the form of the asymp-
totic model equations:

(DαβγδW,γδ + DA
αβVA)

,αβ
+ m

..
W − ϑ

..
W ,αα = P,

DA
αβW,γδ + DABVB = 0,

(18)

with all constant coefficients.
Equation (18), together with micro-macro decompositions (11) and (12), constitutes

the asymptotic model of thin elastic periodic plates. Similar boundary conditions should be
formulated as in the tolerance model, i.e., only for the macrodeflection W. Moreover, it
can be observed that Equation (18)2 stand a system of linear algebraic equations for the
fluctuation amplitudes VA, A = 1, ..., N.

3. Analysis of Free Vibrations of Periodic Plate Strips with Various Boundary Conditions
3.1. Introduction to the Example

Let us consider free vibrations of a thin periodic plate strip having span L along the
x1-axis. The loading p is neglected, p = 0. The plate strip has periodic structure along its
span, cf. Figure 2. However, all plate properties are independent of the x2-coordinate.



Materials 2022, 15, 5623 7 of 23

Figure 2. A fragment of a thin periodic plate strip.

Hence, our considerations can be treated as independent of the x2-coordinate. Let us
denote x = x1; z = x3; and ∂ ≡ (·),1; x ∈ [0,L]; z ∈ [−h/2,h/2], with a constant plate thickness

h. The time derivatives are still denoted by overdots
·
(·). Let ∆ ≡ [−l/2, l/2] be the basic

cell in the interval ∧ ≡ [0, L], and l, l << L, be the length of this cell, satisfying the condition
l << L. By ∆(x) ≡ [x− l/2, x + l/2] denote a cell with a centre at x ∈ [0, L].

It is assumed that the plate strip is made of two elastic isotropic materials, described by:
Young’s moduli E′, E′ ′, Poisson’s ratios ν′, ν′ ′ and mass densities ρ′, ρ′ ′, respectively. These
materials are perfectly bonded on interfaces and periodically distributed along the x-axis.

It is assumed that the properties of the plate strip are described by the functions:

E(y) =
{

E′, for y ∈ ((1− γ)l/2, (1 + γ)l/2),
E′′ , for y ∈ [0, (1− γ)l/2] ∪ [(1 + γ)l/2, l],

(19)

ρ(y) =
{
ρ′, for y ∈ ((1− γ)l/2, (1 + γ)l/2),
ρ′′ , for y ∈ [0, (1− γ)l/2] ∪ [(1 + γ)l/2, l],

(20)

ν(y) =
{

ν′, for y ∈ ((1− γ)l/2, (1 + γ)l/2),
ν′′ , for y ∈ [0, (1− γ)l/2] ∪ [(1 + γ)l/2, l],

(21)

with a distribution parameter of material properties γ, cf. Figure 3. Under the above
assumptions, the effect of material periodic structure on free vibration frequencies will be
considered with using ratios: E′′/E′ ∈ [0, 1], ν′′/ν′ ∈ [0, 1], ρ′′/ρ′ ∈ [0, 1], h/l ∈ (0, 0.1],
γ ∈ [0, 1].

Figure 3. A periodicity cell of the plate strip under consideration.

Effects of the above parameters will be shown only for the first vibration—lower and
higher (for the tolerance model). Hence, the considerations can be restricted to assume
only one fluctuation shape function, i.e., A = N = 1. The analysis for these functions can
be found in [24]. Denote g ≡ g1, V ≡ V1, ∂ ≡ (·),1. Micro-macro decomposition (11) of the
deflection w(x,t) of the plate strip is given by:

w(x, t) = W(x, t) + g(x)V(x, t), (22)

where W(·, t), V(·, t) ∈ SV(Λ, ∆) for every t ∈ (t0, t1), g(·) ∈ FS(Λ, ∆).
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Because the cell is assumed in the form shown in Figure 3, i.e., it has a symmetry axis
normal to the midplane, the fluctuation shape function g(x) is assumed as

g(y) = l2[cos(2πy/l) + c], y ∈ ∆(x), x ∈ Λ, (23)

where the constant c is determined by the condition < µg >= 0 and has the form:

c =
sin(πγ)(ρ′ − ρ′′ )

π[ρ′γ + ρ′′ (1− γ)]
(24)

with γ as the constant distribution parameter of material properties.
Using definitions of periodic Function (7) for the considered plate strip, it can be written:

d(x) ≡ h3

12[1− ν(x)2]
E(x),µ(x) ≡ hρ(x), j(x) ≡ h3

12
ρ(x). (25)

It can be observed that for the assumed periodic cell, Figure 3, and the assumed
fluctuation shape Function (23), term (16)8 neglects:

< j∂g >= 0.

Denoting:

^
D = <d>,

_
D = <d∂∂g>, D = <d∂∂g∂∂g>,

^
µ = <µ>, µ = l−4<µgg>,

^
ϑ = <ϑ>, ϑ = l−2<ϑ∂g∂g>,

(26)

tolerance model Equation (17) has the form:

∂∂(
^
D∂∂W +

_
DV) +

^
µ

..
W −

^
ϑ∂∂

..
W = 0,

_
D∂∂W + DV + l2(l2µ+ ϑ)

..
V = 0.

(27)

Equation (27) describe free vibrations of the periodic plate strip within the toler-
ance model.

Using denotations (26) for the plate strip under consideration, Equation (18)1 takes
the form

∂∂[(
^
D−

_
D

2
/D)∂∂W] +

^
µ

..
W −

^
ϑ∂∂

..
W = 0. (28)

The above equation describes free vibrations of this plate strip in the framework of the
asymptotic model.

3.2. The Using of the Ritz Method

In order to solve the problem of free vibrations and to find free vibration frequencies
for different boundary conditions, the known Ritz method is applied, cf. [49,53]. In this
method, formulas of the maximal strain energy Ymax and the maximal kinetic energy Kmax
should be determined.

The solutions to Equations (28) and (27) for the plate strip under consideration can be
assumed as:

W(x, t) = AWΨ(αx) cos(ωt), V(x, t) = AVΘ(αx) cos(ωt), (29)

where α is a wave number, ω is a free vibration frequency, AW and AV are amplitudes.
Functions Ψ(·) and Θ(·) are eigenvalue functions for the macrodeflection and the fluctuation
amplitude, respectively, which have to satisfy the given boundary conditions for x = 0, L. To
simplify, let us denote the first and second order derivatives of functions Ψ(·) and Θ(·) by:

∂Ψ(αx) ≡ αΨ̃(αx), ∂Θ(αx) ≡ αΘ̃(αx), ∂∂Ψ(αx) ≡ α2Ψ(αx), ∂∂Θ(αx) ≡ α2Θ(αx). (30)
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In the following analysis four different cases of boundary conditions of the plate strip
will be considered, i.e.:

• the simply supported plate strip

Ψ(0) = ∂∂Ψ(0) = Ψ(L) = ∂∂Ψ(L) = 0; (31)

• the clamped-hinged plate strip

Ψ(0) = ∂Ψ(0) = Ψ(L) = ∂∂Ψ(L) = 0; (32)

• the plate strip clamped on both edges

Ψ(0) = ∂Ψ(0) = Ψ(L) = ∂Ψ(L) = 0; (33)

• the cantilever plate strip

Ψ(0) = ∂Ψ(0) = ∂∂Ψ(L) = ∂∂∂Ψ(L) = 0. (34)

The eigenvalue functions Ψ(·) and Θ(·) from solutions (29) can be assumed as for the
homogeneous plate strip as functions satisfying the boundary conditions (31)–(34). In order
to describe these solutions, the Krylov–Prager functions are introduced:

S(αx) = 1
2 [cosh(αx) + cos(αx)], T(αx) = 1

2 [sinh(αx) + sin(αx)],
W(αx) = 1

2 [cosh(αx)− cos(αx)], V(αx) = 1
2 [sinh(αx)− sin(αx)].

(35)

Hence, the aforementioned eigenvalue functions Ψ(·) and Θ(·) can be written as:

• the simply supported plate strip

Ψ(αx) = sin(αx), Θ(αx) = sin(αx); (36)

• the clamped-hinged plate strip

Ψ(αx) = Θ(αx) = W(αx)− coth(αL)V(αx); (37)

• the plate strip clamped on both edges

Ψ(αx) = Θ(αx) = W(αx)− cosh(αL)− cos(αL)
sinh(αL)− sin(αL)

V(αx); (38)

• the cantilever plate strip

Ψ(αx) = Θ(αx) = W(αx)− sinh(αL)− sin(αL)
cosh(αL) + cos(αL)

V(αx). (39)

Now, applying the Ritz method formulas for the maximal strain energy Ymax and the
maximal kinetic energy Kmax should be formulated in the framework of both models—the
tolerance and the asymptotic. Then, the conditions of the Ritz method have to be used:

∂(Ymax −Kmax)

∂AW
= 0,

∂(Ymax −Kmax)

∂AV
= 0, (40)

from which formulas of free vibrations frequencies can be determined.
Denotations (26), after substituting into them the fluctuation shape function (23),

functions of material properties (19)–(21) and eigenvalue functions Ψ(·) and Θ(·), take
the form:
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^
D = h3

12 [
E′′

1−ν′′ 2
(1− γ) + γ E′

1−ν′2
]
∫ L

0 [Ψ(αx)]2dx,
_
D = πh3

3 ( E′

1−ν′2
− E′′

1−ν′′ 2
) sin(πγ)

∫ L
0 Ψ(αx)Θ(αx)dx,

D = (πh)3

3

{
( E′

1−ν′2
− E′′

1−ν′′ 2
)[2πγ + sin(2πγ)] + 2π E′′

1−ν′′ 2

}∫ L
0 [Θ(αx)]2dx,

^
µ = h[(1− γ)ρ′′ + γρ′]

∫ L
0 [Ψ(αx)]2dx,

^
ϑ = h3

12 [(1− γ)ρ′′ + γρ′]
∫ L

0 [Ψ̃(αx)]
2
dx,

µ = h
4π {(ρ′ − ρ′′ )[2πγ + sin(2πγ)] + 2πρ′′ }

∫ L
0 [Θ(αx)]2dx+

+ h
π (ρ

′ − ρ′′ )c[πcγ− 2 sin(πγ)]
∫ L

0 [Θ(αx)]2dx + hρ′′ c2
∫ L

0 [Θ(αx)]2dx,
ϑ = πh3

12 {(ρ′ − ρ′′ )[2πγ− sin(2πγ)] + 2πρ′′ }
∫ L

0 [Θ(αx)]2dx.

(41)

The maximal strain energy Ymax and the maximal kinetic energy Kmax by the tolerance
model can be written as:

YTM
max =

1
2
[(
^
DAW

2α2 + 2
_
DAW AV)α

2 + DAV
2], KTM

max =
1
2
[AW

2(
^
µ +

^
ϑα2) + AV

2l2(l2µ+ ϑ)]ω2. (42)

However, in the framework of the asymptotic model, these formulas have the form:

YAM
max =

1
2
[(
^
DAW

2α2 + 2
_
DAW AV)α

2 + DAV
2], KAM

max =
1
2

AW
2(

^
µ +

^
ϑα2)ω2. (43)

Using conditions (40) to relations (42), after some manipulations, the following formu-
las are obtained:

(ω−,+)
2 ≡ l2(l2µ+ϑ)α4

^
D+(

^
µ+α2

^
ϑ)D

2(
^
µ+α2

^
ϑ)l2(l2µ+ϑ)

∓

∓

√
[l2(l2µ+ϑ)α4

^
D−(^µ+α2

^
ϑ)D]

2
+4(α2

_
D)

2
l2(

^
µ+α2

^
ϑ)(l2µ+ϑ)

2(
^
µ+α2

^
ϑ)l2(l2µ+ϑ)

,

(44)

of the lower ω− and the higher ω+ free vibration frequencies, respectively, in the framework of
the tolerance model.

On the other side, the conditions (40) used to relations (43) of the asymptotic model led
to the following formula:

ω2 = α4
^
DD−

_
D

2

D(
^
µ +

^
ϑα2)

(45)

of the lower free vibration frequencyω.
Under the above analytical results, it can be observed that in the framework of the

tolerance model, the effect of the microstructure size of the plate strip can be analysed in
the form of higher free vibration frequencies, (44)2, but the asymptotic model leads only to
the fundamental lower frequency, (45).

3.3. Results of Calculations

Let us define dimensionless frequency parameters:

Ω−2 ≡ ρ′

E′
L2ω−

2, Ω+
2 ≡ ρ′

E′
L2ω+

2, Ω2 ≡ ρ′

E′
L2ω2, (46)

where the free vibration frequenciesω−,ω+, andω are determined by Equations (44) and
(45), respectively.

Results of calculations are presented in Figures 4–19.
Plots in Figures 4a, 7a, 10a, 14a and 17a are made for the simply supported plate strip, in

Figures 4b, 7b, 10b, 14b and 17b for the clamped-hinged plate strip, in Figures 5a, 8a, 11a, 15a and 18a
for the plate strip clamped on both edges, and in Figures 5b, 8b, 11b, 15b and 18b for the
cantilever plate strip. Figures 4–8, Figures 10–12, Figures 14, 15, 17 and 18 show results of
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the lower frequency parameters (46)1,3, but Figures 9, 13, 16 and 19 are the higher frequency
parameters (46)2.

The results shown in Figures 4 and 5 and in Figure 9a are in the form of surfaces of
the frequency parameters versus pairs of ratios (ρ′′/ρ′; E′′/E′). In calculations there are
assumed: the Poisson’s ratios ν′ ′ = ν′ = 0.3, ratio l/L = 0.1, ratio h/l = 0.1 and γ = 0.3,
0.5, 0.8.

The lower frequency parameters of the homogeneous plate strips are presented in
Figures 4, 5, 10, 11, 14, 15, 17 and 18 by grey planes (γ = 1) and they are related to values Ω:
0.0298656 for the simply supported plate strip (Figures 4a, 10a, 14a and 17a), 0.0466553 for
the clamped-hinged plate strip (Figures 4b, 10b, 14b and 17b), 0.0676988 for the clamped-
clamped plate strip (Figures 5a, 11a, 15a and 18a), and 0.0106397 for the cantilever plate
strip (Figures 5b, 11b, 15b and 18b).

Figure 4. Dimensionless lower frequency parameters (46)1,3 versus pairs of ratios (ρ′′/ρ′; E′′/E′) (for
h/l = 0.1, l/L = 0.1) for: (a) a simply supported plate strip, (b) a clamped-hinged plate strip.

Figure 5. Dimensionless lower frequency parameters (46)1,3 versus pairs of ratios (ρ′′/ρ′; E′′/E′) (for
h/l = 0.1, l/L = 0.1) for: (a) a clamped-clamped plate strip, (b) a cantilever plate strip.
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Figure 6. Traces of surfaces of dimensionless lower frequency parameters (46)1,3 from Figures 4 and 5
on planes of these frequency parameters for the homogeneous plate strips (γ = 1) (for h/l = 0.1,
l/L = 0.1) for all boundary conditions under consideration.

Figure 7. Dimensionless lower frequency parameters (46)1,3 versus pairs of ratios (γ; h/L) (for
E′′/E′ = 0.5, l/L = 0.1) for: (a) a simply supported plate strip, (b) a clamped-hinged plate strip.

The effect of differences of Young’s moduli (ratios E′′/E′) and mass densities (ratios
ρ′′/ρ′) on the lower frequency parameters can be observed in Figures 4 and 5, i.e., they
increase with the increasing of ratio E′′/E′; they decrease with the increasing of ratio ρ′′/ρ′.

There are pairs of ratios ((ρ′′/ρ′)*; (E′′/E′)*) such that, cf. Figures 4 and 5: the lower
frequency parameters are smaller than this parameter for the homogeneous plate strip
(γ = 1) for E′′/E′ ≤ (E′′/E′)* and ρ′′/ρ′ ≥ (ρ′′/ρ′)*; they are bigger than this parameter for
the homogeneous plate strip (γ = 1) for E′′/E′ > (E′′/E′)* and ρ′′/ρ′ < (ρ′′/ρ′)*.
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Figure 8. Dimensionless lower frequency parameters (46)1,3 versus pairs of ratios (γ; h/L) (for
E′′/E′ = 0.5, l/L = 0.1) for: (a) a clamped-clamped plate strip, (b) a cantilever plate strip.

Figure 9. Dimensionless higher frequency parameters (46)2 versus: (a) pairs of ratios (ρ′′/ρ′; E′′/E′)
(for h/l = 0.1, l/L = 0.1), (b) pairs of ratios (γ; h/L) (for E′′/E′ = 0.5, l/L = 0.1).

Figure 10. Dimensionless lower frequency parameters (46)1,3 versus pairs of ratios (γ; E′′/E′) (for
ν′′/ν′ = 1, l/L = 0.1, h/l = 0.1) for: (a) a simply supported plate strip, (b) a clamped-hinged plate strip.
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Figure 11. Dimensionless lower frequency parameters (46)1,3 versus pairs of ratios (γ; E′′/E′) (for
ν′′/ν′ = 1, l/L = 0.1, h/l = 0.1) for: (a) a clamped-clamped plate strip, (b) a cantilever plate strip.

Figure 12. Traces of surfaces of dimensionless lower frequency parameters (46)1,3 from
Figures 10 and 11 on planes of these frequency parameters for the homogeneous plate strips (γ = 1)
(for ν′′/ν′ = 1, h/l = 0.1, l/L = 0.1) for all boundary conditions under consideration.

Figure 13. Dimensionless higher frequency parameters (46)2 versus pairs of ratios (γ; E′′/E′) (for
ν′′/ν′ = 1, l/L = 0.1, h/l = 0.1).
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Figure 14. Dimensionless lower frequency parameters (46)1,3 versus pairs of ratios (γ; ν′′/ν′) (for
E′′/E′ = 0.5, l/L = 0.1, h/l = 0.1) for: (a) a simply supported plate strip, (b) a clamped-hinged
plate strip.

Figure 15. Dimensionless lower frequency parameters (46)1,3 versus pairs of ratios (γ; ν′′/ν′) (for
E′′/E′ = 0.5, l/L = 0.1, h/l = 0.1) for: (a) a clamped-clamped plate strip, (b) a cantilever plate strip.

Figure 16. Dimensionless higher frequency parameters (46)2 versus pairs of ratios (γ; ν′′/ν′) (for
E′′/E′ = 0.5, l/L = 0.1, h/l = 0.1).
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Figure 17. Dimensionless lower frequency parameters (46)1,3 versus pairs of ratios (γ; ρ′′/ρ′) (for
ν′′/ν′ = 1, l/L = 0.1, h/l = 0.1) for: (a) a simply supported plate strip, (b) a clamped-hinged plate strip.

Figure 18. Dimensionless lower frequency parameters (46)1,3 versus pairs of ratios (γ; ρ′′/ρ′) (for
ν′′/ν′ = 1, l/L = 0.1, h/l = 0.1) for: (a) a clamped-clamped plate strip, (b) a cantilever plate strip.

Figure 19. Dimensionless higher frequency parameters (46)2 versus pairs of ratios (γ; ρ′′/ρ′) (for
ν′′/ν′ = 1, l/L = 0.1, h/l = 0.1).
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Figure 6 shows traces of surfaces of the lower frequency parameters (46)1,3, from
Figures 4 and 5 (pairs of ratios ((ρ′′/ρ′)*; (E′′/E′)*) as curves), on planes of these frequency
parameters for the homogeneous plate strips (γ = 1) (for ν′′/ν′ = 1, h/l = 0.1, l/L = 0.1) for
all considered boundary conditions, mentioned above. It can be observed that these traces
are the same for various boundary conditions of periodic plate strips under consideration,
for fixed values of the parameter γ = 0.3, 0.5, 0.8.

However, Figures 7, 8 and 9b present surfaces of dimensionless frequency parameters
versus pairs of ratios (γ; h/L), γ ∈ [0, 1], h/l ∈ (0, 0.1]. These calculations are made for: the
Poisson’s ratios ν′′ = ν′ = 0.3, ratio E′′/E′ = 0.5, ratios ρ′′/ρ′ = 0.2, 0.5, 0.8.

From Figures 7 and 8, it can be observed that the lower frequency parameters increase
with the increasing of h/L and decrease with the increasing of γ for certain values of the
ratio ρ′′/ρ′, e.g., ρ′′/ρ′ = 0.2, but for other values of this ratio they are more varied (it is the
parameter γ0 that the frequency parameters decrease for γ ≤ γ0 but increase for γ > γ0).
All surfaces of the lower frequency parameters have the same edge for γ = 1.

Similar effects of the ratios ρ′′/ρ′, E′′/E′ as for the lower frequency parameters pre-
sented in Figures 4 and 5 can also be found for the higher frequency parameters in Figure 9a,
i.e., they increase with the increasing of ratio E′′/E′; they decrease with the increasing of
ratio ρ′′/ρ′.

The dependency of the higher frequency parameters on the distribution parameter
of material properties γ and the ratio of the thickness h/L, can be found in Figure 9b (for
fixed ratios: E′′/E′ = 0.5; ρ′′/ρ′ = 0.2, 0.5, 0.8). It can be observed that the higher frequency
parameters increase with the increasing of h/L; the dependency of these parameters on the
parameter γ is more complicated, since for fixed ratios E′′/E′ = 0.5 and ρ′′/ρ′ = 0.2, 0.5, 0.8
there are γ1 and γ2 such that these frequency parameters increase for γ ≤ γ1 or γ > γ2, but
decrease for γ1 < γ ≤ γ2. Similarly to lower frequency parameters, cf. Figures 7 and 8, all
surfaces of the higher frequency parameters have the same edge for γ = 1.

Surfaces of dimensionless frequency parameters versus pairs of ratios (γ; E′′/E′),
γ ∈ [0, 1], E′′/E′ ∈ [0, 1], are shown in Figures 10, 11 and 13. These calculations are made
for: the Poisson’s ratios ν′′ = ν′ = 0.3, ratio h/l = 0.1, ratios ρ′′/ρ′ = 0.3, 0.5, 0.7.

From surfaces of the lower frequency parameters versus pairs (γ; E′′/E′) presented
in Figures 10 and 11, it can be observed that the frequency parameters increase with the
increasing of E′′/E′ and with the increasing of γ. Moreover, all surfaces of the lower
frequency parameters have the same edge for γ = 1.

It can be distinguished that for pairs of ratios (γ*; (E′′/E′)*) such as cf. Figures 10 and 11,
the lower frequency parameters are smaller than this parameter for the homogeneous plate
strip (γ = 1) for some values γ* and E′′/E′ ≤ (E′′/E′)*(γ*), where (E′′/E′)* is dependent on
γ*; they are bigger than this parameter for the homogeneous plate strip (γ = 1) for E′′/E′ >
(E′′/E′)*(γ*), where (E′′/E′)* is dependent on γ*.

In Figure 12, traces of surfaces of the lower frequency parameters are presented (46)1,3,
from Figures 10 and 11, on planes related to the homogeneous plate strips (γ = 1) (for
ν′′/ν′ = 1, h/l = 0.1, l/L = 0.1) for all considered boundary conditions (the pairs of ratios
(γ*; (E′′/E′)*) from Figures 10 and 11). Similarly to Figure 6, these traces are the same for
various boundary conditions of these periodic plate strips, for fixed values of the ratio
ρ′′/ρ′ = 0.3, 0.5, 0.7.

The higher frequency parameters depend on the distribution parameter of material
properties γ and the ratio E′′/E′, cf. Figure 13 (for fixed ratios: ν′′/ν′ = 1; ρ′′/ρ′ = 0.3, 0.5,
0.7). From this figure it can be observed that the frequency parameters increase with the
increasing of E′′/E′. However, the dependency of these parameters on the parameter γ is
more complicated, because for the fixed ratios ν′′/ν′ = 1 and ρ′′/ρ′ = 0.3, 0.5, 0.7, there are
γ1 and γ2 such that these frequency parameters increase for γ ≤ γ1 or γ > γ2 but decrease
for γ1 < γ ≤ γ2. Similarly to the lower frequency parameters, all surfaces of the higher
frequency parameters have the same edge for γ = 1.

Surfaces of dimensionless frequency parameters versus pairs of ratios (γ; ν′′/ν′),
γ ∈ [0, 1], ν′′/ν′ ∈ [0, 1], are presented in Figures 14 and 15 (for lower frequencies) and in
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Figure 16 (for higher frequencies). These plots are made for ratios: E′′/E′ = 0.5, h/l = 0.1,
ρ′′/ρ′ = 0.3, 0.5, 0.7.

From surfaces of the lower frequency parameters versus pairs (γ; ν′′/ν′) presented in
Figures 14 and 15, it can be observed that:

• the frequency parameters increase with the increasing of ν′′/ν′;
• the dependency of these parameters on the parameter γ is more complicated, since

(for the fixed ratio E′′/E′ = 0.5):

- for some fixed values of ρ′′/ρ′, e.g., ρ′′/ρ′ = 0.7, these frequency parameters
increase with the increasing of γ,

- for some fixed values of ρ′′/ρ′, e.g., ρ′′/ρ′ = 0.5, there is γ0 such that these
frequency parameters decrease for γ ≤ γ0, but increase for γ0 < γ,

- for some fixed values of ρ′′/ρ′, e.g., ρ′′/ρ′ = 0.3, there are γ1 and γ2 such that
these frequency parameters decrease for γ ≤ γ1 or γ > γ2, but increase for γ1 < γ
≤ γ2;

• values presented in surfaces of the lower frequency parameters are smaller than this
parameter for the homogeneous plate strip (γ = 1) for—the fixed ratio E′′/E′ = 0.5 and
some fixed ratios ρ′′/ρ′, ρ′′/ρ′ > 0.3;

• for some fixed ratios ρ′′/ρ′, ρ′′/ρ′ ≤ 0.3, there are some values γ* and ν′′/ν′ ≥
(ν′′/ν′)*(γ*), where (ν′′/ν′)* is dependent on γ*, such that the lower frequency param-
eters are bigger than this parameter for the homogeneous plate strip (γ = 1).

• Moreover, all surfaces of the lower frequency parameters have the same edge for γ = 1.

Figure 16 shows that the higher frequency parameters increase with the increasing
of ν′′/ν′. Moreover, the dependency of these parameters on the parameter γ is more
complicated, since (for the fixed ratio E′′/E′ = 0.5):

- for some fixed ratios ρ′′/ρ′ = 0.5, 0.7 there are γ1 and γ2 such that these frequency
parameters increase for γ ≤ γ1 or γ > γ2, but decrease for γ1 < γ ≤ γ2,

- however, this dependency of these parameters on the parameter γ for the rather small
fixed ratio ρ′′/ρ′, e.g., ρ′′/ρ′ = 0.3, has other form, because there are γ3 and γ4 such
that these frequency parameters decrease for γ ≤ γ3 or γ > γ4, but increase for γ3 < γ
≤ γ4.

Similarly to the lower frequency parameters, cf. Figures 14 and 15, all surfaces of the
higher frequency parameters have the same edge for γ = 1.

Similar graphs, but versus pairs of ratios (γ; ρ′′/ρ′), γ ∈ [0, 1], ρ′′/ρ′ ∈ [0, 1], can be
found in Figures 17 and 18 (for lower frequencies) and in Figure 19 (for higher frequencies).
These results are obtained for parameters: ν′′/ν′ = 1, ρ′′/ρ′ = 0.5, h/l = 0.1, E′′/E′ = 0.3,
0.5, 0.7.

From Figures 17 and 18, it can be concluded that:

• the frequency parameters decrease with the increasing of ρ′′/ρ′;
• the dependency of these parameters on the parameter γ is more complicated, because

(for the fixed ratio ν′′/ν′ = 1):

- for some fixed ratios E′′/E′, e.g., E′′/E′ = 0.5, 0.7, the frequency parameters
decrease with the increasing of the parameter γ,

- for some fixed ratios E′′/E′, E′′/E′ < 0.5, it is γ0 such that these frequency parame-
ters decrease for γ ≤ γ0, but increase for γ0 < γ;

• the lower frequency parameters are smaller than this parameter for the homogeneous
plate strip (γ = 1) for some values γ* and ρ′′/ρ′ ≥ (ρ′′/ρ′)*(γ*), where (ρ′′/ρ′)* is
dependent on γ*;

• the frequency parameters are bigger than this parameter for the homogeneous plate
strip (γ = 1) for some γ* and ρ′′/ρ′ < (ρ′′/ρ′)*(γ*), where (ρ′′/ρ′)* depends on γ*.

Moreover, all surfaces of the lower frequency parameters have the same edge for γ = 1.
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Figure 19 presents the higher frequency parameters increase with the decreasing of
ρ′′/ρ′. On the other hand, the dependency of these parameters on the parameter γ is more
complicated, since (for the fixed ratio ν′′/ν′ = 1):

- for more fixed ratios E′′/E′ < 0.7 (e.g., E′′/E′ = 0.3, 0.5) it is γ0 (dependent on ρ′′/ρ′)
such that these frequency parameters increase for γ ≤ γ0, but decrease for γ0 < γ,

- however, this dependency of these parameters on the parameter γ for the rather big
fixed ratio E′′/E′, e.g., E′′/E′ = 0.7, has other form, because there are γ1 and γ2 such
that these frequency parameters decrease for γ ≤ γ1 or γ > γ2, but increase for γ1 < γ
≤ γ2.

Similarly to the lower frequency parameters, cf. Figures 17 and 18, all surfaces of the
higher frequency parameters have the same edge for γ = 1.

Moreover, all calculations are made for the wave numberα related to the first form of eigenfunc-
tion for every case of the supports, i.e.,: α = π for (31), Figures 4a, 7a, 10a, 14a and 17a; α = 3.9266
for (32), Figures 4b, 7b, 10b, 14b and 17b; α = 4.7300 for (33), Figures 5a, 8a, 11a, 15a and 18a; and
α = 1.8751 for (34), Figures 5b, 8b, 11b, 15b and 18b.

It can be observed that the tolerance and the asymptotic models lead to nearly identical
values of lower frequency parameters, cf. Figures 4–8, 10–12, 14, 15, 17 and 18. Moreover,
plots of surfaces of higher frequency parameters are the same for various boundary condi-
tions of periodic plate strips under consideration.

4. Some Final Remarks

Vibrations of thin periodic plates for various boundary conditions have been modelled
here. Using the tolerance modelling, the known differential equation of Kirchhoff-type plates
has been averaged. This method leads from the governing differential equation with
non-continuous, periodic coefficients to the system of differential equations with constant
coefficients. Using this method, the effect of the microstructure size on the overall dynamic
behaviour of the plates under consideration is taken into account in the derived tolerance
model equations. On the other hand, a simplified averaged model—the asymptotic model—
is described by the governing equation without this effect.

Under the presented considerations, the following general remarks, common to the
application of the tolerance modelling method for different microheterogeneous objects,
can be formulated.

1. The tolerance model allows us to analyse the effect of the microstructure size on dynamic
problems of thin periodic plates under consideration, e.g., the “higher order” vibra-
tions, related to the plate microstructure.

2. A certain a posteriori criterion of physical reliability for the model is that the basic
unknowns W, VA, A = 1, ..., N, have to be slowly-varying functions. Moreover, under
these conditions, the governing equations of the tolerance model have a physical sense.

3. Using the asymptotic model of periodic plates, lower order (fundamental) vibrations
can be only analysed.

Summarising the remarks of the results of calculations from Section 3, some additional,
more general comments can be formulated:

1. Lower free vibration frequencies (also called fundamental frequencies) can be analysed
within both the models—the tolerance and the asymptotic.

2. Values of lower free vibration frequencies of the considered periodic plate strips also
depend on boundary conditions of these strips and they change from the highest
values to the smallest as for the homogeneous plate strips with identical boundary
conditions: the clamped-clamped plate strip, the clamped-hinged plate strip, the
simply supported plate strip, the cantilever plate strip.

3. Higher free vibration frequencies, related to the periodic microstructure of the plate,
can be investigated only within the tolerance model.
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4. Values of higher free vibration frequencies of the considered periodic plate strips
do not depend on boundary conditions of these plates, but only on material and
geometrical properties of the plates.

5. The effects of differences between material or geometrical parameters, such that
Young’s moduli (the ratio E′′/E′), mass densities (the ratio ρ′′/ρ′), Poisson’s ratios
(the ratio ν′′/ν′), the plate thickness (the ratio h/L), on free vibration frequencies are
similar for both kinds of them—lower and higher.

6. The effect of the distribution parameter of material properties γ on these frequencies
is more complicated to describe and is slightly different for both kinds of frequencies—
lower and higher.

7. The effect of the parameter γ on the frequencies is related to the material properties
Young’s moduli (the ratio E′′/E′), mass densities (the ratio ρ′′/ρ′), and Poisson’s ratios
(the ratio ν′′/ν′).

8. Sections by the planes corresponding to the fundamental free vibration frequency
of homogeneous plate strips of surfaces for the lower frequencies of periodic plate
strips are identical for all boundary conditions. Therefore, created in this way, traces
of these surfaces of lower frequencies on the relevant planes of frequencies are the
same for all considered boundary conditions.

In this paper, an application of the tolerance model to the analysis free vibration
frequencies—lower and higher—are shown for periodic plate strips with various boundary
conditions. Selected results were also compared with the results obtained by the finite
element method, cf. Appendix A.

We presented a wide analysis of issues of free vibrations of periodic plates, which
allows us to notice that the tolerance model seems to be a good tool in the study of this
kind of problem. Moreover, this model can be used in the consideration of optimisation of
periodic plates.
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Appendix A

Here, obtained results for some selected cases of the simply supported plate strips
are compared with results calculated using a commercial computer program of the finite
element method (FEM)—Abaqus, with a type of elements S8R5. These results are shown in
Table A1. The comparisons are made only for the fundamental lower frequency parameters,
because they can only be calculated in the framework of the commercial computer programs
of FEM. The parameter of differences between the results of the FEM (Ω0) and the tolerance
model (Ω) is denoted by:

ε =

∣∣∣∣Ω0 −Ω_

Ω_

∣∣∣∣100%. (A1)

Results are obtained for these periodic plate strips for ratios or parameters: Poisson’s
ratios ν′′ = ν′ = 0.3; E′′/E′ = 0.25, 0.5, 0.75; ρ′′/ρ′ = 0.2, 0.5, 0.8; γ = 0.2, 0.5, 0.8. Additionally,
the first lower frequency parameter for the proper homogeneous plate strip is shown with
these boundary conditions (ν′′ = ν′ = 0.3; E′′/E′ = 1; ρ′′/ρ′ = 1; γ = 1) calculated using the
tolerance model (Ω = 0.02987), the classical analytical solution (ΩC = 0.02987), and FEM
(Ω0 = 0.02986) [%].



Materials 2022, 15, 5623 21 of 23

Table A1. Frequency parameters Ω−, Ω0 for lower free vibration frequencies for the simply supported
plate strip (α = π, ν = 0.3, l/L = 0.1, h/l = 0.1).

γ
E”/E’ = 0.25 E”/E’ = 0.5 E”/E’ = 0.75 E’/E” = 1

ρ”/ρ’ Ω− Ω0 ε [%] Ω− Ω0 ε [%] Ω− Ω0 ε [%] Ω− Ω0 ε [%]

0.2

0.2 0.02830 0.02738 3.36 0.03771 0.03811 1.05 0.04438 0.04445 0.16 0.04978 0.04977 0.02
0.5 0.02192 0.02120 3.40 0.02921 0.02951 1.02 0.03437 0.03443 0.17 0.03856 0.03855 0.03
0.8 0.01853 0.01792 3.40 0.02469 0.02494 1.00 0.02905 0.02910 0.17 0.03259 0.03258 0.03
1.0 0.01698 0.01642 3.41 0.02263 0.02286 1.01 0.02663 0.02667 0.15 0.02987 0.02986 0.03

0.5

0.2 0.02565 0.02662 3.64 0.03185 0.03173 0.38 0.03577 0.03570 0.20 0.03856 0.03855 0.03
0.5 0.02294 0.02380 3.61 0.02849 0.02838 0.39 0.03199 0.03193 0.19 0.03449 0.03448 0.03
0.8 0.02094 0.02172 3.59 0.02601 0.02590 0.42 0.02920 0.02914 0.21 0.03148 0.03148 0.00
1.0 0.01987 0.02060 3.54 0.02467 0.02457 0.41 0.02770 0.02765 0.18 0.02987 0.02986 0.03

0.8

0.2 0.02908 0.02962 1.82 0.03055 0.03012 1.43 0.03168 0.03155 0.41 0.03259 0.03258 0.03
0.5 0.02810 0.02861 1.78 0.02951 0.02910 1.41 0.03061 0.03048 0.00 0.03148 0.03148 0.00
0.8 0.02720 0.02770 1.81 0.02857 0.02818 1.38 0.02963 0.02951 0.41 0.03048 0.03048 0.00
1.0 0.02665 0.02714 1.81 0.02800 0.02761 1.41 0.02904 0.02891 0.45 0.02987 0.02986 0.03

The curves of the parameter of differences ε versus the ratios ρ′′/ρ′ are shown in
Figure A1.

Figure A1. The parameter of differences ε (A1) versus the ratios ρ′′/ρ′ (for ν′′/ν′ = 1, l/L = 0.1,
h/l = 0.1; ν′′ = ν′ = 0.3; E′′/E′ = 0.25, 0.5, 0.75; γ = 0.2, 0.5, 0.8).

Analysing results shown in Table A1 and Figure A1, it can be observed that:
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1. Using the finite element method, only the lower frequency parameters, obtained in
the framework of the tolerance model, can be compared and justified.

2. Differences between values of these parameters calculated using both methods are
smaller than about 4% (3.64%) for the assumed geometrical and material parameters.

3. Smaller differences between obtained results (below 1.5%) are for these plate strips,
which are described by the ratio E′′/E′ ≥ 0.5 (E′′/E′ = 0.5, 0.75, 1) and various values
of the ratios—γ = 0.2, 0.5, 0.8; ρ′′/ρ′ = 0.2, 0.5, 0.8, 1.

4. The biggest differences between calculated lower frequency parameters (above 3%)
are for smaller values of the ratio E′′/E′ (e.g., E′′/E′ = 0.25) and some smaller values
of the distribution parameter of material properties γ (e.g., γ = 0.2, 0.5).
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