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Abstract: Natural polysaccharides are attractive and promising biomacromolecules for the green
synthesis of silver nanoparticles (Ag NPs) with a broad spectrum of useful functions. This study
aims to evaluate the synthetic conditions and physical properties of Ag NPs using three fractions
of exopolysaccharide (EPS), namely EPS-1, EPS-2, and EPS-3, produced by a medicinal fungus
known as Cs-HK1, with variations in their chemical composition and molecular weight. Each of the
EPS fractions had a unique set of optimal synthetic conditions (reaction time course, temperature,
and reagent concentration), resulting in a specific range of Ag NP size distributions. The Ag NPs
synthesized with the EPS-1 fraction had the smallest particle size (~160 nm) and the most significant
antibacterial activities against Escherichia coli (Gram−) and Staphylococcus aureus (Gram+), with a
minimal inhibitory concentration (MIC) of 0.2 mg/mL on E. coli and 0.075 mg/mL on S. aureus. The
results proved the success of the scheme of this green synthesis scheme with all three EPS fractions
and the potential antibacterial application of EPS-coated Ag NPs.

Keywords: silver nanoparticle; fungal polysaccharide; reaction conditions; antibacterial activity

1. Introduction

Silver nanoparticles (Ag NPs) have attracted vast research interest because of their
potential functions in many fields such as biomedical, environmental, electronic, catalysis,
and antimicrobial areas [1–6]. Compared with other metallic NPs, Ag NPs exhibit outstand-
ing antibacterial activity, which is needed for many medical and biological applications [7].
The antibacterial property of Ag NPs is particularly useful for surface-coating agents and
wound dressings [8]. As shown by a previous study [9,10], Ag NPs can be coated on textile
fabrics, particularly on the sheath part, with more significant antibacterial properties than
when coated on the core part.

Chemical reduction is one of the most popular bottom-up approaches for the prepara-
tion of Ag NPs as a colloidal dispersion in water or organic solvents [11–14]. Conversion of
Ag(I) ions to atomic Ag (0) can be achieved with reducing agents such as NaBH4 [15,16],
citrate [17], and elemental hydrogen [18]. Ag NPs formed with strong reductants such
as borohydride are extremely small [19], and weaker reductants such as citrate would
result in a broad particle size distribution at a lower reaction rate [20]. In addition to the
reducing agents, capping agents need to be added to the reaction mixture as stabilizers,
which bind the particles in order to prevent aggregation [21]. Polymers such as polyvinyl
pyrolidine (PVP) [22] and bovine serum albumin (BSA) [2], and organic molecules such as
polysaccharides and polyphenol usually serve as the stabilizers [23].

A major concern with the use of chemical reducing and capping agents is their po-
tential toxicity, which is unfavorable for applications related to humans, such as in food,
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cosmetics, and pharmaceutical products. Natural and biological molecules such as polysac-
charides have been widely explored as biocompatible agents for the green synthesis of Ag
NPs with low toxicity [24,25]. It has been suggested that the aldehyde groups in polysac-
charide molecules may contribute to the Ag+ ion reduction [26,27]. As some of these
polysaccharides may act as both reducing and capping agents, synthesis and stabilization
can be accomplished in a single step.

Cordyceps sinensis is a valuable medicinal fungus and has been used as a tonic food in
China since ancient times. Cs-HK1 is an anamorphic fungus isolated from the fruit body of
wild C. sinensis [28]. In a previous research study of our group, we established a novel green
method to synthesize uniformly sized Ag NPs using exopolysaccharides (EPS) produced
by the Cs-HK1 fungus [27]. In this study, we further investigated the conditions for Ag NP
synthesis with three EPS fractions from Cs-HK1 and proposed a modified protocol for Ag
NP preparation. The properties and antibacterial activity of the Ag NPs were evaluated
with respect to the molecular properties of the EPS fractions and experimental conditions.

2. Materials and Methods
2.1. Cs-HK1 Mycelial Fermentation and EPS Isolation

The Cs-HK1 fungus was isolated from wild Cordyceps sinensis and maintained in
a mycelial culture as described previously [28]. For mycelial fermentation, the Cs-HK1
mycelium on a solid culture in a Petri dish was transferred into a liquid medium in an
Erlenmeyer flask and incubated on a rotary shaker for 7 days. The mycelial culture broth
was used as the inoculum for the subsequent mycelial fermentation, which was carried out
in shake flasks at 20 ◦C for 7 days. The mycelial fermentation liquid was then centrifuged,
and the liquid supernatant was collected for the isolation of EPS via ethanol precipitation.
The ethanol precipitation was performed in a series of three steps with 40%, 60%, and
80% v/v ethanol, respectively, yielding three EPS fractions: EPS-1, EPS-2, and EPS-3. The
EPS precipitates were separated from the liquid via centrifugation and freeze-dried as the
final EPS products [29].

2.2. Characterization of EPS

The water solubility of EPS fractions was determined by dissolving a certain mass
of EPS in deionized water and stirring vigorously overnight. The solution was then
centrifuged at 6000 rpm for 10 min, and the undissolved precipitate was collected, dried,
and weighed. The solubility of EPS fractions was the initial mass minus the undissolved
mass per volume.

The total carbohydrate content in EPS fractions was determined with the Anthrone
test using glucose as a calibration standard [30]. The EPS sample solution was prepared by
dissolving 0.01 g EPS-1, EPS-2, or EPS-3 in 1 mL deionized water. After the solution was
cooled to room temperature, the UV–Vis absorbance at 620 nm was recorded.

The total protein content in EPS fractions was determined with the Lowry method
using bovine serum albumin (BSA) as a standard [31]. The EPS sample (0.01 g) was
dissolved in deionized water to a final concentration of 10 mg mL−1. A Lowry Reagent
Solution (1 mL) was added to 1 mL of the sample solution and kept at room temperature for
60 min, followed by the addition of 0.1 mL diluted Folin–Ciocalteu (FC) reagent solution
(with deionized water at 1:1 volume ratio). The solution was kept at room temperature for
another 45 min, and then absorbance at 750 nm was measured.

The molecular weight distribution of EPS fractions was analyzed via high-pressure
gel permeation chromatography (HPGPC) with a Waters 1515 isocratic HPLC pump and a
Waters 2414 refractive index detector. Two columns, Ultrahydrogel 120, 250 and Ultrahy-
drogel 2000 (both 7.8 mm × 300 mm dimensions from Waters Co., Milford, MA, USA), were
used in a series. Deionized water was used as the mobile phase at 0.6 mL min−1 and 50 ◦C.
The EPS sample was dissolved in deionized water at 0.4 mg mL−1 and filtered through
a 0.45 µm membrane before injection. Dextran molecular weight standards ranging from
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1.0 to 670 kDa (Sigma, St. Louis, MO, USA) were used for calibration. The Breeze V3.3
software was used for the computation of data.

The monosaccharide composition of EPS fractions was analyzed via HPLC after
acid hydrolysis and a 1-phenyl-3-methyl-5-pyrazolone (PMP) reaction. In brief, 5 mg of
sample was hydrolyzed with 2 mL of 2 M trifluoroacetic acid (TFA) at 110 ◦C for 4 h.
The hydrolysate was then dried in a rotatory evaporator at 40 ◦C and redissolved in
2 mL of deionized water. The hydrolysate solution (450 µL) was mixed with 450 µL of
a 0.5 M PMP solution in methanol and 450 µL of a 0.3 M NaOH solution, and the mix-
ture was maintained at 70 ◦C for 30 min. The reaction was terminated by neutralization
with 450 µL of 0.3 M HCl, and the product was partitioned with chloroform three times.
The aqueous layer was collected, filtered through a 0.45 µm membrane, and applied
to HPLC. The HPLC was performed with an Agilent ZORBAX ECLIPSE XDB-C18 col-
umn (150 mm × 4.6 mm) on an Agilent 1100 instrument at 25 ◦C with the mobile phase
containing 15% potassium phosphate-buffered saline (0.05 M, pH 6.9) (solvent A) and
40% acetonitrile (solvent B). Absorbance at 250 nm was detected. Monosaccharide stan-
dards (Sigma) were used for the identification and quantification of the corresponding peaks.

2.3. Synthesis of Ag NPs

Ag NPs were synthesized as previously reported [24], with minor modifications. Silver
nitrate AgNO3 (99.7%) was purchased from Sigma-Aldrich (ACS reagent, #209139). The
EPS was dissolved in deionized water by stirring vigorously overnight and then centrifuged
at 6000 rpm for 10 min to remove the undissolved part. The EPS solution was diluted
to a final concentration of 0.5 g L−1. A silver nitrate (AgNO3) solution was prepared by
dissolving 0.085 g of AgNO3 solids in 10 mL deionized water and diluting to 1, 5, and
10 mM, respectively. The total volume of the reaction mixture was set to 50 mL. The
concentration of each solution referred to the final concentration of each component in the
reaction mixture. The reaction was conducted in test tubes with constant stirring in the
dark. The stirring and heating of the reaction solution were carried out with a magnetic
stirrer hot plate; a relatively high stirring speed was applied for effective mixing. The
UV–Vis absorbance of the solution mixture was recorded to monitor Ag NP formation as
the reaction advanced.

The reaction between EPS and AgNO3 was carried out at three selected temperatures,
25, 70, and 100 ◦C, over a period of 5 h. The AgNO3 and reaction solutions were stored at
room temperature (~25 ◦C) and in the dark before use.

2.4. Characterization of Ag NPs

The UV–Vis spectra of final solutions were measured from 300 to 600 nm on a
HEWLETT Packard 8453 spectrophotometer against deionized water as blank.

The particle size of Ag NPs was measured via dynamic light scattering (DLS) at 25 ◦C
with a scattering angle of 90◦ on a Malvern Zetasizer, model 3000 HSA.

The silver content of Ag NPs was determined via ICP-OES (Agilent Technologies
7000 Series, Santa Clara, CA, USA). The reacted solution was dialyzed with 3500 kDa
MWCO bags (Sigma) against deionized water for two days at room temperature in the dark
to remove unreacted silver ions [27]. The solid product was separated by freeze-drying
to obtain EPS-coated Ag NPs, and 10 mg of the EPS-coated Ag NPs was dispersed in
12 mL of deionized water with stirring overnight. Then, the solution was filtered through a
0.45 µm membrane to remove the undissolved large particles and acid-digested before the
ICP-OES analysis.

2.5. Antibacterial Assay

The in vitro antibacterial activity of EPS-coated Ag NPs was measured using Escherichia coli
(Gram-negative) and Staphylococcus aureus (Gram-positive) in a 96-well microplate. The test
was conducted according to the Clinical and Laboratory Standards Institute Guidelines [32]
using its broth microdilution protocol. The bacteria were cultured on a Luria-Bertani [4]
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agar plate (Fluka Analytical, Sigma-Aldrich Co., St. Louis, MO, USA) overnight, and then
4–5 of the bacterial colonies were inoculated into 10 mL of LB broth and incubated at
37 ◦C for 4–6 h. The bacterial suspension was inoculated into a 96-well microplate (final
concentration ~105 CFU mL−1) containing 100 µL of serial dilutions of the tested samples.
After incubation at 37 ◦C for 12 h, the absorbance at 600 nm was recorded to determine
the minimum inhibitory concentration [5] with respect to the untreated control using a
microplate reader.

3. Results and Discussion
3.1. Physical and Molecular Properties of EPS

Table 1 shows the water solubility, carbohydrate and protein contents, and monosac-
charide composition of the EPS fractions. The solubility was the lowest for EPS-1, 0.711 g L−1,
and the highest for EPS-3, over 60.0 g L−1. If the amount of EPS-1 added to water was
higher than its solubility, the undissolved part would not contribute to the Ag NP synthesis
since it would not be able to form a solution to react with AgNO3. The solubility of EPS-2
and EPS-3 was much higher than that of EPS-1. The EPS-1 fraction showed an extremely
low carbohydrate content (Table 1), which could be partly attributed to the low solubility
of EPS-1 since the analytical method could only measure soluble components in water. The
increase in the total protein content from EPS-1 to EPS-2 and EPS-3 suggested that the pro-
teins had lower molecular weights and were mainly precipitated at a higher concentration
of ethanol.

Table 1. Water solubility and molecular properties of three EPS fractions.

EPS Solubility
(g L−1)

Total Carbohydrate
(wt%)

Total Protein
(wt%)

MW
(Da)

Man:Glc:Gal
Molar Ratio

EPS-1 0.711 ± 0.08 13.8 ± 1.9 12.2 ± 0.3 6.498 × 105 2.8:7.9:1
EPS-2 17.4 ± 0.20 67.2 ± 1.7 40.1 ± 0.3 3.860 × 108 16:1:7
EPS-3 >60.0 39.5 ± 1.8 43.6 ± 1.8 9.221 × 106 11.4:1:10.1

Note: Supplementary data provide the original analytical data: Figures S1–S3. HPGPC spectra; Tables S1–S3. Data
for the molecular weight distributions of three EPS fractions; Figures S4–S7. HPLC analysis of monosaccharide
standards and compositions of EPS fractions.

All the three EPS fractions consisted of three major monosaccharides at different molar
ratios, namely mannose (Man), glucose (Glc), and galactose (Gal). Figure S8 shows the
typical structure and NMR spectral data of EPS fractions, consisting of a heteroglycan
main chain with side chains. According to the sequence of gradient precipitation, the first
precipitated EPS-1 should have the highest MW, but it showed the lowest MW based on
the HPGPC analysis. This result could be attributed to the low solubility of EPS-1 and its
high MW constituents that were not well-dissolved in water and were, therefore, excluded
by the 0.45 µm membrane before being injected into the HPGPC system.

3.2. Factors Affecting Ag NP Synthesis
3.2.1. Effect of Reaction Time

According to the solubility results obtained above, the concentration of all the EPS
fractions was fixed at 0.5 g L−1 for Ag NP synthesis. The first experiment was performed
to monitor the formation of Ag NPs at a fixed concentration of AgNO3 and temperature in
various time periods by the measurement of UV–Vis absorbance spectra. The appearance
of an absorption peak due to the surface plasmon resonance (SPR) effect of NPs indicates
NP formation in the solution [27]. The characteristic absorption peak for Ag NPs was
found at the wavelength around 432 nm (Figure 1a). The absorption peak did not appear
with 1–2 h reaction time and was obvious at 3 h, increasing with a further increase in
the reaction time from 3 to 5 h. In general, the amount of the formed Ag NPs increases
with the reaction time in the early period and approaches a plateau or maximum value
at a later time. The reaction time for reaching the maximum amount is dependent on the
different reducing materials [33–36]. The absorbance measurement suggested that the Ag
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NPs formed after 3 h of AgNO3 reacting with the EPS. The absorbance at 432 nm showed
a rapid increase in the first 5 h of reaction but little change from 5 to 20 h (Figure 1b).
Therefore, five hours was chosen in subsequent experiments.
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Figure 1. (a) UV–Vis spectra and (b) UV–Vis absorbance at 432 nm (the characteristic peak) of Ag NPs
synthesized at 25 ◦C with various reaction times with 0.5 mg mL−1 EPS-1 and 10 mM AgNO3 solution.

3.2.2. Effect of Reaction Temperature

The effect of reaction temperature on the formation of Ag NPs with EPS fractions was
studied at 25, 70, and 100 ◦C, respectively, with 10 mM AgNO3 and 0.5 g L−1 EPS. As the
reaction proceeded, the solution turned from colorless to yellowish brown, and its color
became darker, resulting in an increase in absorbance at 432 nm (Figure 2), indicating the
formation of more Ag NPs. For all the three EPS fractions (EPS-1, 2, and 3), the absorbance
at 432 nm increased with a higher reaction temperature, implying that a higher temperature
accelerated the formation of Ag NPs. At a given temperature, the absorbance at 432 nm
initially increased with time until reaching a plateau, which meant nearly all the Ag(I)
ions were consumed, and no more Ag NPs formed. The higher rate of Ag NP formation
is consistent with the trend found in previous studies [33,37], mainly because a higher
temperature confers a higher kinetic energy to the molecules to accelerate the reaction rate.
At the highest temperature of 100 ◦C, the curve reached its plateau much quicker than
at lower temperatures. Since the formation of Ag NPs was faster at 100 ◦C, the reaction
temperature of 100 ◦C was chosen for subsequent experiments.

3.2.3. Effect of AgNO3 Concentration

The effect of AgNO3 concentration on Ag NP synthesis was evaluated at three AgNO3
concentrations 1 mM, 5 mM, and 10 mM with the other conditions fixed. Figure 3 shows
the absorbance at 432 nm of solution mixture recorded over 5 h of reaction. In most cases,
the absorbance initially increased with time and then reached a plateau. For EPS-1 and
EPS-2, the absorbance at 5 mM AgNO3 was the highest, while for EPS-3, the absorbance
was similar for 5 mM and 10 mM AgNO3 and much lower for 1 mM AgNO3. A higher
concentration of AgNO3 did not necessarily result in the formation of more Ag NPs,
which was consistent with the trend from a previous study [27]. This phenomenon is
most probably attributed to the excess of more silver ions over the active sites on the
biomolecules available for reduction [33]. As the active sites on biomolecules were fully
occupied by silver ions, the extra silver ions could not bind to the biomolecules, nor could
they be reduced to atomic silver, so that a further increase in the AgNO3 concentration
would not promote the formation of Ag NPs.
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Figure 3. UV–Visible light absorbance at 432 nm of AgNO3 and EPS solution mixture as a function of
reaction time with the AgNO3 concentration of 1, 5, and 10 mM. Each reaction mixture contained
0.5 g L−1 EPS, and the reactions were conducted at 100 ◦C.

To identify the optimal conditions for Ag NP synthesis, the particle size of Ag NPs
was also measured using DLS (Supplementary data Figure S9). With EPS-1 and EPS-2,
the average sizes of Ag NPs synthesized with 5 mM AgNO3 were the smallest, below
175 nm and 215 nm, respectively. With EPS-3, the average size with 10 mM AgNO3 was the
smallest, ~240 nm, and the average particle size at 1 mM AgNO3 was more than six times
as large. Moreover, the large particle size was accompanied by large variance, indicating
the poor uniformity of Ag NPs. Therefore, to obtain a small and uniform particle size of
Ag NPs, the optimal AgNO3 concentration was 5 mM for EPS-1 and EPS-2, and 10 mM
for EPS-3.

The optimal reaction time was determined by the sample with high UV–Visible ab-
sorbance and small particle size in the meantime. Considering both criteria, the optimal
reaction time was 3 h for EPS-1, 5 h for EPS-2, and 1 h for EPS-3. The optimal conditions of
Ag NP synthesis are summarized in Table 2.

Table 2. Summary of the optimal conditions for the synthesis of Ag NPs with three fractions of EPS.

EPS EPS-1 EPS-2 EPS-3

Time (h) 3 5 1
Temperature (◦C) 100 100 100
EPS conc. (g L−1) 0.5 0.5 0.5

AgNO3 conc. (mM) 5 5 10
UV–Vis absorbance at 432 nm 0.3 0.31 0.29

Ave. particle size (nm) 158.9 ± 5.1 213.7 ± 9.2 170.1 ± 5.6
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3.2.4. Mechanism of Ag NP Synthesis with EPS

Figure 4 depicts the possible reaction mechanism for the formation and stabilization
of Ag NPs with EPS fractions. The whole process involves three major steps as follows:
The first step is the reduction of Ag+ ions to Ag atoms by the EPS, which has significant
reducing activity, as previously reported [27]. In the next step, the Ag atoms agglomerate
to form Ag NP crystals. In the third step, the Ag NPs are capped or coated by a layer of
EPS and may also be adsorbed to the EPS networks, thus being stabilized in the aqueous
solution. The formation of aggregated gel networks in an aqueous solution is characteristic
of water-soluble polysaccharides.
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NPs to EPS networks.

3.3. Antibacterial Activities of Ag NPs

The prepared Ag NPs were dialyzed to remove the unreacted Ag(I) ions, if any, in
the solution and to avoid interference with the antibacterial activity assay. The average
particle size of Ag NPs increased significantly after dialysis due to the removal of smaller
particles (Supplementary data Table S4). Moreover, coagulation was also observed during
the dialysis process, contributing to the increase in particle size. The hydro-diameter data
were consistent with the molecular weight trend for EPS-1, EPS-2, and EPS-3 dissolved in
water, suggesting the correlation of the particle size of Ag NPs to the hydrocolloid size of
the EPS.

The atomic silver content in EPS-coated Ag NPs after dialysis was measured via
ICP-OES. The solution was filtered through a 0.45 µm membrane, and the average silver
content values were 2.52%, 1.77%, and 3.23% (w/w) for EPS-1 Ag NPs, EPS-2 Ag NPs, and
EPS-3 Ag NPs, respectively (Table 3). After filtration, large particles were removed, and the
solution color became lighter and more transparent. As estimated from the ICP-OES test,
about 50% of silver was removed in the filtration process.

Table 3. Silver content of EPS-coated Ag NPs after filtration by 0.45 µm membrane.

EPS-Coated Ag NPs Average Ag Content (wt%)

EPS-1 Ag NPs 2.52 ± 0.03
EPS-2 Ag NPs 1.77 ± 0.01
EPS-3 Ag NPs 3.23 ± 0.12

Table 4 shows the results of the antibacterial activity assay. All the Ag NPs formed
with EPS-1, 2, and 3 showed the ability to inhibit the bacterial growth, among which
the Ag NPs formed with EPS-1 exhibited the strongest inhibiting effect. EPS-1 Ag NPs
completely inhibited the growth of E. coli (Gram-negative) at 0.2 mg/mL and S. aureus
(Gram-positive) at 0.075 mg/mL. A stronger inhibiting effect on Gram-positive bacteria
was observed for EPS-1 Ag NPs, which was consistent with previously reported results [27].
The higher antibacterial activity of EPS-1 Ag NPs may partially be attributed to their
smaller particle size than those of the EPS-2 Ag NPs and EPS-3 Ag NPs, as smaller Ag NPs
can more intimately interact with the bacteria. EPS-1, 2, and 3 did not inhibit any of the
bacteria without the existence of Ag NPs. In summary, the EPS-1 Ag NPs exhibited the
highest inhibiting effects for both Gram+ and Gram- bacteria among the three fractions of
EPS-coated Ag NPs.
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Table 4. The antibacterial activity of Cs-HK1 EPS fractions and corresponding EPS-coated Ag NPs
after incubation at 37 ◦C for 12 h.

Sample
E. coli MIC a (mg mL−1) S. aureus MIC (mg mL−1)

EPS Ag NPs EPS Ag NPs

EPS-1 b >0.2 0.2 ± 0.01 >0.2 0.075 ± 0.01
EPS-2 >0.8 0.8 ± 0.01 >0.8 0.8 ± 0.02
EPS-3 >0.8 0.6 ± 0.01 >0.8 >0.8

a Minimum inhibitory concentration of samples. b The maximum concentration of EPS-1 applied was 0.2 mg mL−1

due to poor solubility.

4. Conclusions

In this study, EPS-coated Ag NPs were synthesized by AgNO3 and three fractions of
exopolysaccharide (EPS) produced by a medicinal fungus known as Cs-HK1. The effect of
various factors on Ag NP synthesis, including reaction time period, reaction temperature,
and reagent concentration, were studied, and the optimal conditions for Ag NP synthesis
were investigated. The overall synthesis procedure only involved water without the
addition of any organic solvents. Moreover, the Ag NP preparation did not require any
harsh experimental conditions. Therefore, this Ag NP synthesis method is green, facile,
and convenient. Moreover, the EPS-coated Ag NPs showed strong antibacterial activity
against E. coli and S. aureus. The most significant bacterial inhibiting effect was found with
EPS-1 Ag NPs. Further studies may focus on the specific components and structures of
the EPS in order to gain a better understanding of synthetic pathways and to seek suitable
applications of EPS-coated Ag NPs.

Supplementary Materials: The following supporting data can be downloaded at: https://www.
mdpi.com/article/10.3390/ma15165620/s1, Figure S1: HPGPC spectrum for the molecular weight
distribution of EPS-1; Figure S2: HPGPC spectrum for the molecular weight distribution of EPS-2;
Figure S3: HPGPC spectrum for the molecular weight distribution of EPS-3; Figure S4: HPLC of
monosaccharide standards; Figure S5: HPLC analysis of monosaccharide composition of EPS-1;
Figure S6: HPLC analysis of monosaccharide composition of EPS-2; Figure S7: HPLC analysis of
monosaccharide composition of EPS-3; Figure S8: Structure analysis and characterization of EPS-3:
(a) Repeating structure unit of an EPS fraction; (b) FT-IR spectrum; (c) 1H NMR spectrum; (d) 13C
NMR spectrum; (e) HSQC NMR spectrum (2D); (f) HMBC spectrum (2D); Figure S9: Average particle
size of Ag NPs synthesized with 0.5 g/L EPS and various concentration of AgNO3 (1, 5 and 10 mM)
for (a) EPS-1, (b) EPS-2 and (c) EPS-3 as a function of reaction time. All the above experiments were
conducted in the dark at 100 ◦C. Table S1: Molecular weight distribution of EPS-1; Table S2: Molecular
weight distribution of EPS-2; Table S3: Molecular weight distribution of EPS-3; Table S4: The particle
size comparison of Ag NPs synthesized with different EPS before and after dialysis.
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