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Abstract: This study proposes an isotropic composite material with enhanced elastic properties
based on a reinforcement mechanism using ultra-high molecular weight polyethylene (UHMWPE)
spherical molecules. Elastic properties are predicted through finite element analysis by randomly
mixing UHMWPE using polypropylene (PP) as a matrix. The change in elastic properties of the
composite is calculated for volume fractions of UHMWPE from 10 to 70%. Furthermore, the results
of finite element analysis are compared and analyzed using a numerical approach. The results show
that the physical properties of the composite material are enhanced by the excellent elastic properties
of the UHMWPE, and the finite element analysis results confirm that it is effective up to a volume
fraction of 35%.
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1. Introduction

A composite material can be defined as an assembly of two or more materials with
properties superior to those of each of the constituent materials [1–6]. Composite materials
formed by embedding a material in a matrix are commonly called reinforcement arrange-
ments (or fillers) [7–10]. The matrix directly receives the cohesive force and direction of
the load. Moreover, the load that the composite material receives may be transmitted as
internal stress. A composite material formed in this manner is highly heterogeneous and
may be isotropic or anisotropic depending on the material used [11–13]. The properties
of the matrix and the charge, shape, proportion of the charge, quality of the interface, and
production process used are all parameters that can affect the properties of the composite
material [14–17]. In general, a polymer material is most frequently used as the matrix,
and various materials such as metal, ceramic, or plastic may be used as the reinforcing
material. Such composite materials may exhibit a continuous or discontinuous mechanism
according to the shape of the reinforcing material used. A composite mainly formed us-
ing fiber as a reinforcing material is an example of a composite material distributed in a
continuous phase [18–22]. Continuous phase composite materials are mainly formed by
mixing functional fiber material in fiber form with polymer material and are classified as
anisotropic due to the directionality of the fiber. To use such anisotropic materials, a fiber-
reinforced composite material is configured in a stacked structure to prevent a defect against
warpage [23,24]. In contrast, for a composite material with a discontinuous mechanism, the
composite is generally manufactured using a spherical additive or an additive in the form
of a particle. Additives in a spherical or particle form are freely dispersed in the matrix,
and thus, an isotropic composite material can be manufactured [25–29]. Considering such
an isotropic composite material has no directionality, it has a high potential to be widely
used in the manufacturing field. In this study, we proposed a composite material using

Materials 2022, 15, 5602. https://doi.org/10.3390/ma15165602 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15165602
https://doi.org/10.3390/ma15165602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-1445-5930
https://orcid.org/0000-0001-5994-2631
https://doi.org/10.3390/ma15165602
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15165602?type=check_update&version=2


Materials 2022, 15, 5602 2 of 10

ultra-high molecular weight polyethylene (UHMWPE) spherical particles as the additive to
construct such an isotropic composite material.

UHMWPE is attracting significant attention from researchers and industrial engineers
owing to its excellent mechanical properties, low density, high chemical resistance and
impact strength, low hygroscopicity, and high wear resistance [30–33]. UHMWPE fiber
witnessed a surge of research activities right after its commercialization in the late 1970s
for a range of applications, including (1) ballistic protection, (2) aerospace, automotive,
and defense applications, and, (3) increasingly, medical devices [34–36]. A composite
material manufactured by mixing UHMWPE, which has excellent characteristics as an
additive, in a polypropylene (PP) matrix would be expected to possess excellent physical
properties. In this study, to predict and analyze these properties, a numerical and finite
element analysis approach was used to investigate a composite material obtained by mixing
UHMWPE with a diameter of 10 µm with PP. In addition, to develop a composite material
capable of injection molding, an isotropic composite material is proposed. To develop an
isotropic composite material, UHMWPE of a spherical material was used. The physical
properties according to the volume fraction (10–70%) of the additive were calculated
using micromechanics models (Voigt, Reuss, and Halpin–Tsai) to predict the linear elastic
properties of the composite material. Finally, finite element method (FEM) was used to
compare and analyze the change in physical properties according to the addition of the
UHMWPE spherical particles using the homogenization method.

2. Micromechanics Models

The Voigt model and Reuss model are the two simplest and most classical models
used for estimating the elastic modulus of composite materials [37–39]. The rule of mixture
predicts the elastic properties of composite materials according to the volume ratio of the
constituent materials using Voigt and Reuss models [40–42]. The Voigt and Reuss models
are often used to set the bound of the elastic modulus in a composite made of two materials.
As the Voigt model is subject to a uniform strain, an upper bound of the elastic modulus
can be set. In contrast, the Reuss model may be considered a lower bound because it is
subject to uniform stress. As shown in Equation (1), the Voigt model is similar to composite
materials connected in series and is developed assuming that the two materials are simply
and linearly synthesized according to the volume fraction. Ec is the elastic modulus of the
composite material, C0 is the volume fraction of PP, C1 is the volume fraction of UHMWPE,
E0 is the elastic modulus of PP, and E1 is the elastic modulus of UHMWPE. In this formula,
n = 2 because the synthesized composite material is composed of binary elements.

Ec =
n

∑
r=0

CrEr (1)

The Reuss constitutive model is used to model elastic plasticity and the total La-
grangian formula is used to model the finite strain. In the Reuss model, the stiffness of
the material is generally measured by the elastic modulus E; in the macroscopic elastic
range, stiffness is the force required to cause a unit displacement. Its reciprocal 1/E is called
compliance, which is the displacement caused by unit force. The Reuss model is presented
in Equation (2).

Ec = (
n

∑
r=0

Cr
1
Er

)−1 (2)

The Halpin-Tsai model is an improvement of the existing mixing law using rein-
forcement factors calculated through experiments. The reinforcing factor depends on the
shape and arrangement of the additives and the loading conditions. The Halpin–Tsai
model [43,44] is applied here to predict the compressive Young’s and shear moduli of the
composite, which are dependent on the particle volume fraction (PVF). This Halpin–Tsai
approach is simple and easy to use in the design process, and the semi-empirical equa-
tion can be expressed as Equation (3). ξ is a measure of particle filler that depends on
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particle geometry. In general, ξ follows Equation (4). Therefore, it has a value of 2 for
spherical particles.

Ec =
E0·[E1 + ξ·(C0·E0 + C1·E1)]

C0·E1 + C1·E0 + ξ·Er
(3)

ξ =
2l
d

(4)

According to this numerical method, changes in physical properties of the reinforcing
material UHMWPE in a PP matrix according to the volume fraction, from 10% to 70%
UHMWPE, were calculated.

3. Homogenization Method

In numerical homogenization, it is assumed that the representative volume element
(RVE) or unit cell is locally repeated with a very small microstructure compared with
the overall macroscopic dimensions of the structure of interest, where the different base
materials are fully bonded in the RVE [45]. Computational homogenization methods and
their inverse forms with the FEM have been considered to be rather effective for a range
of problems [46–48]. Generation of the RVE plays an important role in determining the
effective properties of composite materials using finite element techniques using the ho-
mogenization method [49]. To implement the finite element analysis modeling required for
the homogenization method, UHMWPE was applied to the spherical reinforcing material
and assumed to be a sphere with a diameter of 10 µm. The 10 µm UHMWPE powder
was studied using PM-200 from MIPELONTM. To compare with the experimental results
later, a finite element analysis was performed using 10 µm powder. The matrix material
was PP, and the RVE was modeled to a size of 40 µm × 40 µm × 40 µm in consideration
of the size of the reinforcement (Figure 1). In addition, for UHMWPE, an RVE model
with irregular culture was used to reflect the characteristics of particles in the hexagonal
matrix material. Finite element analysis was conducted to calculate the change in physical
properties according to the volume fraction of UHMWPE from 10% to 70% in the PP matrix
(Figure 2). The physical properties of PP and UHMWPE used in this study are tabulated
in Table 1.
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Figure 2. Mesh modeling with different ultra-high molecular weight polyethylene (UHMWPE)
volume fractions: (a) 10%, (b) 20%, and (c) 30%.

Table 1. Properties of polypropylene (PP) and ultra-high molecular weight polyethylene (UHMWPE).

No. Properties PP UHMWPE

1 Elastic modulus (MPa) 1325 25,000
2 Shear modulus (MPa) 432.29 10,417
3 Poisson’s ratio 0.43 0.20
4 Bulk modulus (MPa) 3154.8 13,889.0
5 Density (kg/m3) 904 950

4. Results and Discussion

Table 2 shows the numerical values according to the micromechanics model. In ad-
dition, Figure 3 shows changes in the predicted elastic modulus according to the volume
fraction. Based on the results of linearly calculating the elastic modulus using the Voigt
model, the UHMWPE volume fraction of 10% was calculated to have a value of at most
1798.5 MPa. As a result of analyzing the elastic modulus using the Reuss model, the
lowest value was 1350.6 MPa. The elastic modulus calculated using the Halpin–Tsai model
was 1394.3 MPa, most similar to the average elastic modulus obtained through the FEM
(1394.07 MPa). As the volume fraction linearly increased, the Voigt model elastic modulus
linearly increased, and those calculated by the Reuss model and the Halpin–Tsai model
also showed a tendency to increase because of the increased influence of the elastic modu-
lus of UHMWPE with an increase in the volume fraction. As shown in Figure 4, similar
results were obtained for the predicted shear modulus. Elastic properties, such as elastic
modulus and shear modulus, increased as the volume fraction of UHMWPE increased due
to the excellent physical properties of UHMWPE (Figures 3 and 4). In general, numeri-
cally accessible micromchanics models rely on volume fractions to yield elastic properties.
Therefore, theoretically, as the volume fraction of UHMWPE increases, physical properties
may be improved [50,51]. Furthermore, the results of predicting the elastic properties of the
composite material using the FEM showed a tendency most similar to the elastic modulus
and the shear modulus values calculated using the Halpin–Tsai model.

Table 2. Tubular data of micromechanics.

2% 4% 6% 8% 10% 15% 20% 25% 30% 35% 40% 50% 60% 70%

Voigt
model

E 1798.5 2272.0 2745.5 3219.0 3692.5 4876.3 6060.0 7243.8 8427.5 9611.3 10,795.0 13,162.5 15,530.0 17,897.5

G 632.0 831.7 1031.4 1231.1 1430.8 1930.0 2429.2 2928.5 3427.7 3926.9 4426.2 5424.6 6423.1 7421.6

nu 0.43 0.42 0.42 0.41 0.41 0.40 0.38 0.37 0.36 0.35 0.34 0.32 0.29 0.27
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Table 2. Cont.

2% 4% 6% 8% 10% 15% 20% 25% 30% 35% 40% 50% 60% 70%

Reuss
model

E 1350.6 1377.2 1404.8 1433.6 1463.6 1544.4 1634.6 1736.0 1850.8 1981.9 2133.0 2516.6 3068.6 3930.6

G 440.7 449.5 458.7 468.2 478.1 504.9 534.8 568.5 606.8 650.5 701.1 830.1 1017.4 1313.8

nu 0.42 0.41 0.40 0.39 0.39 0.37 0.35 0.33 0.32 0.31 0.29 0.27 0.25 0.24

Halpin-
Tsai

E 1394.3 1466.0 1540.3 1617.3 1697.2 1910.8 2146.4 2407.6 2699.0 3026.0 3395.6 4300.8 5524.7 7271.8

G 455.7 479.9 505.0 531.1 558.2 630.8 711.2 800.8 901.1 1014.3 1143.0 1461.7 1900.8 2544.0

nu 0.42 0.42 0.41 0.41 0.40 0.39 0.38 0.36 0.35 0.34 0.33 0.30 0.28 0.26
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As shown in Figure 5, the Poisson’s ratio of the PP-UHMWPE composite material
calculated by numerical and FEM analysis varied with the volume fraction of composite
material formation according to the difference in Poisson’s ratio between PP and UHMWPE.
The Halpin–Tsai model and the FEM model showed the most similar tendencies in the
prediction model for the elastic modulus and the shear modulus, but the FEM did not
match any numerical analysis model in the calculation of the Poisson’s ratio.
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Figure 5. Values of Poisson’s ratio according to the volume fraction predicted by various models:
Voigt, Reuss, Halpin–Tsai, and the finite element method (FEM).

The size of the RVE used for finite element analysis in this study was 40 × 40 × 40 µm,
and the spherical size of UHMWPE was 10 µm. Therefore, for regularly arranged UHMWPE
spheres, up to 64 spheres can theoretically be arranged as presented in Figure 6a, and
accordingly, the maximum volume fraction can be expected to be 52%. However, based on
the results of calculating the physical properties through the FEM, it was confirmed that
the volume fraction of UHMWPE was constant after 35%, as shown in Figures 3–5 because
it represents the maximum at a volume fraction of 35%, depending on the batch model of
the UHMWPE reinforcing material randomly formed into the RVE lattice. According to
the FEM analysis results, when the volume fraction of UHMWPE was 35% or more in the
RVE, the spherical UHMWPE additive had directionality caused by overlapping the inner
spherical UHMWPE powder as shown in Figure 6b. Therefore, it can be concluded that
physical property analysis according to the influence of the tensor should be performed
with anisotropic material above 35% volume fraction of UHMWPE. To this end, the elastic
modulus and shear modulus of the PP-UHMWPE composite material were found to
be similar in the Halpin–Tsai model and the FEM model up to 35% volume fraction of
UHMWPE, but the results obtained from the FEM analysis are not valid above 35% volume
fraction. Furthermore, it can be determined that the UHMWPE spherical composite material
of 10 µm can be applied up to the theoretically maximum volume fraction of UHMWPE of
52%. UHMWPE powder of 10 µm or less may be used to ensure a higher volume fraction
of UHMWPE and thereby enhance physical and elastic properties.
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Figure 6. Spherical ultra-high molecular weight polyethylene (UHMWPE) particles at a volume
fraction of 35% or more: (a) regular arrangement of spherical UHMWPE and (b) overlapping influence
of spherical UHMWPE.

5. Conclusions

In this study, physical properties were predicted using numerical analysis and finite
element analysis to predict the elastic properties of composite materials using 10 µm
UHMWPE spherical powder as a reinforcing material and PP as a matrix. As spherical
powder was used as the reinforcing material, the PP-UHMWPE powder composite could be
modeled as an isotropic material. The elastic properties according to the volume fraction of
the UHMWPE reinforcing material were compared and analyzed. As numerical methods,
the Voigt, Reuss, and Halpin–Tsai models were used, and for the finite element analysis,
the homogenization method using RVE identification was used for comparative analysis.
The results are as follows.

(1) The linear calculation according to the volume fraction using the Voigt model was
found to be the upper bound of the predicted elastic properties and showed a large
error range when compared with the FEM analysis. In the calculation using the Reuss
model, the prediction result of elastic properties was lower than that of the FEM
analysis. The results of the calculation of elastic properties using the Halpin–Tsai
model were found to be most similar to the FEM analysis.

(2) The powders of the spherical UHMWPE could theoretically be dispersed inside PP
at a volume fraction of up to 52% if arranged in a lattice structure. However, in the
FEM model, spherical powders of UHMWPE could be dispersed up to 35% volume
fraction when they were randomly arranged.

(3) As a result of comparing and analyzing the numerical finite element analysis results
for predicting the elastic properties of PP-UHMWPE isotropic composite materials,
it was confirmed that the results of finite element analysis are reliable up to 35%
UHMWPE volume fraction and theoretically up to 52%.

(4) To improve elastic properties, UHMWPE powder of 10 µm or less should be used to
form an isotropic composite material by increasing the volume fraction of UHMWPE.

In the future, it is necessary to conduct research to predict the elastic properties of
anisotropic composite materials in the high-UHMWPE volume fraction state (55% or more),
and there is also a need to study changes in the physical orientation and elastic properties of
the composite material according to the overlapping of the spherical UHMWPE powders.
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