
Citation: Aziz, S.B.; Dannoun,

E.M.A.; Abdalrahman, A.A.;

Abdulwahid, R.T.; Al-Saeedi, S.I.;

Brza, M.A.; Nofal, M.M.; Abdullah,

R.M.; Hadi, J.M.; Karim, W.O.

Characteristics of Methyl Cellulose

Based Solid Polymer Electrolyte

Inserted with Potassium Thiocyanate

as K+ Cation Provider: Structural and

Electrical Studies. Materials 2022, 15,

5579. https://doi.org/10.3390/

ma15165579

Academic Editors: Florian Ion

Tiberiu Petrescu and Francisco

M Márquez-Linares

Received: 21 July 2022

Accepted: 11 August 2022

Published: 14 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Characteristics of Methyl Cellulose Based Solid Polymer
Electrolyte Inserted with Potassium Thiocyanate as K+ Cation
Provider: Structural and Electrical Studies
Shujahadeen B. Aziz 1,2,* , Elham M. A. Dannoun 3 , Ari A. Abdalrahman 1, Rebar T. Abdulwahid 1,4 ,
Sameerah I. Al-Saeedi 5 , Mohamad A. Brza 6, Muaffaq M. Nofal 7 , Ranjdar M. Abdullah 1, Jihad M. Hadi 8

and Wrya O. Karim 9

1 Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science,
University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq

2 The Development Center for Research and Training (DCRT), University of Human Development,
Sulaimani 46001, Iraq

3 Associate Chair of the Department of Mathematics and Science, Woman Campus, Prince Sultan University,
P.O. Box 66833, Riyadh 11586, Saudi Arabia

4 Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Iraq
5 Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University,

P.O. Box 84428, Riyadh 11671, Saudi Arabia
6 Medical Physics Department, College of Medicals and Applied Science, Charmo University,

Sulaimani 46023, Iraq
7 Department of Mathematics and Science, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
8 Nursing Department, College of Nursing, University of Human Development,

Kurdistan Regional Government, Sulaimani 46001, Iraq
9 Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street,

Kurdistan Regional Government, Sulaimani 46001, Iraq
* Correspondence: shujahadeenaziz@gmail.com

Abstract: The attention to a stable and ionic conductive electrolyte is driven by the limitations of
liquid electrolytes, particularly evaporation and leakage, which restrain their widespread use for
electrochemical device applications. Solid polymer electrolyte (SPE) is considered to be a potential
alternative since it possesses high safety compared to its counterparts. However, it still suffers from
low device efficiency due to an incomplete understanding of the mechanism of ion transport parame-
ters. Here, we present a simple in situ solution casting method for the production of polymer-based
electrolytes using abundantly available methylcellulose (MC) doped at different weight percent-
ages of potassium thiocyanate (KSCN) salt. Fourier transform infrared (FTIR), and electrochemical
impedance spectroscopy (EIS) methods were used to characterize the prepared samples. Based on
EIS simulation and FTIR deconvolution associated with the SCN anion peak, various ion transport
parameters were determined. The host MC medium and KSCN salt have a strong interaction, which
was evident from both peak shifting and intensity alteration of FTIR spectra. From the EIS modeling,
desired electric circuits correlated with ion movement and chain polarization were drawn. The
highest ionic conductivity of 1.54 × 10−7 S cm−1 is determined from the fitted EIS curve for the film
doped with 30 wt.% of KSCN salt. From the FTIR deconvoluted peak, free ions, ions in contact with
one another, and ion aggregates were separated. The extracted ion transport parameters from the EIS
method and FTIR spectra of the SCN anion band confirm that both increased carrier concentration
and their mobility were crucial in improving the overall conductivity of the electrolyte. The dielectric
investigations were further used to understand the conductivity of the films. High dielectric constants
were observed at low frequencies for all MC:KSCN systems. The dispersion with a high dielectric
constant in the low-frequency band is ascribed to the dielectric polarization. The wide shift of M′′

peak towards the high frequency was evidenced by the MC-based electrolyte impregnated with
30 wt.% of KSCN salt, revealing the improved ionic movement assisted with chain segmental motion.
The AC conductivity pattern was influenced by salt concentration.
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1. Introduction

Recently, the design of emerging clean and renewable energy, and its related tech-
nology breakthroughs have gained interest due to the widespread use of fossil fuel, the
restrictions of a global society on carbon dioxide emissions, and the cost of crude oil. The
development of lithium metal-based devices has attracted a lot of attention, signifying
their enormous potential as power sources. However, despite its high-energy density and
wide range of applications, there are still many problems that impact its performance, rate
capability, safety, and cost [1–3].

Many attempts have been made to utilize benign and harmless electrolytes in energy
storage devices. However, it is hard to achieve satisfactory devices with suitable sizes and
shapes that compete with liquid electrolytes [3,4]. Therefore, researchers have to think
about safe, efficient, and relatively stable solid polymer electrolytes (SPEs). SPEs have
several properties, including lightweight, satisfactory thermal stability, high flexibility, low
cost, ease of handling, and harmlessness [5,6]. A dye-sensitized solar cell, a battery, a
supercapacitor, an electrochemical double-layer capacitor (EDLC), and a fuel cell are just a
few examples of electrochemical devices in which the cells typically consist of an electrolyte
and two electrodes. The electrolyte plays at the heart of the cells in the electrochemical
devices [7–12]. Polymer electrolytes (PEs) have been the subject of intensive research in an
effort to develop systems with good thermal, electrical, electrochemical, and mechanical
properties that are also inexpensive and environmentally friendly [7,13,14]. However, the
SPEs are not free from drawbacks, the most common one is the low ionic conductivity [15].

Global warming and water contamination are two of the negative effects of discharg-
ing plastic garbage into the environment. These two problems raise the awareness and
motivation of researchers to investigate biodegradable and biocompatible polymers [16,17].
Natural polymers are attracting the attention of researchers due to their abundance, cost-
effectiveness, biodegradability, and biocompatibility [18,19]. In other words, green or
natural biopolymers degrade gradually in contrast to synthetic or human-made poly-
mers [20,21]. As a host natural polymer, SPE-based polymers have been investigated
previously, such as chitosan [22], starch [23], and poly(vinyl alcohol) (PVA) [24]. Excel-
lent chemical, physical, and relative ionic conductivity combine to produce these natural
polymers’ remarkable performance [25]. Additionally, natural polymers are renewable,
inexpensive, abundant, nontoxic, biodegradable, and biocompatible [26,27].

Natural polymers such as cellulose in their neat state are insoluble in water [28,29].
Thus, modification of cellulose is necessary to solubilize it in aqueous media. Herein, the
incorporation of methyl chloride into the cellulose (methylation) results in the formation of
methyl cellulose (MC). This modification of cellulose by methylation is not expensive and
eco-friendly, in addition to its ability to form a film. Furthermore, MC has transparency as
well as convincing mechanical and electrical properties [30,31].

Cations usually interact with oxygen bound within the backbone of MC via a dative
bond. MC has many functional groups rich in lone pair electrons, including C-O-C, O-H,
and O-CH3, which are responsible for the conduction of ions [32]. The MC is well-known
as an amorphous polymer, possessing Tg, in the range of 184–200 ◦C [33]. MC was chosen
as the host polymer in this study because its properties change when KSCN is added
at different concentrations. In addition, the system becomes an ionic conducting phase
beyond dissolving salts in a high molecular weight host matrix. From an atomic level
perspective, the local relaxation in high molecular weight polymer provides degrees of
freedom as such in liquids, in addition to cordial. Furthermore, the mentioned polymer
system also provides a compatible interface with electrode materials [34].
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The σdc of 9.334× 10−5 S/cm was recorded by Mallaiah et al. for the PEO:PVdF:NaNO3
system [35]. Moreover, the σdc of 6.34 × 10−7 S/cm has been documented for blended CS
with starch doped with NH4NO3 SPEs [36]. Importantly, insertion of 10 wt.% of AgTf salt
into CS with recording 4.2 × 10−8 S/cm ionic conductivity [37]. The MC:PVA system has
an ionic conductivity of 1.53 × 10−5 S/cm when 50% of sodium iodide (NaI) is loaded into
it [38]. Despite the host polymer enriching in functional groups, the absence of free ion
carriers results in weak conduction. Thus, choosing a suitable dopant salt for the polymeric
host medium is decisive. Several characteristics, such as lattice energy of the salt, cation size,
ion concentration, and mobility have to be taken into consideration in enhancing the ionic
conductivity of the SPE [39–42]. While lithium-based salts have a higher lattice energy than
potassium thiocyanate (KSCN) salts (616 kJ/mol); K-salts are safer [43,44]. The dielectric
constant of the polymer host and the rate at which ions aggregate appear to be important
determinants of ionic conduction as a parameter for evaluating the effectiveness of an
SPE [45,46]. Thus, to fully understand how ions interact with polymers between molecules
and how ions move through SPE, it is important to look at the dielectric properties of the
host polymer [47,48].

An SPE based on MC polymer with various amounts of KSCN dopant salt will be
synthesized using the solution casting process, which is being used in this study. Analysis
of the blended polymer was carried out utilizing FTIR and electrochemical impedance
spectroscopy (EIS). Free ion concentration and its effect on ion conductivity are hotly de-
bated issues. Additional characterization and analysis are carried out to better understand
how salt’s ionic charge carriers interact with the polymer’s polar functional groups. For
example, deconvoluted FTIR was utilized to categorize aggregated and free ions inside the
polymer host. Using EIS and EEC modeling, the circuit architecture for each MC electrolyte
will be shown. Then, it will be used to figure out the conductivity of ions by measuring the
bulk resistance in circuit designs.

2. Materials and Methods
2.1. SPE Preparation

MC polymer and KSCN were purchased from Sigma-Aldrich and used as received
without purification. The solution cast process was used to insert a range of quantities
of KSCN into the MC polymer matrix. The first solution was made by dissolving 1 g of
MC in 100 mL of 1% acetic acid and stirring with a magnetic stirrer until a homogeneous
aqueous solution was achieved. The SPEs are prepared by adding various amounts of
KSCN salt into the MC solution separately and stirred for 24 h to gain a fully dissolved
salt and homogenous solution. The samples were coded as MCK1, MCK2, MCK3, MCK4,
and MCK5 for the inclusion of 10, 20, 30, 40, and 50 wt.% of KSCN salt. Afterward, the
samples were cast into dry, clean, labeled Petri dishes and left for 14 days for the films to
form at ambient temperature with 20% relative humidity. To ensure the complete dryness
of the films, a further drying process was carried out by putting the samples in a desiccator
filled with silica gel. Ultimately, a uniform solvent free of ∼0.026 cm thick SPEs films was
achieved and ready to be characterized.

2.2. Electrical Impedance Spectroscopy (EIS)

Solid-state materials can be examined by utilizing complex impedance spectroscopy
(CIS) in order to better understand their electrochemical properties [49]. Materials’ electrical
characteristics and their relationship to electrodes with electronic conductivity are better
understood using CIS. The SPE films were prepared by cutting them into tiny discs (1 cm
in radius), in which a spring was used to compress the electrolyte between two stainless
steel electrodes. The HIOKI 3531 Z Hi-tester employed for the impedance to be achieved.
The room temperature and from 100 Hz to 2 MHz the frequency ranged when the device is
linked to the computer. In order to obtain the real and imaginary components of impedance,
we used software to control all measurements and computations. The bulk resistance was
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determined by plotting the actual impedance axis with the intercept of the plot. The
equation for calculating conductivity is presented below [50]:

σDC =

[
1

Rb

]
×
[

t
A

]
(1)

where, A is the film’s area, whereas t is its thickness. The measurements of EIS were made
from a cell consisting of stainless steel SS |SPE film| SS as explained in Figure 1.
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The real and imaginary components of permittivity (ε∗) and modulus (M∗) can be
calculated from the complex impedance (Z∗) using the following equations [51–53].

Z∗ = Z′ − jZ′′ (2)

ε∗ = ε′ − jε′′ =
1

jωεoZ∗
(3)

M∗ =
1
ε∗

= jωCoZ∗ = M′ + jM′′ (4)

From Equations (2)–(4) the following relationships can be achieved,

ε′ =
Z′′

Coω
(
Z′2 + Z′′2

) (5)

ε′′ =
Z′

Coω
(
Z′2 + Z′′2

) (6)

M′ =
ε′

(ε′2 + ε
′′2)

= Coω Z′′ (7)

M′′ =
ε′′(

ε′2 + ε
′′2
) = CoωZ′ (8)

where ε′, and ε′′ as usual are the dielectric constant, and dielectric loss, Co is the vacuum
capacitance (εo A/t). The real part and imaginary part of the complex electric modulus
are denoted by M′ and M′′, respectively. The angular frequency ω is equal to (2πf ), with f
representing applied field frequency.

2.3. Fourier Transform Infrared (FTIR) Spectroscopy

In this study, the complexation between the components of the SPE systems was
confirmed using FTIR spectroscopy. FTIR spectra of the films were acquired using a
Perkin Elmer Spotlight 400 spectrometer (Waltham, MA, USA) in the wavenumber range
(400–4000 cm−1) at a resolution of 1 cm−1. Both the Gaussian–Lorentzian function and the
deconvolution method were employed to extract the overlapping peaks and fit the curves
from which ion transport parameters were determined.
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3. Results and Discussion
3.1. Impedance Analysis

Ion dynamics in PE systems can be well characterized using impedance spectroscopy.
The outcomes of the impedance of the present SPE were used to have a comprehensive
understanding of the electrolyte conductivity and its frequency behavior. Both MCK1-
and MCK2-based polymer electrolytes have the Cole-Cole plots (Nyquist plots) at room
temperature as exhibited in Figure 2a,b in which a semicircle is seen only. A high-frequency
semi-circle and a low-frequency spike are frequently observed when the salt concentration
is high Figure 2c,d. Bulk resistance (resulting from ion mobility) and bulk capacitance
originating from immobile polymer chains are combined to generate a high-frequency
semi-circle [51]. The size of the high-frequency semi-circle decreased considerably as KSCN
concentrations climbed. The emergence of a spike from 30 wt.% to 50 wt.% of KSCN
demonstrates an increase in conductivity [54,55]. The spike length is reduced at 40 and
50 wt.% of KSCN salt, indicating a reduction in conductivity. Calculating bulk resistance
(Rb) at low and high salt concentrations is made easy using the impedance plot’s inset. It is
fascinating to see that when KSCN concentration increases up to 40 wt.%, Rb declines.

Impedance spectroscopy analysis following EECs modeling is a simple, fast, and
comprehensive method for obtaining a full view of the electrolyte system [56]. The picture
of the measured impedance plots in relation to the equivalent circuit is presented in
the insets of Figure 2, which includes Rb for the sample’s charge carriers and two CPEs
(constant phase elements). Rb and CPE1 make up the high-frequency zone, while CPE2,
which is derived from the region between the electrodes and SPE that created double layer
capacitance, makes up the low-frequency area. As previously mentioned, in an analogous
circuit, a CPE shortened word is used instead of an ideal capacitor in the actual system.
When it comes to a pure semicircular pattern, the real SPE behaves differently from an ideal
capacitor [57]. The CPE has been used instead of a capacitor to represent the depressed
semicircle [53]. ZCPE1 is the capacitance response at the electrode–solid PE interface. [57]. It
is possible to write Ztotal as Rb + ZCPE impedance as [39,58–60]:

Ztotal = Rb +
1

Cωp

[
cos
(πp

2

)
− i sin

(πp
2

)]
(9)

In the right-hand side model, there is a second term ZCPE known as the impedance
of the constant phase element. Here, the reciprocal of capacitance is K, and the deviation
of the inclined line from the real axis is represented by p. If p has the value of unity,
Ztotal = R− j

ωC . Whereas, when p is zero, a perfect resistor is considered instead of the
constant phase element, in which Ztotal becomes independent on frequency. Furthermore,
when p value lies between zero and one, CPE behaves as an intermediate between a resistor
and a capacitor, while at p = 0.5, the impedance is the Warburg impedance.

Zr and Zi are the real and imaginary complex impedance (Z*) values in the analogous
circuit, respectively, and their mathematical basis is shown below in Figure 2c–e [39,52,59,60]:

Zr =
RbC1ωp1 cos

(πp1
2
)
+ Rb

2RbC1ωp cos
(πp

2
)
+ Rb

2C2ω2p + 1
+

cos
(πp2

2
)

C2ωp2 (10)

Zi =
RbC1ωp1 sin

(πp1
2
)

2RbC1ωp cos
(πp

2
)
+ Rb

2C2ω2p + 1
+

sin
(πp2

2
)

C2ωp2 (11)

While for Figure 2a,b, the mathematical equations are:

Zr =
RbC1ωp1 cos

(πp1
2
)
+ Rb

2RbC1ωp cos
(πp

2
)
+ Rb

2C2ω2p + 1
(12)

Zi =
RbC1ωp1 sin

(πp1
2
)

2RbC1ωp cos
(πp

2
)
+ Rb

2C2ω2p + 1
(13)
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Figure 2 shows a good simulation (red solid lines) of the experimental impedance
plots based on Equations (10)–(13) and EECs are shown in the figure insets. One can
determine the ionic conductivity (σ) of SPEs samples by using Equation (1). Table 1 shows
the bulk resistance and circuit elements for MC: KSCN SPE films. Table 1 reveals that as
KSCN concentration is increased, higher values of DC conductivity for SPE films were
recorded accordingly. Due to an increase in the number of mobile charge carriers, there is a
significant decrease in Rb with rising KSCN salt. Moreover, the charge carrier concentration
increasing leads to increasing DC conductivity at ambient temperature as mathematically
shown in Equation (14) [37,47,61],

σ = ∑i ni zi µi (14)

Table 1. Bulk resistance and circuit elements for MC:KSCN SPE films.

Sample p1 (Rad) p2 (Rad) CPE1 (F) CPE2 (F) Rb (Ω) Conductivity (S/cm)

MCKN1 0.91 - 4.00 × 10−10 - 1.15 × 107 1.34 × 10−9

MCKN2 0.86 - 7.41 × 10−10 - 1.66 × 106 9.30 × 10−9

MCKN3 0.83 0.51 1.82 × 10−9 2.22 × 10−6 5.15 × 104 2.99 × 10−7

MCKN4 0.86 0.43 1.33 × 10−9 1.43 × 10−6 1.00 × 105 1.54 × 10−7

MCKN5 0.90 0.43 1.17 × 10−9 5.26 × 10−7 2.60 × 105 5.93 × 10−8

Here, ni is the density of charge carriers with the ion mobility denoted by µi, and
1.6 × 10−19 C is the value of q. Variables such as ionic conducting charge species concen-
tration, temperature, and carrier mobility can all affect ionic DC conductivity [62]. Thus,
substantial growth in DC conductivity for the sample with 30 wt.% of KSCNis correlated
to the increase in charge carrier concentration as a consequence of salt involvement at
room temperature [37,47,63]. For more clarification, an EEC diagram for impedance plots,
which indicates a high-frequency semicircle and a low-frequency spike as a schematic
representation, is shown in Figure 3.
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As the (MCKN3, MCKN4, and MCKN5) films contain a spike and a semicircle, the
diffusion coefficient (D), mobility of ions (µ), and number density (n) of ions are determined
by the below relations [63]:

The D of the (MCKN3, MCKN4, and MCKN5) samples is achieved using Equation (15),

D =

(
(K2εoεr A)2

τ2

)
(15)

where τ2 denotes the reciprocal of angular frequency corresponding to the minimum in Zi.
The µ of the above films is achieved using the Equation (16),

µ =

(
eD

KbT

)
(16)

where T stands for the absolute temperature and Kb stands for the Boltzmann constant.
Since conductivity is written by

σDc = neµ (17)

So, the n of the above films is achieved by Equation (18):

n =

(
σdcKbTτ2

(eK2εoεr A)2

)
(18)

Table 2 lists the parameters of ion transport for the samples.

Table 2. The values of D, µ, and n at room temperature from EIS measurement.

Sample µ (cm2 V−1 s) D (cm2 s−1) n (cm−3)

MCKN1 - - -
MCKN2 - - -
MCKN3 5.92 × 10−10 1.52 × 10−11 3.16 × 1021

MCKN4 1.13 × 10−9 2.90 × 10−11 8.52 × 1020

MCKN5 3.45 × 10−9 8.84 × 10−11 1.07 × 1020

In Table 2, the D, µ, and n are increased when the salt is increased. This increase
in the D, µ, and also n increased the conductivity. The number of ions increases as the
concentration of salt increases [63].

3.2. FTIR Study

Figure 4 shows the FTIR spectra at a wave number from 400 to 4000 cm−1 for the
MC:KSCN based biopolymer electrolytes. FTIR is the best method for determining the
structure and content of novel organic compounds generated during chemical processes.
Position shifting and intensity fluctuation of bands in electrolyte samples are considered
the best indicators of the existence of specific interaction among salts cation and polymers
functional groups. Heteroatoms (such O and N) are shown to be important elements in
the electrolyte and lone pair electron interaction in the polymer host [64]. It is possible to
highlight SPEs system interactions between MC and KSCN by taking FTIR spectra of them.

The existence of the C-H stretching modes seen in Figure 4 is indicated by the forma-
tion of a significant peak at roughly 2900 cm−1 [65–69], and the salt content also reduced its
intensity. Furthermore, doping has been shown to have a major impact on this process, as
seen in Figure 4, which depicts a large peak centered at 3359 cm−1 as the source of the -OH
stretching [65]. As a result of both peak shifting and intensity change, a significant interac-
tion arises between the host medium and KSCN salt. As a result of past research [33,69],
this polymer has distinct vibrational frequencies in the FTIR spectra of O=C-NHR and -OH.
Increased KSCN concentration causes the peak intensity to decrease and shift somewhat.
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In fact, the complexation process is proven by the fact that the polymer body and the KSCN
salt are in close contact with each other through a coordination link.
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Figure 4. Full range of FTIR spectra for MC:KSCN systems.

This technique is also effective for measuring the dissociation of ions [70]. Thiocyanate
anion (SCN-) has two possible reactive sites and regarded as a linear molecular ion. This ion
can form bridge complexes between N and S atoms in addition to S-bonding (CS stretching)
and N-bonding (CN stretching). It has been suggested by Woo et al. that the wavelengths at
which the bands appear correspond to free ions at 2040 cm−1, pair contact ions at 2058 cm−1,
and ions aggregates at 2074 cm−1 [71]. Equation (19) is used to determine the percentage
of ions [63]. Ion association and dissociation were distinguished by deconvoluting the
overlapped complex spectra between 2030 and 2090 cm−1.

When compared to other methods, such as impedance spectroscopy and Trukhan,
Rice and Roth, Schutt and Gerdes models, the precision of FTIR-extracted ion transport
parameters reveals that this method is superior [38,72]. FTIR spectroscopy is very sensitive
to even small structural changes, making it a dependable method of spectroscopic analysis.
In particular, the location and strength of some band peaks [73] clearly demonstrate this.
This strategy of fitting the curve and separating single fine peaks corresponds to free ions,
contact ion couples (K+. SCN-), and ion aggregates through the Gaussian–Lorentzian
fitting approach and baseline correction [7,74]. Free SCN-linear anion has an estimated
peak band position of 2040 cm−1; ion contact, and ion aggregates have peak band values of
2058 cm−1 and 2074 cm−1, respectively [71,75]. After the fitting procedure, the following
equation [7,76] may be used to calculate the proportion of these ionic species in the region
beneath each of the bands:

percentage of free ions (%) =
A f

A f + Ac + Aa
× 100% (19)

Areas under free ions, ions in contact with one another, and ion aggregates are all
represented by, A f , Ac, and Aa. Figure 5d shows that the CSPSK4 sample has reached
its maximum salt concentration (the area of free ions grows). Increasing KSCN salt, up to
40 weight percent, causes the peak area of contact ions to steadily decrease (see Figure 5a–d).
Accordingly, the number of mobile carriers is reduced as more free ions are available, which
is known to have an effect on the conductivity of ions. Carboxyl methylcellulose hosts
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doped with NH4SCN [7] and oleic acid [77] have also shown similar results. The overall
performance of the SPE and its ionic conduction is influenced by a number of factors,
including free ions. Mobility (µ), diffusion coefficient (D), and the density of the carriers (n)
are other important considerations which can also be determined using the FTIR method.
The following formulae [74,76] were used to determine these parameters:

n =
M× NA

VTotal
× (free ion %) (20)

µ =
σ

n e
(21)

D =
µ KbT

e
(22)

here, the total volume of the SPE is (VTotal) and (M) is the number of mole. (NA) and (e)
possess usual meanings which are 6.02× 1023 mol−1 and 1.6× 10−19 C, respectively. Both
Kb (1.38× 10−23 J K−1) and T have normal meanings.
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According to the µ and D values in Table 3, the optimal quantity of salt for both
transport parameters is 40 wt.% of salt. Free SCN-nucleophile anion possesses two highly
reactive sites for N and S bonding, in addition to a bridge complex with the host polymer
(SCN bending) [78,79]. When the polymers lose their structural order and intermolecular
interaction, resulting in a more amorphous phase that facilitates better ion diffusion [80].
On the other hand, at a salt concentration of 50 wt.%, both µ and D values decrease, which
is consistent with the obstruction effect of free ion movement caused by the creation of an
ion cloud and an ion cluster [76,77]. For more clarification, the percentage (%) of free ions,
contact ions, and ion aggregates versus salt concentrations are shown in Figure 6.

Table 3. The values of D, µ, and n at room temperature using FTIR method.

Sample n (cm−3) µ (cm2 V−1 s) D (cm2 s−1)

MCKN1 1.94 × 1021 4.32 × 10−12 1.13 × 10−13

MCKN2 4.78 × 1021 1.21 × 10−11 3.17 × 10−13

MCKN3 1.33 × 1022 1.41 × 10−10 3.68 × 10−12

MCKN4 3.92 × 1022 2.46 × 10−11 6.41 × 10−13

MCKN5 2.15 × 1022 1.72 × 10−11 4.49 × 10−13
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3.3. Dielectric Properties
3.3.1. Complex Permittivity

Through dielectric spectroscopy, the frequency-dependent dielectric properties of the
medium are established. It means that the dielectric parameters can be calculated from
the relationship between the measured impedance parameters versus frequency. Using a
broad variety of frequencies, this approach includes the interaction of an electric dipole
with an external field. The acquired data may also be used to estimate the material’s ac
conductivity over a certain frequency range. The necessary energy for dipole alignment
is represented by the imaginary portion (ε′′ ), whereas the real part (ε′) is connected to ion
storage effectiveness or polarizing ability. The dielectric constant and loss were measured
using Equations (5) and (6). In both dielectric constant and loss (Figures 7 and 8), dispersion
is seen at low frequencies. Space charge polarization was observed to exist at the electrode–
electrolyte interface, as dielectric constant and loss were significant in the area [81–85]. It
should be noted that the system with a 30 wt.% KSCN integration has the largest dielectric
constant at low-frequency range. It could be caused by space charge effects in addition
to electrode polarization. This suggests the presence of many charge carriers, leading
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to relatively high conductivity [85–87]. In the low frequency range, dipoles and charge
carriers have sufficient time to align themselves with respect to the direction of the applied
field. Electrode polarization is caused by charge buildup at the electrode/electrolyte
contact, which suppresses high frequency dielectric characteristics (bulk property) [86–88].
The dielectric loss value is clearly greater than the dielectric constant value, showing a
contribution to the dielectric loss values from carrier motion (DC conductivity) [89,90]. Due
to the marginalization of the electrode–electrolyte interfaces with increasing frequency, the
dielectric values are steady in high-frequency areas. The electrolyte films exhibit non-Debye
behavior because the values of both (ε′′ ) and (ε′) drop with increasing frequency [91,92].
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3.3.2. Complex Electric Modulus

The complex electric modulus (M∗) has the following mathematical foundation for the
real (M′) and imaginary (M′′) portions as shown in Equations (7) and (8). Figures 9 and 10
show M′ and M′′ in opposition to frequency for the PCEs at room temperature. At low
frequencies, both M′ and M′′ decrease as the tails lengthen, demonstrating that electrode
polarization has a minor role. It implies that the polarization of the electrodes causes the SS
electrodes to build up charges [93]. The spectra of M′ and M′′ vary from those of ε′ and ε′′ .
Figures 7 and 8 show the large ε′ and ε′′ values at low frequencies. In reality, the inverses of
ε′ and ε′′ in ε∗ were used to create the M′ and M′′ in M∗. When it comes to low-frequency
capacitive behavior, these are the parameters that are most important.

Figures 9 and 10 show the long tails at low frequencies. If the electrode/PE films
had a considerable capacitance at low frequencies, the electrochemical double layer at the
electrodes would be suppressed. Due to the fact that ε′ decreases to its lowest value, M′

rises to its greatest value at high frequencies [86]. The M′′ spectra of the electrolyte show a
notable peak as a consequence of the relaxation of conductivity (see Figure 10). It is because
M′ in the M∗ corresponds to ε′ in the ε∗ that the loss peaks do not appear in the M′ spectra
(see Figure 9). M′ is a symbol denoting the energy storage capacity of the substance [94].
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frequency range (100–2 MHZ).

Materials 2022, 15, x FOR PEER REVIEW 15 of 22 
 

 

Figure 8. The relationship between dielectric loss versus frequency for all MC:KSN systems in fre-
quency range (100 −  2 MHz). 

3.3.2. Complex Electric Modulus 
The complex electric modulus (𝑀∗) has the following mathematical foundation for 

the real (M′ ) and imaginary (M″) portions as shown in Equations (7) and (8). Figures 9 
and 10 show M′ and M″ in opposition to frequency for the PCEs at room temperature. At 
low frequencies, both M′ and M″ decrease as the tails lengthen, demonstrating that elec-
trode polarization has a minor role. It implies that the polarization of the electrodes causes 
the SS electrodes to build up charges [93]. The spectra of M′ and M″ vary from those of 𝜀  
and 𝜀 . Figures 7 and 8 show the large ε  and ε  values at low frequencies. In reality, 
the inverses of 𝜀 and 𝜀  in 𝜀∗ were used to create the M′ and M″ in 𝑀∗. When it comes 
to low-frequency capacitive behavior, these are the parameters that are most important. 

Figures 9 and 10 show the long tails at low frequencies. If the electrode/PE films had 
a considerable capacitance at low frequencies, the electrochemical double layer at the elec-
trodes would be suppressed. Due to the fact that 𝜀  decreases to its lowest value, M′ rises 
to its greatest value at high frequencies [86]. The M″ spectra of the electrolyte show a no-
table peak as a consequence of the relaxation of conductivity (see Figure 10). It is because 
M′ in the 𝑀∗ corresponds to 𝜀  in the 𝜀∗ that the loss peaks do not appear in the M′ 
spectra (see Figure 9). M′ is a symbol denoting the energy storage capacity of the substance 
[94]. 

 
Figure 9. Illustrates the frequency dependence of the M′ for all MC:KSN systems in frequency range 
(100 −  2 MHz). 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Log (f)

M
'

MCK1 MCK2

MCK3 MCK4

MCK5

Figure 9. Illustrates the frequency dependence of the M′ for all MC:KSN systems in frequency range
(100–2 MHZ).



Materials 2022, 15, 5579 14 of 20
Materials 2022, 15, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 10. Illustrates the frequency dependence of the M″ for all MC:KSN systems in frequency 
range (100 −  2 MHz). 

3.4. AC Conductivity 
To realize the ion dynamics in polymer electrolytes, the frequency dependence of AC 

conductivity at room temperatures was examined for all samples, which can be seen in 
Figure 11. According to documents recorded in the literature [95] conductivity in polymer 
electrolytes progresses via two main mechanisms. The first mechanism is in action by ion 
charge migration across coordinated sites in the host polymer and results in DC contribu-
tion. The second one is in progress after increasing conductivity as a result of polymer 
segmental motion and polarization and results in AC dispersion. Equation (23) is applied 
to gain the AC conductivities: 𝜎 = 𝑍𝑍 + 𝑍 × 𝑡𝐴 (23)

In Figure 11, three different areas are recognized; firstly, the low-frequency range 
inclined line, resulting from the electrode polarization; secondly, the plateau area at the 
medium frequency, which is caused by DC conductivity at the bulk; lastly, the area of the 
high frequency, which shifts in position to the higher frequency as salt concentration is 
increased due to conductivity relaxation [96]. In the previous document, the AC conduc-
tivity dependency on the applied electrical signal frequency was applied as a method to 
accurately evaluate DC conductivity [97]. The extension of the plateau area to the y-axis 
is useful in estimating DC electrical conductivity. It is important to note that the rise in 
AC conductivity (the frequency dependence) would still be observed at relatively high 
frequencies. Furthermore, the rise in AC conductivity with frequency implies the presence 
of a hopping conduction mechanism, which enhances charge carrier hopping among lo-
calized states [98]. The origin of this strong relationship between frequency and conduc-
tivity belongs to Jonscher [99], in which the relaxation process is caused by mobile charge 
carriers (related to the jump relaxation model) [100]. As stated, the AC conductivity at 
high frequencies can be linked to the possibility of connected forward–backward hopping 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Log (f)

M
''

MCK1 MCK2

MCK3 MCK4

MCK5

Figure 10. Illustrates the frequency dependence of the M′′ for all MC:KSN systems in frequency
range (100–2 MHZ).

3.4. AC Conductivity

To realize the ion dynamics in polymer electrolytes, the frequency dependence of
AC conductivity at room temperatures was examined for all samples, which can be seen
in Figure 11. According to documents recorded in the literature [95] conductivity in
polymer electrolytes progresses via two main mechanisms. The first mechanism is in action
by ion charge migration across coordinated sites in the host polymer and results in DC
contribution. The second one is in progress after increasing conductivity as a result of
polymer segmental motion and polarization and results in AC dispersion. Equation (23) is
applied to gain the AC conductivities:

σac =

[
Z′

Z′2 + Z′′2

]
× t

A
(23)

In Figure 11, three different areas are recognized; firstly, the low-frequency range
inclined line, resulting from the electrode polarization; secondly, the plateau area at the
medium frequency, which is caused by DC conductivity at the bulk; lastly, the area of the
high frequency, which shifts in position to the higher frequency as salt concentration is
increased due to conductivity relaxation [96]. In the previous document, the AC conduc-
tivity dependency on the applied electrical signal frequency was applied as a method to
accurately evaluate DC conductivity [97]. The extension of the plateau area to the y-axis
is useful in estimating DC electrical conductivity. It is important to note that the rise in
AC conductivity (the frequency dependence) would still be observed at relatively high
frequencies. Furthermore, the rise in AC conductivity with frequency implies the presence
of a hopping conduction mechanism, which enhances charge carrier hopping among local-
ized states [98]. The origin of this strong relationship between frequency and conductivity
belongs to Jonscher [99], in which the relaxation process is caused by mobile charge carriers
(related to the jump relaxation model) [100]. As stated, the AC conductivity at high frequen-



Materials 2022, 15, 5579 15 of 20

cies can be linked to the possibility of connected forward–backward hopping in conjunction
with ion relaxation in the bulk of the materials. The Jonscher’s relation accurately establish
the relationship between AC conductivity and charge carrier motion [101],

σac(ω) = σDC + A ωs(0 < s < 1) (24)

where s is an exponent that expresses charge carrier interactions throughout hopping
processes in DC conductivity [102]. Secondly, dipole polarization (limited movement) and
charge buildup at the interface result in the polarization (limited movement) component
(permanent/induced). As the frequency rises, so does the second component’s contribution
to overall conductivity [103].
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4. Conclusions

The solid polymer electrolyte that conducts potassium ions has been made using
the solution cast method at room temperature. Investigations have been conducted into
how variations in salt concentration affect the structural, dielectric, and ion transport
characteristics of produced films. According to the FTIR analysis, the complexation between
the polymer and salt was confirmed. When KSCN salt content increased up to 40 wt.%,
the free ion is dominant based on FTIR deconvolution. From the fitted EIS plot and EEC
diagram, the entire figure of the system was visualized. The highest conductivity of
1.54 × 10−7 S cm−1 is achieved when the salt concentration has reached 30 wt.% based on
EIS approach. The extracted ion transport parameters from the deconvoluted anion peak
revealed a clear enhancement in the transport parameters for the MCK4 sample, which is
not in accordance with the EIS investigations. Dielectric polarization is the explanation
for the dispersion with a high value of dielectric constant in the low frequency range. The
highest conducting sample has the greatest value of dielectric constant, and often follows
the same pattern as the conductivity study. No discernible dielectric loss peak is seen
because the electrode polarization effect might have covered it. In the M′′ versus frequency
plot, the long-range conductivity relaxation is shown as a resonance peak. The faster ion
migration via the segmental motion of the polymer chain and the presence of more free
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charge carriers in the system may account for the improvement in dielectric properties.
When the frequency-dependent conductivity shows a large flat area, it means that ions are
moving, which gives rise to the conductivity.
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