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Abstract: Oxidized mesoporous carbon CSBA-15, obtained by the hard method, was applied to remove
rhodamine B from the aqueous system. The process of carbon oxidation was performed using 0.5 and
5 M of nitric (V) acid solution at 70 and 100 ◦C. Functionalization of mesoporous carbon with HNO3

solutions led to reduction in the surface area, pore volume, and micropore area, however, it also led to
an increased number of oxygen functional groups of acidic character. The functional groups probably
are located at the entrance of micropores, in this way, reducing the values of textural parameters.
Isotherms of rhodamine B adsorption indicate that the oxidation of mesoporous carbons resulted
in an increase in the effectiveness of the removal of this dye from aqueous solutions. The influence
of temperature, pH, and contact time of mesoporous material/rhodamine B on the effectiveness of
dye removal was tested. The process of dye adsorption on the surfaces of the materials studied was
established to be most effective at pH 12 and at 60 ◦C. Kinetic studies of the process of adsorption
proved that the equilibrium state between the dye molecules and mesoporous carbon materials is
reached after about 1 h. The adsorption kinetics were well fitted using a pseudo-second-order model.
The most effective in rhodamine B removal was the sample CSBA-15-5-100, containing the greatest
number of oxygen functional groups of acidic character. The Langmuir model best represented
equilibrium data.

Keywords: ordered mesoporous carbons; hexagonal structure; hard template method; oxidation by
nitric acid; cationic dye; adsorption

1. Introduction

Water, which is the element necessary to support all forms of life, covers most of
Earth’s surface. Its pollution is negative to human health and the entire hydrosphere [1–5].
There is a constant increase in the content of organic compounds in wastewater, especially
in post-production waste produced by different types of industry [6,7], such as the textile
industry, reaching several thousand tons a year, of which 10–20% is lost in the process of
production [8–10]. Dyes are usually well soluble in water and resistant to degradation
by various methods (biological, physical, and chemical) [9–12]. Therefore, they must be
removed from the wastewater. At present, a few methods are used to remove organic
compounds [12–14]. From among newly proposed methods, very attractive seems to be
the method of membrane separation, offering simplicity of operation and low energy
consumption [15]. On the other hand, membrane efficiency decreases with time because
of the fouling of pollutant particles on the membrane surface and inside membrane pores.
Moreover, molecules of many organic compounds are smaller than the membrane pores
and the process of membrane separation is ineffective [16–18]. Currently, the most effective
are the adsorption methods that can be used for the removal of organic and inorganic
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compounds from water solutions. The properties and quality of the adsorbent influence
the adsorption efficiency. Many materials, for example, silica gels [19], alumina [20], and
zeolite molecular sieves [21,22] are rather ineffective in the adsorption process. Activated
carbons are used as organic pollutant adsorbents, although the presence of micropores in
their structure limits the penetration of larger dye molecules into the pores. Recently, much
attention was paid to ordered mesoporous carbon materials, as they show unique properties,
such as thermal and mechanical stability, as well as good textural parameters [23]. These
materials are easily modified, which allows for improved adsorption properties towards a
range of pollutants [23–26]. Many methods for carbon material modification were proposed,
but the most effective is that of wet oxidation, in which oxygen functional groups are
introduced on the carbon surface [27]. A number of authors studied the adsorption of
organic compounds on carbon materials, for instance, Liu et al. [28] proposed the removal
of Acid Red 73 and Reactive Black 5 by CMK-3, CMK-5, and its carbon/silica composite
Si-CMK-5, with different pore structures. The greatest sorption capacity towards these
dyes was shown by CMK-5, which was related to double pore systems and large specific
surface area. Asouhidou et al. [29] obtained mesoporous carbons, a highly ordered CMK-3
sample with hexagonal structure and a disordered mesoporous carbon (DMC), and tested
them in the removal of Remazol Red 3BS, comparing their performance with that of
commercial products (Takeda 5A, Calgon, and Norit SAE-2) and a HMS mesoporous
silica with a wormhole pore structure. Their results show that the material structure
and pore size have a significant impact on the effectiveness of adsorption. The resulting
sorption capacities decreased in the order CMK-3 (0.531 mmol/g) > DMC (0.453 mmol/g)
> SAE-2 (0.167 mmol/g) > Calgon (0.05 mmol/g) > Takeda 5A = HMS (0.007 mmol/g).
The group of Peng [30] successfully applied the ordered mesoporous CMK-3 containing
nitrogen functional groups as the adsorbent of Acid Black 1. According to their results, the
modification of mesoporous carbon significantly improved its effectiveness in the removal
of this dye. The maximum sorption capacities of the initial and functionalized materials
were over 270 mg/g and nearly 500 mg/g, respectively.

One of the most popular textile dyes is rhodamine B, which is a cationic synthetic
dye of green or red purple crystals [31]. With the release of rhodamine B into the water,
several environmental and public health problems are caused [32,33]. Very popular and
effective adsorbents of rhodamine B from water solutions are mesoporous carbons [34–36].
Therefore the aim of the study was to analyze the process of rhodamine B removal from
water solutions by adsorption on oxidized mesoporous carbons of hexagonal structure.
The effects of pH of the dye solution, adsorbent/adsorbate contact time, and temperature
of the process were checked on the sorption capacity of obtained mesoporous carbons. The
mesoporous carbon materials used as adsorbents were characterized in detail by a number
of physicochemical methods.

2. Materials and Methods
2.1. Sample Preparation
2.1.1. Mesoporous Carbon Synthesis

Mesoporous carbon CSBA-15 was obtained by the hard template method using the
ordered silica SBA-15 as the solid template and sucrose as the carbon precursor [37,38]. The
substrates for SBA-15 preparation were 50 mg of Pluronic P123 (EO20PO70EO20; Aldrich,
Saint Louis, MO, USA), 19 mL of 1.6 M HCl (Avantor Performance Materials Poland S.A.,
Gliwice, Poland), and 1.1 mL of TEOS (MERCK KGaA, Darmstadt, Germany). Pluronic
P123 was dissolved in a water solution of HCl at 35 ◦C. To the mixture, TEOS was added
dropwise upon stirring continued for 6 h. Then the mixture was subjected to hydrothermal
treatment in poly-propylene bottles in a drier (1 day at 35 ◦C and the next 6 h at 100 ◦C).
Then the material obtained was filtered off and dried (100 ◦C, 12 h). The template was
removed by calcination (550 ◦C, 8 h). The procedure produced ordered mesoporous silica
SBA-15 of hexagonal structure [37,38]. The mesoporous silica SBA-15 was subjected to
twice repeated impregnation using sucrose solution. Next, 125 mg sucrose (MERCK KGaA,
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Darmstadt, Germany) was dissolved in H2SO4 (0.14 mL, Avantor Performance Materials
Poland S.A., Gliwice, Poland) and 5 mL of distilled water. The solution was added to the
flask with the ordered silica. The contents were heated in the oven (6 h at 100 ◦C and 6 h at
160 ◦C). The obtained material was subjected to another impregnation with a solution of
sucrose (800 mg), H2SO4 (0.09 mL), and distilled water (5 mL).

The composite was then subjected to carbonization by heating for 2 h at 900 ◦C.
The remaining silica was washed out twice with 5% of HF solution (200 mL, Avantor
Performance Materials Poland S.A., Gliwice, Poland). The material was filtered off, washed
with C2H5OH, and dried (12 h at 100 ◦C) [39].

2.1.2. Sample Functionalization

The CSBA-15 of the hexagonal structure was subjected to oxidation at 70 or 100 ◦C with
the use of HNO3 at the concentrations of 0.5 or 5 mol/L as the oxidizing agent. Next, 0.5 g
of the carbon was placed in a round-bottomed flask and flooded with 30 mL of nitric (V)
acid solution. Oxidation was performed under reflux (12 h). Next, the contents were filtered
off and the carbon was washed with C2H5OH and distilled water. The oxidized carbon
materials were labeled as CSBA-15-0.5-70, CSBA-15-5-70, CSBA-15-0.5-100, and CSBA-15-5-100,
where 70 and 100 refer to the temperature of oxidation, while 0.5 and 5 to the concentration
of HNO3.

2.2. Analytical Procedures

The texture parameters of the samples obtained were characterized by low-temperature
nitrogen adsorption/desorption isotherms measured on a sorptometer Quantachrome Au-
tosorbiQ (Boynton Beach, FL, USA) [9].

X-ray diffraction patterns were obtained on a Bruker AXS DB Advance diffractometer
(CuKα radiation, λ = 0.154 nm, step size 0.02◦).

The number of surface oxygen functional groups was determined by the Boehm
method [40]. A portion of 0.25 g of adsorbent was placed in 25 mL of 0.1 mol/L solutions
of either NaOH or HCl. The vials were sealed and shaken for 24 h and then 10 mL of each
filtrate was pipetted and the excess of base or acid was titrated with 0.1 mol/L HCl or
NaOH, as required. The numbers of acidic sites of various types were calculated assuming
that NaOH neutralizes all acidic groups and HCl reacts with all basic groups.

Structural changes in the oxidized mesoporous carbon materials were determined by
FT-IR spectroscopy. The preparation of samples is described in the paper [9]. The study
was carried out on a Varian 640-IR spectrometer (Agilent, Santa Clara, CA, USA).

Zeta potential was determined using a Zetasizer Nano ZS instrument equipped with
an autotitrator (Malvern Instruments Ltd., Malvern, United Kingdom) [41]. The elec-
trophoretic mobility of the particles was measured and converted to the zeta potential
according to the Henry Equation (1):

Re f =
2εζ f (Ka)

3η
(1)

where Ref is the electrophoretic mobility, ε the dielectric constant; ζ the electrokinetic (zeta)
potential; η the viscosity, and f (Ka) the Henry function. The isoelectric point is a pH value
at which zeta potential is zero, the surface has net electrical neutrality. When pH > iep, the
surface charge is negative and pH < iep, it is positive.

2.3. Adsorption of Rhodamine B

The carbon material portions of 0.02 g were placed in flasks and flooded with 50 mL
of a dye solution of a given concentration (25–250 mg/L), and the contents were shaken at
22 ± 1 ◦C for 24 h. Spectrophotometric measurements were carried out with a spectrometer
Cary 100 Bio (Agilent, Santa Clara, CA, USA). Rhodamine B absorbs the irradiation of
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λmax = 553 nm. The amount of rhodamine B adsorbed on the oxidized mesoporous carbons
was calculated from Equation (2):

qe =
C0 − Ce

m
× V (2)

where: C0—initial rhodamine B concentration (mg/L); Ce—equilibrium rhodamine B
concentration (mg/L); m—the mass of mesoporous carbon sample (g); V—volume of
rhodamine B solution (L). The experimental adsorption studies were carried out twice and
are shown with a standard deviation error.

The effects of pH (CP-401 pH-meter, ELMETRON, Zabrze, Poland) of the dye solutions,
temperature, and contact time of the sample/rhodamine B on the sorption capacities of
mesoporous carbons were studied.

2.4. Adsorption Modeling

Experimental data were fitted to pseudo-first-order (3) and pseudo-second-order (4)
models [9]:

ln(qe − qt) = lnqe −
k1t

2.303
(3)

where: qe—sorption capacity of the rhodamine B adsorbed at equilibrium state (mg/g);
qt —sorption capacity of the rhodamine B adsorbed in time (mg/g); and k1—the rate
constant for the pseudo-first order model (min−1).

The pseudo-second-order model can be expressed by the equation:

t
qt

=
1

k2qe2 +
t
qe

(4)

where: k2—the rate constant for pseudo-second order model (g/mg·min).

2.5. Thermodynamic Study

Thermodynamic parameters [42–44] were calculated by using the following Equation (5):

∆G0 = −RTlnKd (5)

where: ∆G0—Gibbs free energy (J·mol−1); R—universal constant (8.314 J·mol−1·K−1);
T temperature (K); and Kd—thermodynamic equilibrium constant.

The Gibbs free energy of adsorption (∆G0) can be represented by the Equation (6):

∆G0 = ∆H0 − T∆S0 (6)

where: ∆H0—enthalpy change; ∆S0—entropy change.
Thermodynamic parameters can be also calculated from Equation (7):

lnKd =
∆S0

R
+

∆H0

RT
(7)

∆H0 and ∆S0 parameters were calculated (7) from the slope and intercept of the plot of
lnKd versus 1/T yields, respectively.

2.6. Adsorption Isotherms

In our work, we used the Langmuir and Freundlich models to explain the mechanism
of rhodamine B adsorption on oxidized carbon materials [45,46].

The linear equation of Langmuir isotherm (8) is represented as follows:

Ce

qe
=

1
KL × qmax

+
Ce

qmax
(8)
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where: Ce—equilibrium concentration of rhodamine B (mg/L); qe—sorption capacity of rho-
damine B adsorbed onto the adsorbent at equilibrium (mg/g); qm—maximum monolayer
adsorption capacity of adsorbent (mg/g); and KL—Langmuir adsorption constant (L/mg).

The Freundlich isotherm is expressed mathematically as [46] (9):

lnqe = lnKF +
1
n

lnCe (9)

where: qe—sorption capacity of rhodamine B adsorbed at equilibrium (mg/g); Ce—
equilibrium concentration of rhodamine B (mg/L); KF—Freundlich adsorption constant
(mg/g·(L/mg)1/n); and n—Freundlich constant indicates how favorable the adsorption
process is.

Experimental data were also fitted to the non-linear Langmuir and Freundlich models.

3. Results and Discussion
3.1. Characterization of Adsorbents

The data on textural parameters are presented in Table 1. The sample of CSBA-15
is characterized by a well-developed surface area (SBET = 1203 m2/g) and a total pore
volume (Vt) of 1.32 cm3/g. The carbon obtained in this way also has micropores, whose
area (Smicro) is 682 m2/g. The process of functionalization of sample CSBA-15 leads to a
decrease in these parameters. However, the changes are not uniform and depend on
the conditions of the oxidation process. Although sample CSBA-15-5-100 was obtained by
treatment with a 5 mol/L solution of HNO3 at 100 ◦C, it shows the largest surface area
from among all oxidized materials (854 m2/g). The micropore area and total pore volume
of this material are 198 m2/g and 1.10 cm3/g, respectively. Most probably in the conditions
applied (100 ◦C, 5 mol/L HNO3), the micropores are unblocked again and the carbon
compounds are removed, which increases the micropore area and total surface area [47].
The smallest SBET of 685 m2/g, Smicro of 106 m2/g, and Vt of 0.89 cm3/g were obtained for
sample CSBA-15-5-70. The reduced values of textural parameters are most probably caused
by the localization of the newly generated oxygen functional groups in micropores, which
leads to their blocking and decreases the surface area.

Table 1. Textural parameters of adsorbents obtained 1.

Adsorbent SBET (m2/g) Vt (cm3/g) Smicro (m2/g)
Average Pore

Diameter (nm)

CSBA-15 1203 1.32 685 4.45
CSBA-15-0.5-70 789 1.12 147 5.66
CSBA-15-5-70 685 0.89 106 5.18

CSBA-15-0.5-100 837 1.04 204 4.91
CSBA-15-5-100 854 1.10 198 5.18

1 Error range between 2% and 5%.

Recorded in the small angle range XRD, diffractograms of the adsorbents obtained
are depicted in Figure 1. Diffractograms of all samples show one intensive peak char-
acteristic of hexagonal pore arrangement [9]. The diffractograms of the initial mate-
rial CSBA-15 and samples CSBA-15-0.5-100 and CSBA-15-5-100 contain also the reflections
in the range 2Θ ≈ 1.7–2.5◦, corresponding to the planes (100), (110), and (200) of P6 mm
structure, evidencing good ordering of the materials. No analogous reflections are ob-
served for CSBA-15-0.5-70 and CSBA-15-5-70, which indicates a partial disturbance in the
mesoporous structure.
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Figure 1. XRD patterns of adsorbents obtained.

Table 2 presents the results obtained from Boehm titration. The oxidation of meso-
porous sample CSBA-15 with a solution of HNO3 generates on its surface acidic functional
groups whose content depends on the conditions of the process. When using 0.5 mol/L and
5 mol/L HNO3 solution, the content of basic groups decreased to 0.13 mmol/g for samples
CSBA-15-0.5-70 and CSBA-15-0.5-100, and to their total disappearance on samples CSBA-15-5-70
and CSBA-15-5-100. For the acidic functional groups, the results are different. The content
of acidic groups in the initial carbon material CSBA-15 is 1.09 mmol/g. The content of such
groups increases after oxidation and clearly depends on the functionalization conditions,
which are the concentration of nitric (V) acid and process temperature. The highest content
of the acidic functional groups of 4.88 mmol/g was observed for the sample oxidized
with 5 mol/L HNO3 solution at 100 ◦C (CSBA-15-5-100). Reduction in the temperature of
the process or in the concentration of the oxidizing agent led to lower content of acidic
surface functional groups: CSBA-15-0.5-70–2.14 mmol/g, CSBA-15-5-70–3.24 mmol/g, and
CSBA-15-0.5-100–3.45 mmol/g.

Table 2. The results obtained from Boehm titration.

Adsorbent Acidic Groups
(mmol/g)

Basic Groups
(mmol/g)

Total Content of Acidic and
Basic Groups (mmol/g)

CSBA-15 1.09 ± 0.01 0.74 ± 0.01 1.83
CSBA-15-0.5-70 2.14 ± 0.02 0.13 ± 0.01 2.27
CSBA-15-5-70 3.24 ± 0.02 0.00 ± 0.00 3.24

CSBA-15-0.5-100 3.45 ± 0.02 0.13 ± 0.01 3.58
CSBA-15-5-100 4.88 ± 0.03 0.00 ± 0.00 4.88

Figure 2 presents the transmission FT-IR spectra of the initial carbon CSBA-15 and
oxidized samples of acidic surface nature.

The FT-IR spectra show a rather broad band at about 1200 cm−1 that can be assigned to
the stretching vibrations of the C–O bond in ethers, acid anhydrides, or phenol. The bands
about 1600 cm−1 correspond to the stretching vibrations of carbon–carbon bonds in the
aromatic ring. There is also a clearly visible band at 3400 cm−1, assigned to the stretching
vibrations of O–H bonds in hydroxyl groups, whose presence can indicate the oxidation of
mesoporous carbon surface and the presence of carboxyl or phenol oxygen groups [48,49].
For the oxidized materials, a new band appeared at about 1750 cm−1, which was most
pronounced for CSBA-15-5-100. This band can be assigned to the carbonyl group of aldehyde,
ester, or carboxyl acid. The most probable origin of this band is the presence of -COOH
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groups on the surface of oxidized carbons, which is supported by the simultaneous presence
of a band at about 3400 cm−1 [48,49]. The bands of the highest intensity were obtained
for sample CSBA-15-5-100, which has the highest content of functional acidic groups. The
bands recorded for the other samples were less intensive because of the lower content of
functional groups.
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3.2. Adsorption Studies

In this work, we studied the kinetics of adsorption (Figure 3). The adsorption of
rhodamine B on the surface of the carbon materials studied is very fast for the first 10 min.
After this time, the majority of the active sites on the carbon surface is already occupied by
the dye molecules and the rate of adsorption considerably decreases. After 1 h, no increase
qe was noted, which means that a state of equilibrium was reached and there are no more
active sites on the carbon material studied. Next step, the experimental data were fitted to
two kinetic models: pseudo-first-order (PFO) and pseudo-second-order models (PSO).
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Figure 3. Amount of rhodamine B adsorbed on adsorbents obtained (C0–75 mg/L).

According to data collected in Table 3, the R2 for the PFO model takes values from
the range 0.9265 to 0.9865. Much higher, and the same for all carbon material values of
R2 (0.9999), were obtained assuming the PSO model. Moreover, the sorption capacities
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calculated assuming this model are mostly in agreement with their experimental values.
Therefore, we conclude that the kinetics of rhodamine B adsorption on the surface of the
samples studied can be described by the PSO model.

Table 3. Kinetic models parameters.

Adsorbent qe (mg/g)
PFO Model PSO Model

qe [cal]
(mg/g) k1 (min−1) R2 qe [cal]

(mg/g) k2 (g/mg min) R2

CSBA-15 159.41 ± 3.19 9.94 0.019 0.9391 161.29 0.003 0.9999
CSBA15-0.5-70 171.29 ± 3.43 7.35 0.018 0.9265 172.41 0.004 0.9999
CSBA-15-5-70 174.46 ± 3.49 11.93 0.022 0.9253 175.44 0.003 0.9999

CSBA-15-0.5-100 174.90 ± 3.49 11.44 0.026 0.9865 175.45 0.003 0.9999
CSBA-15-5-100 180.71 ± 3.61 10.72 0.023 0.9687 181.81 0.003 0.9999

Figure 4 illustrates the effect of the adsorbate solution pH, changed in the range 2–12,
on the amount of adsorbed rhodamine B, while Figure 5A presents the zeta potential
curves vs. pH of mesoporous carbons before the dye adsorption, and Figure 5B, after
its adsorption. As shown in Figure 5A, sample CSBA-15 has the isoelectric point (iep) at
3.4. The functionalization changes the adsorbents’ surface, for CSBA-15-5-70 the isoelectric
point is at pH 2.6 and for CSBA-15-5-100 it does not exist; the zeta potential in the whole
range of measurement is negative. The negative zeta potential indicates that oxidation
treatment with HNO3 introduces hydroxyl, carboxylic, and carbonyl groups on the surfaces
of the samples, which dissociate generating the negatively charged surface [50,51]. The
zeta potential value higher than 25 mV, positive or negative, is indicative of electrokinetic
stability [52]. Pristine carbon sample CSBA-15, and the samples after oxidation (CSBA-15-5-70
and CSBA-15-5-100), show good electrokinetic stability at pH values higher than 6 (Figure 5A).
The data presented in Figure 4 suggest that the effectiveness of rhodamine B removal
from water solutions depends on the pH of the adsorbate solution. The lowest sorption
capacity was recorded at pH 2, which can be explained as a result of the protonation of
carboxyl, amide, and hydroxyl groups, leading to the generation of a positive charge,
which is engaged in repulsive interaction with the positive charge of the cationic dye
(rhodamine B). In addition, at low pH, the H+ cations compete with rhodamine B cations
for the adsorption sites. The surface is more negatively charged when the pH increases as a
result of deprotonation of the functional groups by the hydroxide anion OH-, which is more
favorable for the adsorption of rhodamine B. Then, we have strong electrostatic attraction
between the negatively charged surface of the adsorbent and the positively charged cationic
dye. At pH 12, the sorption capacities of all adsorbents increased by about 20 mg/g in
relation to that of the initial carbon sample. The zeta potential values of CSBA-15-5-100
after adsorption of rhodamine B from the solutions of the concentration of 50 mg/L and
150 mg/L (Figure 5B) differ from those for CSBA-15-5-100 before adsorption, and iep can be
observed (changes in iep value suggest the chemical adsorption) [53].

The effect of temperature on the amount of rhodamine B adsorbed on the surface of
the samples studied was also checked (Figure 6). The amount of rhodamine B adsorbed (qe)
on the surface of mesoporous carbon materials before and after their oxidation increases
with temperature. It follows the consequence of increased mobility of dye molecules at
higher temperatures. For instance, the amount of organic dye adsorbed on the surface of
sample CSBA-15-5-100 is 227 mg/g (25 ◦C), 254 mg/g (45 ◦C), and 261 mg/g (60 ◦C).

According to the data collected in Table 4, the results of ∆G◦ prove that the process
of adsorption of dye is spontaneous. For all samples, the degree of spontaneity was the
highest at 60 ◦C. The positive values of ∆H obtained reveal an endothermic adsorption
process. In addition, the positive values of ∆Sevidence increased the degree of randomness
at the interface in the process of the rhodamine B adsorption.
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Table 4. Thermodynamic parameters obtained.

Adsorbent Temperature
(◦C) ∆G0 (kJ·mol−1) ∆H0 (kJ·mol−1) ∆S0

(J·mol−1·K−1)

CSBA-15 25 −16.41 31.20 159.71
45 −19.53
60 −22.01

CSBA-15-0.5-70 25 −19.51 23.96 145.66
45 −22.18
60 −24.51

CSBA-15-5-70 25 −22.27 22.44 149.90
45 −25.14
60 −27.53

CSBA-15-0.5-100 25 −19.12 43.69 210.76
45 −23.24
60 −26.51

CSBA-15-5-100 25 −21.66 47.17 230.88
45 −26.19
60 −29.73

Figure 7 presents the isotherms of dye adsorption on the surface of carbon adsorbents.
According to the results, the initial carbon CSBA-15 proved to be the least effective in the
removal of dye, despite having the largest surface area from among all samples studied
(1203 m2/g). However, this material also has the lowest number of surface functional
groups of acidic character. Further data analysis allows us to conclude that the process of the
adsorption of organic dye depends on surface functional groups of acidic character. Sample
CSBA-15-5-100, showing the largest sorption capacity towards rhodamine B (325 mg/g),
has the greatest content of such functional groups (4.88 mmol/g). The process of its
oxidation was performed with 5 mol/L nitric (V) acid solution at 100 ◦C. The amounts of
rhodamine B adsorbed on the other oxidized carbon materials CSBA-15-0.5-70, CSBA-15-5-70,
and CSBA-15-0.5-100 were 248, 268, and 302 mg/g, respectively.
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Figure 7. Adsorption of rhodamine B onto adsorbents obtained.

Analysis of the adsorption data was performed with the use of two theoretical mod-
els of Langmuir and Freundlich (Figures 8 and 9, Tables 5 and 6). Comparison of the
experimental data with the predictions of a particular model provides information on the
mechanism of adsorption and mesoporous carbon/rhodamine B interactions. The criterion
of best fitting was the determination coefficient R2.
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The determination coefficient R2 for the linear form of the Langmuir model takes
values from 0.9987 to 0.9999 for all adsorbents obtained. The values of R2 (Freundlich
model) for particular carbon materials were: 0.8564 for CSBA-15, 0.7993 for CSBA-15-0.5-70,
0.8009 for CSBA-15-5-70, 0.8611 for CSBA-15-0.5-100, and 0.8598 for CSBA-15-5-100. Therefore,
the isotherms of rhodamine B adsorption on the surface of the carbon materials studied
correspond to the Langmuir model. It should be noted that the experimental values of
qe are slightly lower from the theoretical qm. For the oxidized mesoporous carbons, the
coefficient KL values are higher than for the initial material CSBA-15, which means that the
bonding between rhodamine B and the functionalized carbon material surfaces is stronger.
The coefficient 1/n for the Freundlich model lies between (0 < 1/n < 1) which shows that
this isotherm is favorable.

Table 5. The parameters of linear form of Langmuir and Freundlich models for rhodamine B
adsorption onto carbon materials.

Material
Langmuir Freundlich

qm (mg/g) KL (L/mg) R2 KF (mg/g
(L/mg)1/n) 1/n R2

CSBA-15 196.07 0.369 0.9999 102.48 0.1373 0.8564
CSBA15-0.5-70 250.00 0.727 0.9998 119.92 0.1701 0.7993
CSBA-15-5-70 270.27 0.787 0.9998 127.98 0.1783 0.8009

CSBA-15-0.5-100 303.03 0.493 0.9988 141.83 0.1717 0.8611
CSBA-15-5-100 322.58 0.574 0.9987 153.34 0.1780 0.8598

Table 6. The parameters of non-linear Langmuir and Freundlich models for rhodamine B adsorption
onto carbon materials.

Material
Langmuir Freundlich

qm (mg/g) KL (L/mg) R2 KF (mg/g
(L/mg)1/n) 1/n R2

CSBA-15 200.64 0.179 0.9999 122.13 0.0949 0.8983
CSBA15-0.5-70 248.73 0.566 0.9986 171.94 0.0793 0.8053
CSBA-15-5-70 268.28 0.660 0.9995 208.07 0.0530 0.9357

CSBA-15-0.5-100 296.66 0.454 0.9942 197.63 0.0860 0.9953
CSBA-15-5-100 319.83 0.505 0.9950 212.12 0.0897 0.9922
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Figure 8. Linear fitting of rhodamine B adsorption isotherms onto carbon adsorbents to Langmuir (A)
and Freundlich (B) models.
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Figure 9. Non-linear fitting of rhodamine B adsorption isotherms to Langmuir and Freundlich
models for samples: CSBA-15 (A), CSBA15-0.5-70 (B), CSBA-15-5-70 (C), CSBA-15-0.5-100 (D), and
CSBA-15-5-100 (E).

Additionally, the comparison of the non-linear form of the Langmuir and the Fre-
undlich [54] isotherm models with experimental data for the adsorption of rhodamine B on
the surface of carbon adsorbents is presented in Table 6 and Figure 9. It was established
that the Langmuir adsorption model indicates a better fit to the experimental data than
the Freundlich model. The R2 values for the non-linear and linear Langmuir isotherms
were similar.

Table 7 presents a comparison of the sorption capacities of carbon samples obtained
towards tested dye with those of other adsorbents. The comparison implies that the or-
dered mesoporous carbon materials are very effective in the removal of rhodamine B from
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water solutions. The majority of literature reported adsorbents, including hierarchical SnS2
nanostructure [5], TA-G [55], iron-pillared bentonite [56], sago waste activated carbon [57],
kaolinite [58], [Ni(bipy)2]2(HPW12O40) [59], orange peel [60], whose sorption capacities are
lower than for the oxidized carbon materials studied in this work. From among all materials
mentioned in Table 6, the highest sorption capacity towards rhodamine B showed the mag-
netic mesoporous carbon materials (342–400 mg/g) [61], also high sorption capacities were
noted for MoS2/MIL-101-345 mg/g [62] and oxidized ordered mesoporous carbon material
CSBA-15-5-100 (325 mg/g). The hierarchical SnS2 nanostructure [5] and TA-G [55] adsorption
capacity was at a level of 200 mg/g, and the sorption capacities of the other samples listed
in Table 7 were much lower: iron-pillared bentonite—99 mg/g [56], sago waste activated
carbon—47 mg/g [57], kaolinite—46 mg/g [58], [Ni(bipy)2]2(HPW12O40)—23 mg/g [59],
and orange peel—14 mg/g [60].

Table 7. Comparison of sorption capacities of oxidized mesoporous carbons with other adsorbents
presented in literature.

Adsorbent Sorption Capacity (mg/g) References

oxidized mesoporous carbon 248–325 This study
hierarchical SnS2 nanostructure 200 [5]

TA-G 201 [55]
iron-pillared bentonite 99 [56]

sago waste activated carbon 47 [57]
kaolinite 46 [58]

[Ni(bipy)2]2(HPW12O40) 23 [59]
orange peel 14 [60]

magnetic mesoporous carbon materials 342–400 [61]
MoS2/MIL-101 345 [62]

4. Conclusions

According to the above-presented results, functionalization of the ordered mesoporous
carbon of hexagonal structure (CSBA-15) using a solution of nitric (V) acid, has brought about
an increase in its effectiveness of rhodamine B removal from water solutions. Oxidization
of mesoporous carbon reduced its textural parameters but increased the acidic character
of the surface. Moreover, for the samples functionalized at 70 ◦C, the oxidation resulted
in the disappearance of the reflections corresponding to the carbon structure ordering,
as confirmed by XRD diffractograms in the small angle range. Sample CSBA-15-5-100
was characterized by the highest content of surface functional groups of acidic nature
and the largest surface area from among the functionalized carbon materials studied.
This sample was the most effective in the removal of tested dye from water solutions
(325 mg/g). The sorption capacity towards rhodamine B depended also on the pH of the
solution and the process temperature. The adsorption of organic dye was more effective
at higher pH because of deprotonation of the surface functional groups on the carbon
samples by the hydroxide anion. The measurements of zeta potential, before and after
adsorption, proved that with increasing pH, the surface charge on carbon samples changed.
The amount of adsorbed rhodamine B was also found to increase with the increasing
temperature of the process, which is related to increased mobility of the dye molecules at
higher temperatures. The thermodynamic parameters showed that the adsorption process
of dye was endothermic and proceeded spontaneously. The adsorption of rhodamine B
onto oxidized mesoporous carbons was described by the Langmuir isotherm and pseudo-
second-order kinetic model.
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