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Abstract: 3D printing is a revolutionary additive manufacturing method that enables rapid proto-
typing and design flexibility. A variety of thermoplastic polymers can be used in printing. As it
is necessary to reduce the consumption of petrochemical resources, alternative solutions are being
researched, and the interest in using bioplastics and biocomposites is constantly growing. Often,
however, the properties of biopolymers are insufficient and need to be improved to compete with
petroleum-based plastics. The paper aims to analyze the available information on elements pro-
duced from more than one material, with additive manufacturing resulting from 3D printing using
biopolymer Polylactic Acid (PLA). The study notes the possibility of modifying and improving the
properties of PLA using layered printing or by modifying PLA filaments. Several modifications
improving and changing the properties of PLA were also noted, including printing parameters when
combined with other materials: process temperatures, filling, and surface development for various
sample geometries.

Keywords: multi-material printing; PLA; 3D printing; biopolymers

1. Introduction

Polymers are a group of materials used in the automotive [1], medical [2], construction [3],
and textile industries [4,5]. The environmental approach to infrastructure requires more
and more care for preserving the environment. A significant part of polymers is made from
petrochemical products and is not biodegradable [6]. Among the polymers in production,
there are biodegradable and non-biodegradable polymers of biological and synthetic
origin [7–9]. Biodegradable polymers have long been recognized as a possible replacement
for materials produced from limited petrochemical resources. Fossil fuels and gases could
be minimized and replaced by using polymers from green agricultural resources, reducing
global CO2 emissions [6].

Polymers have been used in the last five decades: polymer components are manufac-
tured using many technologies such as hot stamping, injection molding, piston injection
molding, thermoforming, and many more [10].

3D printing is a revolutionary additive manufacturing technique [11–13] that enables
rapid prototyping of complex geometric structures [14] and flexibility during design-
ing, even the most demanding structures [15–18]. Many thermoplastic polymers can be
used for 3D printing, including modern biopolymers (i.e., protein- and carbohydrate-
based materials) [19].

Applications of additive manufacturing technologies include biomedicine [20–27],
dentistry [2], the automotive industry [1,28], aviation [3], and optics [29,30], but also textiles
and everyday products [31,32]. The development of printing leads to more and more
applications, including conductive, electrically functional, insulating, or semiconductor
materials [33]. A wide range of polymers available for 3D printing enables the creation of
geometries with shape memory, where structures change their shape under specific external

Materials 2022, 15, 5563. https://doi.org/10.3390/ma15165563 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15165563
https://doi.org/10.3390/ma15165563
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-9380-7449
https://orcid.org/0000-0001-9147-7338
https://doi.org/10.3390/ma15165563
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15165563?type=check_update&version=1


Materials 2022, 15, 5563 2 of 20

stimuli such as temperature, light, or water [33,34]. When considering additive manufactur-
ing technologies, it is necessary to analyze the types of 3D printing technologies and which
of them enable additive manufacturing using polymers. 3D production can be divided into
three main categories [35,36]: forming, subtractive, and additive manufacturing.

There are many additive manufacturing technologies using polymers [35]; most of
them require the use of pre-prepared polymer material in the form of fiber [37,38], pow-
der [39–42], or sheets [43]. Other technologies use hardening photosensitive resins [44–47],
where a focused UV laser beam used on the surface of a photopolymer resin hardens
molecular chains and solidifies the resin [48–51].

The constant development of printing technology and rapidly emerging technological
innovations make it difficult for young users and industry workers to navigate the poly-
mer printing processes [52] efficiently. The printing process requires a thorough analysis
and selection of parameters to predict the properties of objects and obtain the expected
results [53,54]. It is necessary to obtain knowledge about the processed materials’ charac-
teristics and analyze the existing information on the chosen applications [55].

As it is necessary to reduce the consumption of petrochemical resources, alternative
solutions are being researched, and interest in bioplastics and biocomposites is constantly
growing [1,56,57]. Often, however, the properties of biopolymers are insufficient and
need to be improved to compete with petroleum-derived plastics. The solution may be
using polymer composites [52,58] or combining various materials in 3D printing [59–62].
The fused deposition modeling (FDM) technology enables fast and cheap manufacturing;
moreover, the design of many printers allows for multiple materials—they use two printing
nozzles. Two nozzles can work simultaneously with two different materials and make it
possible to modify the parameters for each of them. These functions lead to continuous
improvement of printing processes [63], and their optimization and flexibility in production.

Significant interest in printing using multiple materials grew from 2013, increasing re-
search papers on this subject. The statistics for 2000–2021 are presented in Figures 1 and 2 [64].
Printing with PLA is being more and more widely researched. In 2021, it appeared in
almost 800 papers, while over 80 publications on multi-material printing were published in
the same year.

The article is a collection of the latest literature on elements produced from multiple
materials with additive manufacturing due to 3D printing using the PLA biopolymer. The
mechanical properties of the prints, the quality of bonding, and the possibility of using the
products in the industry will be analyzed. The possibilities of modifying and improving
PLA properties with layered printing or by modifying PLA filaments will be described.
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2. Goal of the Review

The selection of papers analyzed in this review was based on specific qualities—the
papers should describe using polymer combinations in additive manufacturing processes.
Section 3 presents a collection of literature on various manufacturing techniques. This sec-
tion summarizes publications on additive production with PLA and a set of manufacturing
parameters from multiple materials in one process. The recapitulation summarizes the
latest knowledge about the constantly tested printing from several materials in one process,
including filaments of experimental production.

Section 4 summarizes the results achieved by the researchers and the properties of the
objects produced from multiple materials (if any have been tested). Section 5 summarizes,
draws conclusions, and outlines research topics that can be conducted after analyzing the
entire review.

3. 3D Printing with PLA

Multi-material printing using polymers is the subject of research led by many scientists
worldwide. The number of materials for printing is practically unlimited [65], especially
considering the independent production of filaments or their modification [66–69], which
is becoming easier and is more available for research institutions. One popular and eco-
nomic [70] printing technique using polymers is the FDM/FFF technology [70–74]. The
review is devoted to biodegradable polymers or polymers from biological materials to
protect the environment. Common Polylactic Acid (PLA) fibers, combinations with other
materials in one-step printing, and modifications and admixtures in commercial filaments
were analyzed. The focus was on printing parameters that allow for a reliable process.

3.1. Layered Printing with PLA

Polylactic acid (PLA) is a biodegradable material [75] obtained from natural crops by
biological fermentation [76]. It is characterized by good stability during printing [77]
and a relatively low melting point (180–220 ◦C), with a glass transition temperature
of 60–65 ◦C [78]. Printing parameters affect the quality of samples and their strength;
print orientation, layer thickness, and process temperatures influence the creep strength
of polylactide [79].

However, its strength properties may be insufficient for many industrial applications—
it needs to be strengthened or modified [80].

To use the ecological potential of biodegradable polymers, material modifications are
necessary (e.g., the creation of composites based on PLA). Multi-material 3D printing makes
it possible to modify the properties of objects using various polymers [81] and additives in
one printing process [82]. Annealing can be used to stereo-complexity 3D samples made of
PLA—placing the samples in a vacuum oven at 50 ◦C for 24 h and then subjecting them
to a temperature of 160–210 ◦C for an hour. Results show [83] that steam treating the
printed parts with acetone significantly improves the surface finish of the products, with
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minimal variations in the geometric accuracy of products after treatment. Manipulation
of the printing and heat treatment process parameters may lead to specific properties and
structures of objects [76]. Multi-material printing is often performed using two nozzles,
where the printer feeds material from separate feeders. One nozzle can also be used, but
then the participation of the printer operator who changes the filament during the process
is necessary.

In an article written by Ribeiro M. et al. [84], the effect of the bonding surfaces of
materials in printing with multiple materials (face-to-face interface) was investigated, and
a solution was proposed in the form of mechanical interlocking systems on bonded layers—
three different geometries were tested (T-shape, U-shape, and dovetail shape). The positive
influence of the mechanical bonding of TPU and PLA on the elasticity of the samples was
demonstrated. The overlapping of material boundaries contributed to the achievement of
higher Young’s modulus values.

The research [77] analyzed the influence of surface development and roughness on the
interlayer adhesion of PLA and TPU (thermoplastic polyurethane). The best combinations
of surface pattern bonds common for both printing orders with polymers in cylindrical
samples were indicated: pattern concentric for the combination of PLA/TPU (shear strength
0.43 MPa) and TPU/PLA (shear strength 0.38 MPa). At the same time, the best surface
development for the TPU/PLA sequence is the TPU-linear pattern at 0◦ and the PLA-linear
pattern at 45◦ (shear strength 0.63 MPa).

To explore the topic of layered bonds of materials during printing, it is worth analyzing
the work of Tamburrino et al. [85], where the following aspects were investigated: the order
of printed materials, the pattern development of the upper and lower printed layers and
their influence on the interlayer adhesion strength. Three pairs of PLA-TPU, CPE-TPU,
and CPE-PLA materials were tested. The use of a lower filling density (80%), compared to
100% density, harmed the adhesive strength; at the same time, a solution was proposed
in the form of a Mechanical Interlocking mechanism (two materials were combined on
several central print layers, a frame made of one material and an internal space was filled
with the second material so that the materials overlapped on several print layers), which
increased the adhesive strength of the samples (for the PLA-TPU connection, thanks to the
mechanism, an increase in Peak stress from 0.28 MPa to 1.32 MPa was observed).

Research led by Kumar S. et al. [86] concerns multi-material printing based on Polylac-
tic Acid (PLA). Several mixtures were combined: pure PLA, PLA with PVC admixture, PLA
with wood powder, and PLA with magnetite (Fe3O4). During the experiments, the parame-
ters of the filling—at which the highest breaking strength of 41.65 MPa was achieved—were
determined. The best filling parameters were: infill density of 100%, infill angle of 45◦, and
infill speed of 90 mm/s. At the same time, the research showed a negative impact of lower
print densities and their roughness on the quality, strength, and mechanical properties of
objects compared to samples printed with a high density of up to 100%.

Multi-material prints made of ABS and PLA reinforced with carbon fiber were tested
to determine the influence of printing parameters on the strength of interfacial bonding [87].
The optimum printing parameters were determined (a printing speed of 50.54 mm/s, infill
density of 79.82%, layer height of 0.15, and a layer thickness ratio of 0.49). It should be
noted that PLA is less toxic than ABS. Attempts to use PLA reduce environmental pollution
with volatile organic compounds such as, for example, styrene, butanol, cyclohexanone,
and ethylbenzene [88]. From the point of view of the respiratory health of printer users, the
preferred combinations of polymers in printing are PLA, PET, and TPU, as those materials
used at lower temperatures have lower FP (fine particle emissions) than ABS. Moreover,
when printing with ABS, an increase in inhaled nitric oxide (FeNO-nitric oxide) and the
presence of an unpleasant odor are observed compared to printing with PLA [89].

During the impact tests of mesh samples printed with the FDM technology, it was
found that the use of external walls in such structures strengthens the impact strength
of the samples by 60%. The combination of ABS and C-PLA (carbon fiber + polylactic
acid) material shows a much higher impact strength (280 to 365%) compared to sam-
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ples from C-PLA. The impact strength of the samples in this study was from 7672.9 to
23,465.6 kJ/m2 [90].

Laminar composites are widely used in the industry. To manufacture them in 3D
printing processes, manufacturing parameters should be selected to strengthen the ob-
jects. Such parameters include low printing speed, layer height, and the clad ratio [91].
Strength tests were carried out on samples made of two materials—ABS and PLA rein-
forced with carbon fiber. It has been shown that multi-material samples are characterized
by higher strength than individual materials. The following parameters were considered
the best: speed 1⁄4 20 mm/s, infill density 1⁄4 67.838%, layer height 1⁄4 0.23 mm, and clad
ratio 1⁄4 0.25. The highest values on strength tests were elastic modulus = 2204.45 MPa,
ultimate strength = 51.34 MPa and elongation = 9%.

3D printing from multiple recycled polymers such as ABS, PLA, and HIPS is feasible
because these thermoplastics have a similar heat input during heating (13.63 mJ for ABS,
14.71 mJ for PLA, and 11.71 mJ for HIPS). Compared to single-material 3D printing, multi-
material 3D printing offers more flexibility to functional prototypes (with completely
different/improved multi-dimensional properties) [92]. Considering sandwich structures
made of several materials, samples with HIPS outer layers and a rectilinear ABS core
showed the worst performance, with average tensile stress of 22.21 MPa and Young’s
modulus of 992.02 MPa—which is less than 50% and 28%, respectively. Of the best layer
structure tested, it was PLA-ABS-PLA. The average values were 44.40 MPa for tensile
strength and 1364.25 MPa for Young’s modulus for the best configuration. Moreover, the
elongation at break (6.14 mm) for this configuration was higher than the homogeneous
material [93]. The PLA/ABS/PLA layered structure showed higher tensile strength than
the pure ABS sample, which leads to the conclusion that the strengthening of ABS with
PLA biopolymer is effective for selected applications.

The quality of the interlayer bond is influenced by the surface development and the
surface finish pattern. At the same time, the printing parameters have a very significant
impact on wettability, and attention should be paid to the optimization of process parame-
ters combination selection: layer thickness, filling method, and printing speed [94]. In an
experiment, a combination of process parameters such as the mesh fill method and a layer
thickness of 0.25 mm can be used to produce parts with the maximum bond angle. To mod-
ify the surface morphology of multi-material prints, ICP-CFx (inductively coupled plasma
and coated by fluorocarbon-based material) treatment is used. The treated PLA/PE-HD
(high-density polyethylene) surface in the proportion 90/10 showed a bond angle of 121.6◦,
36◦ higher than the bond angle measured on the untreated surface [95].

The quality of material bonds is directly related to sample type. During their research,
Lopes et al. proved the negative influence of geometric boundaries between the same
printed material from two embossing heads; the lack of chemical affinity between the mate-
rials worsens the effect—a decrease in Young’s modulus tensile strength is observed [96].

Kumar S. et al. [97], on multi-material printing in FDM technology, studied the combi-
nation of PLA with a polyamide-titanium dioxide (PA6-TiO2) composite. The best printing
parameters, such as a printing speed of 90 mm/s and a rectilinear filling pattern, were
determined. The influence of the number of layers of each material on sample peak strength
was also investigated—it was found that 5 PLA layers and five composite layers were the
best combinations. The selected combination showed higher strength (61 MPa) than that of
pure PLA (42–45 MPa)—the same was discovered for thermal stability. Pin on disc wear
tests showed that PA6/TiO2 material consumes less material compared to PLA; hence,
samples based on PA6/TiO2 can be used for applications with high wear rates [98].

Using PLA and poly (3-hydroxybutyrate) PHB, thermal stability and interfacial adhe-
sion of prints can be improved using cellulose nanocrystals and DCP dicumyl peroxide
as a crosslinking agent [99]. A nanomaterial that meets the high standards of engineering
applications was produced by obtaining cellulose from plum pits. PLA/PBAT/PBS com-
posite (polylactic acid/poly (butylene adipate-co-terephthalate)/poly (butylene succinate)
with nano talc was discovered to be the best combination and the best roughness and
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dimensional accuracy parameters were obtained for the proportion of 70/10/20/10 [100].
A summary of information on layered printing is presented in Table 1.

Table 1. Summary of information on layered printing for selected materials.

Material Sample Geometry Research Variable Parameters Best Results

PLA/TPU
[84] Dog bone sample

Ultimate stress: 64–68 MPa
Young’s Modulus

1040–1075 MPa

Mechanical interlocking systems:
T-shape, U-shape, and

dovetail shape

T-shape is the best locking
mechanism for the

TPU-PLA combination

PLA/TPU
[77] Cylindrical Shear strength 0.63 MPa Order of printing layers

Surface pattern (linear, concentric)
TPU-linear pattern 0◦ and

PLA-linear pattern 45◦

PLA-TPU, CPE-PLA
[85] Rectangular prism Elongation—the force of adhesion

Peak stress from 0.28 MPa to 1.32 MPa

Mechanical Interlocking
Order of printing layers

Surface expansion
PLA-TPU + Mechanical Interlocking

PLA, PLA/PVC,
PLA/wood powder,

PLA/magnetite
(Fe3O4) [86]

Dog bone sample Tensile strength 41.65 MPa
Infill density
Infill angle
Infill speed

Infill density 100%, Infill angle of
45◦ and Infill speed of 90 mm/s

ABS, CF-PLA [87] Square laminar sheets Uniaxial tensile load
Bond strength 45 MPa

Printing speed
Infill density
Layer height

Layer thickness
Ratio

The printing speed of 50.54 mm/s,
Infill density of 79.82%, Layer

height of 0.15, the Layer thickness
ratio of 0.49

ABS, CF-PLA [90,91] Impact testing sample
Dog bone sample

Impact strength from
7672.9 to 23,465.6 kJ/m2

Elastic modulus = 2204.45 MPa;
Ultimate strength = 51.34 MPa

Elongation = 9%

Using external walls in
mesh structures
Using ABS for

strengthening CF-PLA

Higher impact strength
(280 to 365%) compared to

CF-PLA samples
Printing parameters: speed:

20 mm/s, infill density: 67.838%,
layer height: 0.23 mm and clad

ratio: 0.25

ABS, PLA, HIPS [93] Dog bone sample Tensile strength: 44.4 MPa
Young’s modulus 1364.25 MPa

Order of printing layers from
different materials Best configuration PLA -ABS-PLA

PLA+ PA6-TiO2 [97] Dog bone sample Strength 61 MPa
Printing speed

Layer combinations
Infill pattern

Printing speeds 90 mm/s
rectilinear fill pattern

5 PLA layers and five composite
layers were the best combinations

PLA/PBAT/PBS
[100] Dog bone sample Tensile strength 50.4 MPa

Young’s Modulus 1 GPa
Different material proportions in

the composite

The best roughness and
dimensional accuracy parameters

were obtained for the
proportion 70/10/20/10

The addition of PBS and nano talc
increased the PLA crystallinity:

Storage modulus,
Tensile and flexural Strength
Anisotropic characteristics

3.2. Modifications of the PLA Filament

A constantly developing trend in 3D printing is the modification of ready-made poly-
mer filaments, enriching them with biodegradable components and testing their properties.
An example of this approach is the research of Singh M. et al. [101], where shear resistance
using cancellous screws of objects printed in FDM technology with PLA filament with the
addition of almond skin powder was examined. The study suggested that the maximum
peak shear strength (23.02 MPa) and the maximum shear strength at break (22.90 MPa)
were observed for the honeycomb fill pattern at 100% screw insertion and a 30◦ rake angle.

An innovative approach consisting of overwhelmed physical interlocking and min-
imum chemical grafting in the production of PLA filament with polypropylene for 3D
printing ensured high structural stability (mechanical and intermolecular) concerning
thermal degradation (compared with pure PLA) [102].

Attempts to strengthen PLA with silicon nanocomposites (clay nanocomposite) [103]
proved that the addition of nanoclay increased thermal stability and the modulus of
elasticity. The samples were made of pure PLA and PLA with nanoclay. The color of
samples with nano clay changed. As the printing temperature increased, the samples
turned brown, but it is worth noting that at the same time, despite the color change, they
became more transparent. This indicates another essential aspect when printing from
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composites, where the filament composition and the printing parameters are crucial for the
design and further applications of objects.

Enrichment of PLA with silica (silica-silicon dioxide SiO2) strengthens PLA: adding
10% silica by weight increased tensile strength from 62.8 MPa for pure PLA to 121 MPa
for enriched PLA [104]. As a natural material, silica can strengthen polymers and create
biodegradable composites for 3D printing. The silica additives can enhance the han-
dling and quality performance of composites and thermoplastic polymers because of their
diverse potential.

Attempts to strengthen PLA with flax fibers indicated the need to plan the additive
manufacturing process carefully. The researchers indicated [105] that flax fibers could
strengthen the samples, but their disadvantages, such as intra-filament porosity and the
surface condition, should be eliminated. These disadvantages contributed to internal
material gaps and the weakening of bonds. The fatigue behavior of specimens made of
PLA and PLA reinforced with filler based on pinewood, bamboo, and cork using FDM
was tested [106]. Testing did not significantly affect the change in tensile strength and
associated durability during this loading interval for PLA-based materials reinforced with
natural filler.

SEM analysis showed the presence of porosity, interlayer disturbances, and at the same
time, good interfacial compatibility of PLA with the natural filler. Under cyclic loading,
the visco-elastic behavior of the tested materials was found to increase with increasing
values of cyclic loading of 30%, 50%, and 70%, and the permanent deformation of the tested
materials, i.e., viscoelastic behavior (creep), also increased.

In Guessasma S. et al. [107], wood-based fibers’ microstructure and mechanical prop-
erties were investigated in FDM technology (with experimental and numerical methods)
about the PLA/PHA wood printing temperature. The optimum printing temperature was
determined—220 ◦C for printing with wood-based filaments while maintaining adequate
tensile strength, compared to objects printed at temperatures in a range of 210–250 ◦C.
Water adsorption and desorption properties of wood change the dimensions of wooden
objects, which is often considered a disadvantage. Using those properties in filament modi-
fication can lead to producing objects that change shape with humidity. PLA was modified
by adding different wood contents to produce shape-changing double-layer actuators. The
higher the wood content, the greater the observed shape change. PLA with wood can
be used in 3D printing elements induced by humidity control—changing shape under
changing climatic conditions [108].

Polymers for 3D printing can be given bioactive properties directly from natural
extracts (e.g., from Mango extracts), which will allow the use of 3D printing with polymers
in medicine [109]. Polymers could be used as carriers for medicinal substances released
only after implantation in the patient’s body. The use of polylactic acid with methotrexate
or an anti-cancer drug (PLA/MTX) made it possible to print a frame that releases the active
ingredient at the implantation site for more than 30 days, reducing side effects caused by
injection or oral administration. This makes it possible to 3D print frames and use them in
drug delivery [110]. Filament made of biomaterials such as PLA, polycaprolactone PCL,
and hydroxyapatite HA became the building blocks of interlocking nails used for bone
fractures in dogs. The highest compressive strengths of 82.72 MPa and tensile strengths
of 52.05 MPa were achieved with the highest tested hydroxyapatite content of 15% [111].
Assessment of the cytotoxicity of the PLA/PCL/HA combination showed that the cells
could be viable and increase in the frames. The most favorable PLA/PCL weight ratio
in biocompatibility, viability, and osseointegration was 70/30 [111]. A strong interaction
between PLA and HA resulted in the high mechanical strength of the composite [112]. After
mechanical testing, the optimum ratio for biological research and 3D printing was selected.
Biological experiments showed that the synthesized PLA/HA composite had excellent in-
vitro viability. HA/PLA (10:90) had the highest mechanical strength comparable to natural
bone among the various tested HA to PLA ratios. At the same time, the HA/PLA sample
(10:90) showed excellent printability in 3D bioprinting using the FDM approach [110].
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Biopolymer-based materials have the potential for use in prosthetic components, e.g.,
acetabular components in total hip prosthesis [113,114].

The potential application of the TPU and PLA polymer composition is the production
of antibacterial wound dressings using 3D printing. The mechanical, structural, and micro-
scopic analysis and degradation allowed the selection of the most promising combination
for further antibacterial modification (filament COMP-7,5PLA: consists of 12 parts of TPU
filament and 1 part of PLA). It has been proven that the antibiotic amikacin is stable during
extrusion at elevated temperatures, which, in combination with biodegradable PLA, makes
it possible to produce short-term implants [115].

3D printing is used for the production of personal protective equipment. TPU and PLA
polymers allow re-sterilization; therefore, their use would reduce the amount of biomedical
waste [116] due to the possibility of multiple sterilizations and reusing the same elements.

In deliberations [117] on the environmentally friendly, rapidly degradable plastic-
enzyme composites, Polycaprolactone/Amano lipase (PCL/AL), PLA, was used as the
basis for the application of composites on complex structures.

Blending thermoplastic polyurethane (TPU) with polylactic acid (PLA) is a proven
method of obtaining a mechanically more robust material. The addition of graphene oxide
(GO) is increasingly used in polymer nanocomposites to customize their properties further.
The addition of GO significantly improved the mechanical properties of the polymer matrix;
167% in terms of the compression modulus and 75.5% for the tensile modulus [118]. Cell
viability, bonding, proliferation, and differentiation assays using MG-63 osteosarcoma cells
have shown that PLA/GO frames are biocompatible and promote cell proliferation and
mineralization more effectively than pure PLA frames [119]. The 3D-printed nanocomposite
is a promising frame with the appropriate mechanical properties and cytocompatibility
that could enable osseointegration and bone formation. A model of the trachea for tissue
engineering was developed [120], consisting of multilevel structural polylactic acid (PLA)
membranes surrounding thermoplastic polyurethane (TPU) skeletons—polymers were
modified with GO-IL (ionic liquid) graphene oxide. The in-vivo result confirmed that the
subjects displayed favorable biocompatibility and promoted tissue regeneration.

Creating multi-material objects in FDM technology can be enriched by friction welding;
however, it is necessary to achieve consistent rheological properties (e.g., by reinforcing the
filaments with aluminum powder) [121]. The addition of aluminum to polymers makes
it possible to increase the melting point and, therefore, allows them to be used in joints
where the difference in melting points of the two materials is so significant that, due to
dissimilarities in their melt flow properties, welding is impossible. Information on eligible
filaments is summarized in Table 2.

Table 2. Summary of information on selected modified filaments.

Material Methodology Result

PLA with the addition of
almond peel powder [101] Shear resistance using cancellous screw

Shear strength at peak (23.02 MPa)
Maximum shear strength at break (22.90 MPa)
for the honeycomb infill pattern at 100% screw

insertion and 30◦ rake angle

PLA with polypropylene [102] Overwhelmed physical interlocking and
minimum chemical grafting

High structural stability (mechanical and
intermolecular) to thermal degradation,

compared to pure PLA

PLA with silicon nanocomposite
(clay nanocomposite) [103]

Changing the printing temperature, verifying
sample transparency

Increase in thermal stability and modulus
of elasticity

The samples become more transparent as the
printing temperature increases

PLA with silica (silica-silicon
dioxide SiO2) [104] Addition of 10% of silica by weight Increase in tensile strength up to 121 MPa
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Table 2. Cont.

Material Methodology Result

PLA with flax fibers [105] Adding flax, testing the porosity of the fiber Material gaps and weakening of
material bonds

PLA with wood [107]

Examination of microstructure and
mechanical properties

Shape changes under the influence of
climatic conditions [106]

Optimum printing temperature—220 ◦C
The higher the wood content, the greater the

observed shape change

PLA with mango extract [109] Examination of bioactive properties 3D printing polymers can be made bioactive
directly using natural extracts

PLA with methotrexate [110] Examination of the release time of the drug Print releases the active substance at the site of
implantation for more than 30 days

PLA with PCL polycaprolactone
and HA hydroxyapatite [111]

Strength test depending on the
hydroxyapatite content

Assessment of cytotoxicity and
biocompatibility

Compressive strength 82.72 MPa, tensile
strength 52.05 MPa with a hydroxyapatite

content of 15%
Cells are viable and can increase on frames, the

most favorable weight ratio of
PLA/PCL—70/30

PLA with TPU and an
antibiotic [115]

Mechanical, structural, microscopic, and
degradation analysis

TPU/PLA ratio—12:1
The antibiotic—amikacin is stable during

extrusion at elevated temperatures

PLA with TPU [116] Sterilization test Possibility of using PLA with TPU for personal
protective equipment—the ability to re-sterilize

PLA with TPU and graphene
oxide GO [118]

Influence of graphene oxide on mechanical
and biocompatible properties of prints

The addition of GO improves the mechanical
properties by 167% for the compression

modulus and 75.5% for the tensile modulus
PLA/GO frames are biocompatible; they

promote cell proliferation and mineralization

4. Electrical Conductivity Applications

Polylactic acid (PLA) is the most widely used polymer in many areas since it is
biodegradable, environmentally friendly, and biocompatible [122].

Modifications of PLA composites with proper additives are the most useful technique
for improving the properties of the 3D-printed parts obtained by the FDM method [123].
This article analyzed the strength properties obtained for prints from PLA and modi-
fied/strengthened PLA. Deliberations on industry demand need to be raised, as does the
possibility of using polylactide as a base for elements with electrical, electromagnetic, and
conductive properties.

Researchers presented the electromagnetic interference properties of multi-walled
carbon nanotubes (MWCNTs) as a filler in PLA/PEG polymer matrix. The results showed
that the dielectric properties increased with increased MWCNTs filler [124].

The ability to adjust shielding properties through the fabrication of polymer com-
posites with pores was tested by using graphene nanoplatelet/poly-lactic acid materials.
Researchers fabricated non-perfect electrical conductor-backed porous composites, and
explored the effect of filler aspect ratio and pore geometry on electromagnetic interference
shielding properties. Composite structures demonstrated decreased fractions of reflected
power and increased fractions of absorbed power over most of the X Band because of the
addition of periodically arranged cylindrical pores [125].

The electromagnetic and thermal characteristics exhibited by the nanocomposites
make them suitable for packaging applications of electronic devices with electromagnetic
interference shielding and thermal dissipation features. The research showed [126] that
the combination of notable electrical, thermal, and electromagnetic properties of the car-
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bon fillers, in concentrations above the percolation threshold, together with the good
processability of the PLA matrix gives rise to innovative filaments for 3D printing.

The analysts [127] obtained results that can maintain in interpreting the influence
of processing on the properties of the final products based on PLA composites. The
crystallinity of the 3D printed samples is more highly matched to the filament and hot-
pressed samples, but this structural feature has a slight effect on the electrical and tensile
properties. The type of structural organization of multiwall carbon nanotubes, graphene
nanoplatelets, and combined fillers in the matrix polymer is found to be determinant for
the electrical and tensile properties.

In research [128], the effect of graphene/spherical graphite ratio on the microwave
absorbing properties and mechanical properties of PLA/TPU composites was specifi-
cally tested. It was found that when the ratio of graphene/spherical graphite was small
(0:5, 1:4), the dielectric loss and attenuation ability of the composites were stronger, and the
impedance matched better. The graphene/spherical graphite ratio was large (5:0, 4:1), and
the composites had high strength and toughness. When the ratio of graphene/spherical
graphite was moderate (2:3, 3:2), it could retain the absorbing and mechanical properties of
the absorbing materials. In work [129], the measurements showed a significant increase in
the dielectric values, with the addition of polylactic acid nanocomposite with graphene.

The design of two mushroom metasurfaces using 3D printing with conductive PLA
filaments for the metallic parts was presented in the research [130]. Measurement results
of the 3D-printed metasurfaces show the appearance of the stopbands at the simulated
expected frequencies. It is difficult to find filaments on the market that are compatible with
low-cost 3D printing and have conductive properties suitable for even the most demanding
applications. Preparation of PLA composites with proper additives is the most useful
technique for improving the properties of the 3D-printed PLA parts purchased by the FDM
method. Smart 3D structures with embedded and printed sensory elements (the sensor was
based on the conductive PLA) were examined in the research [131]. The researchers were
focused on dynamic measurements of the strain and considered the theoretical background
of the piezoresistivity of conductive PLA materials. The capability of FDM 3D-printed
sensors to perform dynamic strain measurements was proven up to 800 Hz. Results support
future applications of smart systems with embedded sensory elements.

Scientist designed electrodes efficiently for electrochemical sensing in the food indus-
try. The results showed a basis for the promising application of detecting and quantifying
3-monochloropropane-1,2-diol (food contaminant known for its potential of being carcinogenic).

The nanocomposite [132] of reduced graphene/PLA/PEG matrix was prepared via
the melt blending method. Researchers presented materials that may be used as radiation
absorbers if their reflection could be reduced via impedance matching at the surface, as in
structure-engineered shieldings, such as multilayer structures, or via foaming.

To improve the electrical properties and maintain sufficient strength for 3D printing,
nano carbon was infused in PLA. Researchers [133] provide a perspective use of this
filament for fabrication of electrical wires in 3D printed robots, drones, or prosthetics.

Researchers showed [134] the development of 3D printed, highly stretchable and sensi-
tive strain sensors using graphene-based composites. The printing of graphene/PLA/TPU
in a meander sign wavelike structure significantly enhanced the stretchability by up to
4 folds, to over 30% strain, while supporting the sensitivity of common graphene-based
strain sensors.

Manufacturing conductive filaments make it possible to widely use 3D prints for
structural and carrier applications and electrical applications. Graphene, in combination
with polylactide, can be used to produce heating elements (e.g., for textile applications
and the production of heated clothing). Low surface resistance was demonstrated at high
surface temperature (83.6 ◦C) for 0◦ printing [135]. When using commercial graphene-
enriched fibers in laboratory conditions, contamination should be considered (e.g., in the
form of metals), which may affect the electrochemical properties of prints [136].
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A low-cost composite material was presented in the research [137] suitable for the
production of a multifunctional filament with improved electrical and thermal properties
for different fused deposition modeling composites were obtained. A synergistic effect
was observed in the PLA with graphene nanoplates and multi-walled carbon nanotube
hybrid composites when combining graphene nanoplates and carbon nanotubes at a ratio
of 3% GNP/3% CNT and 1.5% GNP: 4.5% CNT, showing higher electrical conductivity
concerning the systems incorporating individual CNTs and GNPs at the same overall
filler concentration.

Researchers proposed [138] a filament indicated for the FDM process with improved
dielectric and thermal properties, compared to the pure PLA. Relative permittivity reaches
the value of 5.35 × 103 much greater for 12 wt% of multi-walled carbon nanotubes than
that of 3.7 measured for unfilled PLA. The thermal conductivity of the enhancement
with 12 wt% of graphene nanoplatelets is about 261% concerning the thermal behavior
of the neat polymer. In this research, innovative material that appears promising for the
electromagnetic field and heat transfer was proposed. The thermal conductivity of the
PLA loaded with 12 wt% graphene nanoplatelets is 263% higher than that of pure polymer,
whereas an improvement of about 99% and 190% is detected for the PLA matrix loaded
with multi-walled carbon nanotubes and both fillers, respectively [126].

Many parameters of fused deposition modeling (FDM) influence the resulting me-
chanical properties. This can become a key aspect if parts are intended for commercial
applications. When printing from multi-material filaments, in order to achieve suitable
quality, the printing parameters should be analyzed—the research [139] on the optimization
of these parameters is a guidance for users, for example, a study on the influence of nozzle
temperature and infill line orientations (PLA+ carbon fiber). Scientists attained maximum
tensile properties for temperature 230 ◦C and printing orientations [0◦, 15◦, −15◦].

In experiments [140] of quasi-static tensile tests when printing from PLA–graphene
filament, researchers obtained that fatigue lifetime clearly depends on the process param-
eters as well as the loading amplitude and frequency (when the frequency is 80 Hz, the
coupling effect of thermal and mechanical fatigue causes self-heating, which decreases
the fatigue lifetime). Preparation of PLA composites with suitable additives is the most
useful technique to improve the properties of the 3D-printed PLA parts obtained by the
FDM method.

5. Multi-Material Printing-FDM Capabilities

Multi-material printing is an often-analyzed method of additive manufacturing. 3D
printing technology FDM deposits filaments layer by layer, and some advanced geometries
require using support material [141,142], as the selection of process variables plays a crucial
role to measure the quality of FDM processed components. Having a multi-material 3D
printer allows you to print multiple filaments (one support filament, like soluble material
PVA, and the filament for the final part). This helps to ensure producers achieve their
perfect design, no matter how complex [143].

A common operation during printing is the use of multi-colored materials or several
spools of the same polymer, but of a different color. Using this procedure allows for
obtaining visually attractive prints. Multi-material printing differs from multicolor printing
and uses two different polymers to make one part in a single work step [144]. This combines
the advantages of two or more different materials in one component [145].

When printing from multiple materials with different properties and melting points, it
is possible to find tips on how to ensure error-free application in online forums. Generally,
methods can be split into two groups: single hot end methods and multiple hot end
methods. Multi-material printing on a printer with one nozzle can be carried out by:

- manual change of material between layers [146] (it is necessary to pause the printing,
change the spool, clean the nozzle, usually manually change the temperature, resume
printing, and change the spool each time when printing with a different material)
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- the use of accessory equipment that combine several filaments at a given stage of
printing and enable printing from several polymers using one combined filament fiber.

There are various additives available on the market that enable multi-color and multi-
material printing [147–149]: e.g., 3Dfeedy, 3D Chameleon, Mosaic Manufacturing Palette.

Such equipment works by precisely cutting and splicing various materials and feeding
the printer a single, continuous length of filament, which can be printed in much the
same way as printing with a single material. The devices have programmed parameters
for connecting different polymers—their combinations are constantly updated and im-
proved. Each material combination (e.g., PLA-PLA, PETG-PETG, PLA-TPU) has a variety
of different settings that can be manipulated to increase the quality and reliability of splices.

Multiple hot end methods are suitable for working with multiple materials. Printers
with two nozzles are to enable work when creating objects from the base and support
material (e.g., water-soluble) [143], but they can also be used for printing from several
building polymers. Each nozzle in the printer can be programmed separately (it is pos-
sible to set separate printing parameters, e.g., speed and temperature). The accessories
described above can be used for each of the nozzles, as their use increases the possibilities
of combinations and the number of materials combined in one printout.

When printing from different polymers, it is often suggested to combine them by
analogy to the properties; similar filaments (materials with the same base polymer or
similar processing temperatures) can be firmly bonded. This no longer functions when
the difference between processing temperatures is too great: one of the two materials may
not remain stable during processing or may even be subjected to damaging temperatures.
To be certain of the connection, there is an interlocking design in which the two phases
are combined [145].

This article presents the researchers’ position on multi-material printing and filament
modification. The described and summarized studies present the tested printing parameters
for the strength and quality of combinations of various materials. When planning multi-
material printing, a process plan adjusted to the hardware capabilities should be established.
Based on the strength tests of samples and guides from other printer users, we adjust the
printing parameters to the filaments from which the item will be printed.

6. Plastic Waste and Economics of Additive Manufacturing

The economics of additive manufacturing relates to the cost of manufacturing, the
value of finished goods, and their utility [150]. According to a report (Wohlers Report) from
2022 [151], the Additive Manufacturing industry grew by 19.5% in 2021. The pandemic
significantly impacted the growth from the 7.5% recorded in 2020. Growth and investment
in additive manufacturing are targeted at, among others, the healthcare, aerospace, auto-
motive, and energy industries. The report notes the increased use of AM technology for
serial production, as evidenced by the increase in the consumption of polymer powder
(an increase of 43.3%). Polymer powders overtook photopolymers and became the most
used materials in AM. Within a few years, the consumption of polymer powders had
increased from 190 million dollars (U.S. dollars) in 2015 to 900 million dollars in 2021. The
Covid-19 pandemic has proved that 3D printing can help the supply chain. When demand
for protective equipment grew exponentially, the fastest way to obtain it was to use additive
technologies and produce universal filaments available on-site [152]. This contributed to
meeting the demand by increasing the supply quickly.

3D printing reduces waste and ensures an effective buy-to-fly ratio, which revolu-
tionizes logistics, reducing costs and time of goods distribution [153]. The environmental
approach to 3D printing prompts researchers to use environmentally friendly alternatives
and modify polymer matrices [154].

Plastic waste from 3D printing can be reused [155] or degraded. The main recycling
methods are biodegradation, recycling using a catalyst or solvent, and the processing and
reuse of material.



Materials 2022, 15, 5563 13 of 20

Researchers [156] characterized the PLA wastes generated in 3D printing processes and
evaluated the effectiveness of their heterogeneity on the technical feasibility of mechanical
recycling (two PLA 3D printing wastes were used: waste coming from a well-known
PLA grade, and a mixture of PLA 3D printing residues). Recycled material obtained
from the waste of a well-known PLA shows good properties, like those for non-used
material. However, the recycled material obtained from mixed PLA waste shows lower
viscosity values, higher crystallization ability, and less transparency. Results highlight that
special attention should be paid to the sorting and characterization of the 3D waste. A
circular economy can lead to economic growth where, in the name of the ‘reduce, reuse,
and resource’ [157] principle, the consumption of raw materials, energy, and—above all—
emissions will be limited. The use of local waste and its processing in local production
translates into efficiency and effectiveness in the circulation of materials [158]. Figure 3
shows the cycle of raw material circulation. Initially, it is necessary to obtain materials such
as PLA from corn, but after satisfying the market needs, elimination of this stage will lead
to creating a circular economy model.
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7. Discussion and Conclusions

The review determined that:

- PLA is a biopolymer that, compared to other polymers used for 3D printing, emits
fewer harmful particles into the atmosphere during extrusion, and thus pollutes the
environment less and reduces the risk of respiratory diseases for printer operators.

- the ability to perform multiple sterilizations of ABS and PLA combinations makes
their use possible in the medical industry. It may lead to waste reduction due to the
possibility of using the products multiple times.

- the authors are researching various geometries of samples, making it possible for
users to select the tests closest to the geometry of specific commercial elements.

- annealing or friction welding of printed objects can lead to improvement of their
strength properties.

- to strengthen the bonds, dicumylt peroxide (DCP) can be used as a crosslinking agent.
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- the use of locking mechanisms in the form of overlapping filaments improves the
quality of the samples and the strength of the bonds between the materials.

- for selected material bonds, the negative influence of the lower filling on the strength
of the samples was indicated compared to 100% filling.

- parameters influencing the quality of printed objects are, among others, print temper-
ature, degree of filling, layer thickness, and surface development.

- the PLA polymer can be used in implants as a carrier of medical substances released
only after implantation in the patient’s body.

- computer planning can be the basis for considering and planning the production
process, which translates into the optimum use of material and energy for production.

- 3D printing reduces waste and can revolutionize logistics and reduce costs and distri-
bution time.

The article shows the possibility of modifying PLA properties through layered printing
or modifying PLA filaments.

Additive manufacturing should aim at working in a closed cycle and focus on
biodegradable raw materials. To achieve this, it is necessary to study biodegradable
polymers’ connections, modifications, and functionalization. This approach allows for
producing objects with the expected strength properties from eco-friendly products. The
interest in multi-material printing is growing. By analyzing these trends in the long-term
perspective, the optimal parameters will be better known, and the recycling of materials
will be more efficient.

8. Limitations

There are limitations to this study: printing on multiple materials is a relatively new
trend in additive manufacturing. The authors test different samples—the print tests are
not standardized. Standards for polymers are the most frequently used. It is impossible to
compare tests on samples produced additively and unambiguously.
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