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Abstract: Chattering in composite deep-hole boring can directly affect surface processing quality
and efficiency and has always been a research hotspot in machining mechanics. In this study, based
on Euler–Bernoulli beam theory, the fine control equations for the cutting stability of composite
variable-section boring bars were established using the Hamilton principle, in which the sectional
change and internal damping of the material were considered. Next, using the Galerkin method
and semi-discrete method, the effects of the taper ratio, damping ratio, length-to-diameter ratio,
and ply angle on the free vibration characteristics and cutting stability were analyzed in detail. The
results show that at a low damping ratio, both the first-order inherent frequency and boring stability
can be enhanced with the increase in the taper ratio; at a large damping ratio, increasing the taper
ratio can reduce the first-order inherent frequency and boring stability. Finally, the effects of the
sectional change on the inherent frequency, displacement response, and convergence were analyzed.
A numerical simulation was performed for the model reliability validation. The present research
results can provide a theoretical basis and technical guidance for analyzing the cutting stability and
fine control of composite variable-section boring bars with large length-to-diameter ratios.

Keywords: Euler–Bernoulli beam theory; composite variable-section boring bar; cutting stability;
large length-to-diameter ratio; time-domain method

1. Introduction

Some deep holes, such as cylinder holes, axial oil holes of the shaft, rocket projectiles,
and barrels of various artilleries, require high machining precision and surface quality,
whereas some materials to be processed show poor cutting machinability. These have
become a great challenge in production. Meanwhile, the boring bar of deep-hole processing
is restricted by the hole diameter, showing a great length-to-diameter ratio, poor first-order
bending rigidity, and low strength. Under the vortex motion of the boring bar, some
problems including vibration, ripples, and tapers are easily generated, which can affect
the linearity and surface roughness of deep holes, thereby inducing a series of processing
problems such as noise [1]. A good-quality boring bar with a large length-to-diameter
ratio should have high static rigidity, high dynamic rigidity, and high first-order natural
bending frequency so as to avoid the chattering and vortex motion generated in high-speed
rotation [2,3]. The suitable selection of the cutting parameters and size of the boring bar
to enhance stability in cutting are key to enhancing the processing efficiency and quality
in deep-hole boring as well as deep-hole processing capabilities. Chatter prediction and
control in deep-hole boring has become a hot topic in machining dynamics.
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The stability lobe diagram, proposed by Merritt in 1965 [4], is now the most commonly
used method for cutting stability analysis. The stability lobe diagram can describe the
relationship between the rotation speed of the cutting main shaft and the cutting dosage.
During machining technological design, the cutting dosage can be appropriately selected
in accordance with the lobe diagram to effectively inhibit chattering. Currently, scholars
mainly use the time-domain method [5], frequency method [6], and analysis-experiment
method [7] to plot the stability lobe diagram. Some scholars have performed a full dis-
cretization on the time-delay differential equation using the time-domain full discretization
method and calculated the transition matrix via numerical iteration to reduce the com-
plexity of the discrete iterative formula [8]. Owing to the advantages of high intensity,
large rigidity, lightweight, anti-fatigue, shock absorption, high-temperature resistance, and
favorable designability, a composite boring bar with a large length-to-diameter ratio can
more remarkably enhance the rigidity and first-order natural bending frequency than a
traditional metal boring bar. However, in contrast with ordinary metal materials, com-
posite materials possess larger internal damping [9], which increases the complexity of
analyzing the inherent vibration frequency [10]. Due to the existence of damping, the
rotor can generate an unstable vibration region, which is contrary to the hindrance of
damping on rotation in conventional cognition [11,12]. This unstable region can directly
affect the enhancement of the rotation speed and cutting efficiency. Scholars [13–15] have
conducted a great deal of research into the stability of metal boring bars using calculations
and nonlinear analysis. Kim et al. [16] comprehensively considered the external viscous
damping, internal viscous damping, and the taper of a boring bar and analyzed the free
vibration characteristics of a composite variable-section boring bar and its stability in boring
and milling. Their experimental results not only theoretically proved the enhancement of
system stiffness and cutting stability by the taper, but also confirmed the different effects
of internal damping on the cutting stability during low-speed and high-speed rotations.
However, this model neglects the effects of the inertial force in the vibration equation. Since
a boring bar rotates at high speeds during the boring process, it is necessary to consider
the gyroscopic effect on system stability [17]. Ma et al. [18] analyzed the cutting stability of
composite boring bars and investigated the influences of internal and external damping,
ply orientation, gyroscopic effect, and the taper ratio of boring bars while ignoring the
effects of the cross-section variations in a variable-section boring bar.

In order to address the existing problems, this study innovatively established the fine
cutting stability analysis model for composite variable-section boring bars by taking into
account factors including inner damping, gyroscopic effect, sectional change, and taper
ratio. The influencing rules of material damping, ply angle, sectional change, and length-
to-diameter ratio on the free vibration characteristics and cutting stability of the boring
bar were analyzed. According to the numerical analysis results, it can be concluded that
the sectional change imposed a significant effect on the calculation results. Furthermore,
this study innovatively analyzed the cutting stability of the boring bar by simultaneously
considering the sectional change and the damping ratio.

2. Free Vibration Control Equation and Solution to Vibration Characteristics

The boring bar in this study was simplified into a variable-section hollow slender
rod model, as shown in Figure 1. In this figure, O-xyz denotes the global fixed coordinate
system in which the x-axis points toward the axial direction of the boring bar, and the
y-axis and z-axis are located on the cross-section of the boring bar and point along the
radius direction; o-123 and o-1′2′3′ are two local coordinate systems that reflect the fiber ply
angle, in which the 1-axis points along the fiber direction, the 1′-axis points toward the axis
direction of the boring bar, the 2-axis is located in the plane where the fibers are located
and is perpendicular to the fiber direction, the 3-axis is perpendicular to the direction of the
plane where the fibers are located; α denotes the intersection angle between the main ply
direction 1 of the fibers and axis, β denotes the taper angle of the variable-section rod, r1, r2,
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tc, and L are the radius of the root section, the radius of the end section, and the thickness
and length of the boring bar, respectively.
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2.1. Constitutive Equation of the Boring Bar after the Consideration of Material Damping

The composite boring bar in this study is anisotropic and the constitutive equation
can be expressed as

σ1
σ2
σ3
τ23
τ31
τ12


=



Q11 Q12 Q13 0 0 0
Q12 Q22 Q23 0 0 0
Q13 Q23 Q33 0 0 0

0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66





ε1
ε2
ε3

γ23
γ31
γ12


(1)

where

Q11 = 1−v23v32
E2E3∆ , Q12 = v21+v31v23

E2E3∆ = v12+v32v13
E1E3∆ , Q13 = v31+v21v32

E2E3∆ = v13+v12v23
E1E2∆ ,

Q22 = 1−v13v31
E1E3∆ , Q23 = v32+v12v31

E1E3∆ = v23+v21v13
E1E2∆ , Q33 = 1−v12v21

E1E2∆ ,

Q44 = G23, Q55 = G31, Q66 = G12,

∆ = 1−v12v21−v23v32−v13v31−2v21v32v13
E1E2E3

(2)

Given the viscoelastic properties of the composite materials, the stress can be divided
into elastic stress {σe} and dissipative stress {σd}:

{σ} = {σe}+ {σd} (3)

which can further be expressed as

{σ} = [Q]{ε}+ [Q]ψ
{ .

ε
}

(4)

where [Q]ψ = [Q][η] denotes the damping stiffness matrix of the material. [η] denotes the
damping matrix of various layers and is related to their dissipation characteristics, which
can be expressed as

[η] =
π

2
[ψ] (5)
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The dissipation characteristics of the various layers can be described by the following
damping ratio matrix

[ψ] =



ψ1 0 0 0 0 0
0 ψ2 0 0 0 0
0 0 ψ3 0 0 0
0 0 0 ψ23 0 0
0 0 0 0 ψ13 0
0 0 0 0 0 ψ12

 (6)

Therefore, the damping stiffness matrix [Q]ψ can be described by the damping ratio
matrix [ψ] as

[Q]ψ =
π

2
[Q][ψ] (7)

Assume that α denotes the intersection angle between any fiber ply in the laminated
plate and the axial x-axis direction, as shown in Figure 1. The relationship between stress
and strain in the global coordinate system can be expressed as

{σ} =
[ –

Q
]
{ε}+

[ –
Q
]ψ{ .

ε
}

(8)

where
[ –

Q
]

and
[ –

Q
]ψ

denote the stiffness matrix and the damping stiffness matrix in the
global coordinate system that have been converted by the matrices in the local coordinate
system, respectively, which can be expressed as[ –

Q
]
= [Tβ]

−1[Tα]
−1[Q][Tα][Tβ] (9a)

[ –
Q
]ψ

= [Tβ]
−1[Tα]

−1[Q]ψ[Tα][Tβ] (9b)

The matrices for the coordinate transformation can be written as

[Tα] =



cos2 α sin2 α 0 0 0 cos α sin α

sin2 α cos2 α 0 0 0 − cos α sin α
0 0 1 0 0 0
0 0 0 cos α − sin α 0
0 0 0 sin α cos α 0

−2 cos α sin α 2 cos α sin α 0 0 0 cos2 α− sin2 α

 (10a)

[
Tβ

]
=



sin2 β 0 cos2 β 0 − sin β cos β 0
0 1 0 0 0 0

cos2 β 0 sin2 β 0 sin β cos β 0
0 0 0 − sin β 0 − cos β

2 sin β cos β 0 −2 sin β cos β 0 sin2 β− cos2 β 0
0 0 0 cos β 0 − sin β

 (10b)

Considering the plane stress state, the elastic stress and dissipative stress can be
expressed as

{σ}e =


σxx

e =
–
K11εxx

τxz
e = ks

–
K12γxz

τxy
e = ks

–
K13γxy

(11a)

{σ}d =


σxx

d =
–
K

ψ

11
.
εxx

τxz
d = ks

–
K

ψ

12
.
γxz

τxy
d = ks

–
K

ψ

13
.
γxy

(11b)
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where
[
Kij
]

and
[
Kij
]ψ are shown in Appendix A and ks denotes the shear correction factor.

2.2. Elastic Strain Energy of the Boring Bar

Under the plane stress state, the elastic strain energy of the boring bar can be written as

U =
1
2

∫ L

0

∫
S
(σxx

eεxx + τxz
eγxz + τxy

eγxy)dSdx (12)

Ma et al. confirmed that when the length-to-diameter ratio (L/2R) exceeded 5, the
Euler–Bernoulli beam theory showed high precision for anisotropic steel bars [19]; for the
anisotropic composite bar, the value of L/2R should be greater than 8 to achieve the error
of below 5%. Since the length-to-diameter ratio of the boring bar in this study exceeded 8,
the Euler–Bernoulli beam theory can satisfy the actual requirements in engineering. Based
on the Euler–Bernoulli beam theory, the shear stress induced by the bending and torsion
on the cross-section can be ignored, i.e., τe

xz = τe
xy = 0. Simultaneously, considering small

deformations, the axial strain induced by bending can be expressed as

εxx = z
∂θy

∂x
− y

∂θz

∂x
(13)

θy = −∂w
∂x

, θz =
∂v
∂x

(14)

where v and w denote the lateral displacements of the boring bar along the y-axis and z-axis
and θy and θz are the rotation angles of the boring bar on the x- and x-z planes.

Substituting Equations (13) and (14) into the strain energy and stress equations, the
strain energy of the boring bar can be expressed as

Π =
1
2

∫
L

A11

(
v′′ 2 + w′′ 2

)
dx (15)

where

A11 =
π

4

N

∑
i=1

–
K11i(R4

i − R4
i−1) (16)

In which Ri−1 and Ri are the inner diameter and outer diameter of the i-th layer. Ri−1
and Ri are also the functions of the section position x.

2.3. Kinetic Energy of the Boring Bar

Taking both the deformation and rotation of the boring bar into account, the kinetic
energy of the boring bar in the global coordinate system can be written as

T =
1
2

∫ L

0
[Im(

.
v2

+
.

w2
) + Id(

.
θy

2 +
.
θz

2)− 2IPΩθy
.
θz + IPΩ2 + Ω2 Id(θy

2 + θz
2)]dx (17)

where Im denotes the mass of the boring bar per unit length and Id and IP denote the inertia
moment and the polar inertial moment of the cross-section, which can be expressed as

Im = π
n
∑

i=1
ρi(R2

i − R2
i−1)

Id = π
4

n
∑

i=1
ρi(R4

i − R4
i−1)

IP = π
2

n
∑

i=1
ρi(R4

i − R4
i−1)

(18)

where n denotes the total number of plies and ρi denotes the mass density of the i-th layer,
as shown in Figure 2.
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Substituting the relationship between the rotation angle and the deflection into
Equation (17), it can be seen that

T =
1
2

∫ L

0
[Im(

.
v2

+
.

w2
) + Id(

.
w′2 +

.
v′2)− 2IPΩ

.
w′

.
v′ + IPΩ2 + Ω2 Id(w′

2
+ v′2)]dx (19)

2.4. Dissipated Virtual Work of the Boring Bar

The dissipated virtual work of the boring bar can be expressed as:

δW =
∫

V
σd

xxδεxxdV (20)

Substituting the expressions of σd
xx and εxx into Equation (20), the dissipated virtual

work of the boring bar can be expressed as

δW =
∫

L
Aψ

11(
.
v′′ δv′′ +

.
w′′ δw′′ ) + Aψ

11Ω(v′′ δw′′ − w′′ δv′′ )dx (21)

where

A11
ψ =

π

4

N

∑
i=1

–
K11i

ψ(R4
i − R4

i−1) (22)

2.5. Vibration Control Equation of the Boring Bar

Based on the Hamilton principle, the relationship between strain energy density,
kinetic energy density, and the dissipated virtual work can be obtained as

δ(T −Π) + δW = 0 (23)

Substituting the above relation into the Hamilton principle, the vibration differential
equation of the system can be expressed as

−Im
..
v + 2Id

..
v′′+2Id

′ ..v′ + 2IPΩ
.

w′′+2IP
′Ω

.
w′−A11

′′ v′′ − 2A11
′v′′′ − A11v′′ ′′ −Ω2 Idv′′−Ω2 Id

′v′+
Aψ

11
′′ .

v′′ + 2Aψ
11
′ .
v′′′ + Aψ

11
.
v′′ ′′−Aψ

11
′′Ωw′′ − 2Aψ

11
′Ωw′′′ − Aψ

11Ωw′′ ′′ = 0
(24a)

−Im
..
w + 2Id

..
w′′+2Id

′ ..
w′ − 2IPΩ

.
v′′−2IP

′Ω
.
v′ − A11

′′w′′ − 2A11
′w′′′ − A11w′′ ′′ −Ω2 Idw′′−Ω2 Id

′v′+
Aψ

11
′′ .

w′′ + 2Aψ
11
′ .
w′′′ + Aψ

11
.

w′′ ′′+Aψ
11
′′Ωv′′ + 2Aψ

11
′Ωv′′′ + Aψ

11Ωv′′ ′′ = 0
(24b)

In above equations, the single-underlined terms indicate the effect of the sectional
change on the vibration, and the double-underlined terms indicate the effects of both
damping and the sectional change.
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2.6. Discrete Solution to Vibration Equation

Using the Galerkin approximate solution method, which is commonly used for continu-
ous system vibration and stability analysis, the partial differential equation of free vibration
can be transformed into the ordinary differential equation (ODE) with respect to time.

For the cantilever bar, assuming the bending deformation can be expressed as

w =
N

∑
j=1

Wj(t)ξ j(x), v =
N

∑
j=1

Vj(t)ξ j(x) (25)

The vibration mode functions of the bending deformation of standard non-rotary,
non-coupling, and uniform cantilever beams are as follows:

cos( β j) cos h(β j
)
= −1, λj = −

cos β j+cosh β j
sin β j+sinhβ j

, j = 1, 2, · · ·N

ξ j(x) = cos(
β jx
L )− cosh(

β jx
L ) + λj(sin(

β jx
L )− sinh(

β jx
L ))

(26)

Substituting Equation (25) into the vibration differential equation, the weighted inte-
gral was performed on the vibration mode functions using the Galerkin method and then
the 2N ordinary differential equations of the boring bar can be obtained as

M
{ ..

X
}
+ G{

.
X}+ K{X} = 0 (27)

where

K =

[
K11ij K12ij
K21ij K22ij

]
, M =

[
M11ij 0

0 M22ij

]
, G =

[
G11ij G12ij
G21ij G22ij

]
, X =

(
N
∑

j=1
Vj(t)

N
∑

j=1
Wj(t)

)T

M11ij =
∫ L

0 (−Imξi + 2Idξi
′′ + 2Id

′ξi
′)ξ jdx, M22ij = M11ij,

K11ij =
∫ L

0 (−A11
′′ ξi

′′ − 2A11
′ξi
′′′ − A11ξi

′′ ′′ )ξ jdx, K22ij = K11ij

K12ij =
∫ L

0 (−Aψ
11
′′Ωξi

′′ − 2Aψ
11
′Ωξi

′′′ − Aψ
11Ωξi

′′ ′′ )ξ jdx, K21ij = −K12ij

G11ij =
∫ L

0 (Aψ
11
′′ ξi

′′ + 2Aψ
11
′ξi
′′′ + Aψ

11ξi
′′ ′′ )ξ jdx, G22ij = G11ij

G12ij =
∫ L

0 (2IPΩξi
′′ + 2IP

′Ωξi
′)ξ jdx, G21ij = −G12ij

(28)

From Equation (28), it can be seen that the non-diagonal terms in the damping matrix
G reflect the influence of the gyroscopic effect, and the diagonal items reflect the influence
of the material resistance. The vortex motion appeared when the boring bar was influenced
by the gyroscopic effect.

3. Boring Stability Analysis

This study adopted the model of boring force established by Kapoor et al., as shown
in Figure 3 [20]. The boring force is in direct proportion to the cutting cross-sectional area
on the r-x plane. Assuming that the endpoint of the bar C shows no displacement on the
y-z plane, the boring force F can be expressed as

F = Ks frdr (29)

where Ks denotes the cutting force on the unit cutting area; fr denotes the feed per rotation
during the boring process; and dr denotes the cutting radial depth. During the boring
process, due to the deformation of the boring bar, the endpoint C will deviate along the
radial depth direction. Assuming that ur denotes the offset, the boring force after the
consideration of the deviation can be expressed as

F = KS fT(dT − uT) (30)



Materials 2022, 15, 5465 8 of 22
Materials 2021, 14, x FOR PEER REVIEW 9 of 24 
 

 

  

(a) Cutting force on the y-z plane. (b) Cutting force on the r-x plane. 

Figure 3. Model of the cutting force in the boring.  

During single-tool boring machining, the boring force refers to the stress imposed on 
the endpoint at x = L of the boring bar. Combined with the research results in Refs. [22] 
and [23], and assuming that yf  and zf denote the cutting forces along the y-axis and z-
axis direction per unit length, respectively, Equation (27) can be rewritten as 

{ } { }+ + = { }X X XM G K F  (35)

where 

  = = = 
  

 
( )

( ) ( )
( ) 0 0

; d ; d
y L Ly zi

i y i i z iz
i

f f f x f f x
f

F ξ ξ  (36)

δ
δ

= − ≤ ≤

= − ≤ ≤

 , 0

 , 0

( ) ( )
( ) ( )

y y

z z

f F t x L x L
f F t x L x L

 (37)

in which δ  is the Dirac-delta function and can be expressed as 

δ
 ∞

=  ≠

 , =0

  , 0
( )

0
x

x
x

 (38)

Substituting Equations (36)–(38) into Equation (35) and combined with Equation (25), 
the vibration equation of the boring bar imposed by cutting forces can be obtained as 
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Figure 3. Model of the cutting force in the boring.

In combination with Equation (29), the cutting force in Figure 3a can be obtained as

FT(t) = F(t) sin β0; FR(t) = F(t) cos β0 (31)

where β0 denotes the intersection angle between the normal direction of the cutting face
and the y-z plane and β0 = 60◦ [20]. With reference to the research results by Subramani
et al. [21], the axial cutting force can be assumed as

Fx(t) = −0.5FT(t) (32)

From Figure 3, through the transformation of coordinates, the boring forces along the
y-axis and z-axis can be obtained as

Fy(t) = Fy0(t)− Fy1(t)[v(t)− v(t− τ)]− Fy2(t)[w(t)− w(t− τ)]
Fz(t) = Fz0(t)− Fz1(t)[v(t)− v(t− τ)]− Fz2(t)[w(t)− w(t− τ)]

(33)

where
Fz0(t) = Ks frdr cos(θt + β0)
Fz1(t) = Ks fr{0.5 cos β0 + 0.5 cos(2θt + β0)}
Fz2(t) = Ks fr{−0.5 sin β0 + 0.5 sin(2θt + β0)}
Fy0(t) = Ks frdr sin(θt + β0)
Fy1(t) = Ks fr{0.5 sin β0 + 0.5 sin(2θt + β0)}
Fy2(t) = Ks fr{0.5 cos β0 − 0.5 cos(2θt + β0)}

(34)

In which θt = Ωt denotes the angular displacement during the rotation of the boring
bar; Ks is the coefficient of cutting force during high-speed boring on steel; according to the
test data in [20], Ks = 1330× 106 N/m2; and fr denotes the boring feed, with the unit of
mm/rotation.

During single-tool boring machining, the boring force refers to the stress imposed on
the endpoint at x = L of the boring bar. Combined with the research results in refs. [22]
and [23], and assuming that fy and fz denote the cutting forces along the y-axis and z-axis
direction per unit length, respectively, Equation (27) can be rewritten as

M
{ ..

X
}
+ G{

.
X}+ K{X} = F (35)

where

F =

{
f (y)i
f (z)i

}
; f (y)i =

∫ L

0
fyξidx; f (z)i =

∫ L

0
fzξidx (36)
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fy = Fy(t)δ(x− L), 0 ≤ x ≤ L
fz = Fz(t)δ(x− L), 0 ≤ x ≤ L

(37)

In which δ is the Dirac-delta function and can be expressed as

δ(x) =
{

∞, x = 0
0, x 6= 0

(38)

Substituting Equations (36)–(38) into Equation (35) and combined with Equation (25),
the vibration equation of the boring bar imposed by cutting forces can be obtained as

M
..
X(t) + G

.
X(t) + KX(t) + KF{X(t)− X(t− T)} = f0i (39)

where M, G, and K are identical to those in Equation (28). The other parameters are as follows:

X(t) =
{

v(t)
w(t)

}
; f0i =

{
f0y
f0z

}
; f0y = Fy0{ξi(L)}; f0z = Fz0{ξi(L)}

KF = K f + Kp(t); K f =
Ks fr

2

[
cos β0X − sin β0X
sin β0X cos β0X

]
;

Kp(t) =
Ks fr

2

[
cos(2θt + β0)X sin(2θt + β0)X
sin(2θt + β0)X − cos(2θt + β0)X

]
; Xij = ξi(L)ξ j(L)

(40)

According to Equation (40), the off-diagonal elements in the K f matrix are opposite in
sign, which can induce chattering instability during the cutting process. The elements in the
K f matrix change in a periodic pattern, which can also induce unstable boring parameters.

During the boring process, a constant force will not induce the chatter of the boring
bar. Accordingly, the constant force on the right side of Equation (39) can be ignored.
Only considering the effect of the time-delay force on the boring bar, the boring vibration
equation can be expressed as

M
..
X(t) + G

.
X(t) + (K + KF)X(t) = KFX(t− T) (41)

Equation (41) is a standard 2-dof delay differential equation during the cutting vibra-
tion. The time-delay terms related to the bending and deformation of the boring bar can
induce chattering.

4. Analysis of Numerical Results
4.1. Natural Vibration Analysis

The first-order inherent frequency of the boring bar imposes great significance on
the cutting stability. In this study, in order to reveal the effects of the various factors on
the boring bar’s inherent vibration characteristics, the inherent vibration characteristics of
the hollow circular-section boring bar made up of epoxy-resin-based graphite fibers were
analyzed. The boring bar is shown in Figure 1, and Table 1 lists the performance parameters
of the material. From the table, N = 10, tc = 0.01321 m, d = 2R = r1 + r2 = 0.127 m,
ψ1 = 0.0045, ψ2 = 0.0422, and ψ12 = 0.0705, where N denotes the number of plies, whereas
ψ1, ψ2, and ψ12 are the internal damping parameters. For convenience for the subsequent
description, we used ψ = 1 to represent this group of values and used ψ = 0.5 to represent
the parameters of ψ1 = 0.00225, ψ2 = 0.0211, and ψ12 = 0.03525. The rest were treated in
the same manner. If there was no specified explanation, the boring bars all adopted the
[0◦]10-ply mode. The taper ratio (TR) is to reveal the linear sectional change of the boring
bar, which can be defined as

TR =
(r1 − r2)× 100

L
, r1 ≥ r2 (42)
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Table 1. Performance parameters of epoxy-resin-based graphite fibers.

Graphite Epoxy Steel

E1 (GPa) 192 207
E2 = E3 (GPa) 7.24 207

G12 = G13 (GPa) 4.07 80
G23 (GPa) 3 80
v12 = v13 0.24 0.2975

ρ (kg/m3) 1610 7700

Figure 4 shows the variation in the first-order vortex frequency of the boring bars with
different length-to-diameter ratios when TR = 1 and ψ = 0, in which FW and BW denote
the forward and backward procession, respectively. In the figure, it can be seen that as the
length-to-diameter ratio increased, the first-order vortex frequency decreased gradually,
and simultaneously, the critical rotation speed decreased. As the length-to-diameter ratio
increased, the boring bar became thinner and longer, thereby reducing the first-order
natural bending frequency and the critical rotation speed. Accordingly, the chattering was
more likely to occur.

Figure 4. Effect of the length-to-diameter ratio on the first-order vortex frequency (TR = 1 and ψ = 0).

Figure 5 displays the variation in the first-order inherent frequency with the internal
damping coefficient under a fixed length-to-diameter ratio and a changing taper ratio.
As the internal damping coefficient increased, the first-order inherent frequency of the
boring bar decreased gradually, and the larger the taper ratio, the more significant the effect
influenced by the inner damping of the boring bar. This can be attributed to the existence of
the double-underlined terms as shown in Equation (24) in the vibration equation. A larger
taper ratio is indicative of a greater effect on the change in damping.

Figure 6 shows the changes in the inherent frequency of uniform-section boring bars
with different length-to-diameter ratios with the damping coefficient. For the boring bars
with different length-to-diameter ratios, the inherent frequency decreased gradually with
the increase in the damping coefficient, and the smaller the length-to-diameter ratio, the
more significant the effect of the internal damping coefficient on the first-order inherent
frequency of the boring bar. This suggests that the effect of Aψ

11 in Equation (24) was
weakened for thinner and longer bars. Accordingly, the effect of the inherent frequency
on damping weakened and the curve flattened. For the boring bars with large length-to-
diameter ratios, changing the inherent frequency with damping showed a limited effect.
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critical rotation speed of the boring bar decreased with the decreasing number of 0° ply 
layers. The first-order vortex frequency of the material with a ply mode of [90°]10 was 
minimum. Through comparison, the first-order vortex frequency of the bar with a ply 
mode of [90°/0°]5 was slightly higher than that of the bar with a ply mode of [0°/90°]5. This 
suggests that the closer the 0° ply to the outer surface of the boring bar, the higher the 
critical rotation speed. This is because the 0° ply showed higher rigidity than the plies 
with other angles. Meanwhile, the cross-section where the 0° ply was located was greater 

Figure 6. Variations in the first-order inherent frequency with the damping ratio of the boring bar
under different length-to-diameter ratios (TR = 0 and ψ = 0).

Figure 7 shows the variations in the first-order inherent frequencies of the boring
bars with the taper ratio under a fixed length-to-diameter ratio and different damping
coefficients. In the figure, it can be seen that when the damping ratio equaled 0, 0.5,
and 1, the first-order inherent frequency of the boring bar increased gradually with the
increasing taper ratio. When the damping ratio equaled 1.5 and 2, the inherent frequency
first increased and then decreased with the increase in the taper ratio. This can also be
explained by the existence of the double-underlined terms in Equation (24). The inherent
frequency of the boring bar with low damping can be enhanced by increasing the taper
ratio. For the materials with large damping, the taper ratio imposed a complex effect. The
effects of both the taper ratio and damping should be considered.
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Figure 7. Effect of the taper ratio of the boring bar on the first-order inherent frequency (ψ = 0 and
L/d = 10).

Figure 8 shows the variations in the first-order vortex frequency of the boring bars with
the rotation speed under different ply modes. The definitions of BW and FW are consistent
with those in previous figures and are not repeated here. In the figure, it can be seen that
the greater the number of 0◦ ply layers, the greater the first-order vortex frequency and the
larger the critical rotation speed of the boring bars. Moreover, the critical rotation speed of
the boring bar decreased with the decreasing number of 0◦ ply layers. The first-order vortex
frequency of the material with a ply mode of [90◦]10 was minimum. Through comparison,
the first-order vortex frequency of the bar with a ply mode of [90◦/0◦]5 was slightly higher
than that of the bar with a ply mode of [0◦/90◦]5. This suggests that the closer the 0◦ ply to
the outer surface of the boring bar, the higher the critical rotation speed. This is because the
0◦ ply showed higher rigidity than the plies with other angles. Meanwhile, the cross-section
where the 0◦ ply was located was greater in radius, perimeter, and volume, and thus can
bear greater the bending moment induced by elastic stress and dissipative stress. Therefore,
compared with the arrangement of 0◦ ply on the inner layer, arranging the 0◦ ply on the
outer layer can enhance the stability of the boring bar.
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Compared with existing models, the established stability analysis model of the
variable-stability boring bar considered the effect of the sectional change. In order to
analyze the sectional change in the inherent vibration characteristics, the calculation results
before and after the consideration of the sectional change were compared for further analy-
sis. Since both Aψ

11
′ and Aψ

11
′′ included the effects of damping on the boring bar’s inherent

vibration characteristics, the internal damping coefficient was set as 0 only to analyze the
effect of the sectional change on the boring bar’s vibration characteristics. Then, the free
vibration characteristics were analyzed by setting the terms of Id

′, IP
′, A11

′, and A11
′′ in

Equations (24a) and (24b) as 0. Figure 9 shows the effect of the sectional change on the
first-order inherent frequency of the boring bar when TR = 1, 2, and 3, respectively. The
larger the taper ratio of the boring bar, the greater the effect. Table 2 lists the calculation
results of the first-order inherent frequencies of the boring bar with different TR values
using different models. The ANSYS model of the boring bar is shown in Figure 10. Solid
185 element is used to simulate the composite laminated structure. From the table, the
calculation results using the established model were closer to the data using the ANSYS
model, showing more favorable reliability.
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Table 2. Effect of the change of the length-to-diameter ratio on the first-order inherent frequency of
the boring bar under different TR values (ψ = 0).

Taper Ratio of the
Boring Bar

Length-to-Diameter
Ratio

First-Order Inherent Frequency (Hz)

Simulation Results
of the ANSYS
Model (AR)

The Established Model
Considering the Sectional

Change and the Errors
Compared with the AR

Simulation Results

The Established Model
without Considering the
Sectional Change and the
Errors Compared with the

AR Simulation Results

TR = 1
10 163.24 175.62 7.58% 143.51 −12.09%
12 123.05 125.29 1.82% 98.29 −20.12%
14 96.748 94.56 −2.26% 71.23 −26.38%

TR = 2
10 180.45 200.59 11.16% 134.11 −25.68
12 138.78 146.98 5.91% 90.68 −34.65%
14 110.83 113.93 2.80% 64.90 −41.44
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Figure 10. Schematic diagram of composite toolholder model (ψ = 0, TR = 1, L/d = 12).

4.2. Cutting Stability Analysis
Validation of Model Reliability

The Galerkin method is a numerical discrete algorithm, whose numerical calculation
results are related to precision and the number of intercepted modes. In the case of
insufficient intercepted modes, the calculation results cannot be convergent with great
errors. However, a larger number of intercepted modes is also not good. In the case
of a larger number of modes, the calculation time is long and the calculation results are
divergent. Therefore, it is necessary to validate the convergence of the selected number
of modes used in this study. Figure 11 shows the calculated stability lobes of different
boring bars with different mode numbers. In the figure, it can be seen that the stability
lobe diagrams were quite similar when the model numbers were set as 1, 2, and 3. Table 3
shows the limit feeds of the unconditional stable region at a rotation speed of 0~1500 rad/s
using different mode numbers. The numerical results were quite close, suggesting the
favorable convergence of the solution to the stability analysis of the boring system using
the time-domain semi-discrete method.
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Table 3. Effect of the number of vibration mode functions on the limit boring feed of the rotated
composite material boring system (ψ = 1 and L/d = 10).

Number of Vibration Mode
Functions 1 2 3

Limit boring feed when
TR = 1 (mm/rev) 1.149986 1.074399 1.091239

Limit boring feed when
TR = 0 (mm/rev) 0.790758 0.776207 0.787462

Cutting stability analysis curves can be obtained via feature extraction. It is necessary
to validate the reliability of cutting stability. This study used the Runge–Kutta method
to perform the displacement response analysis on the control equation and validated
the results by combining the displacement response results and stability analysis curves.
Figure 12 shows the cutting stability lobes of the uniform section of the boring bars with
different damping coefficients. A total of 3 points, denoted as Point A, Point B, and Point
C, were selected for the displacement response analysis, and the results are shown in
Figure 13.
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Figure 12. Stability lobe diagrams of the boring bar with different internal damping coefficients (L/d 
= 10 and TR = 0). 
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Figure 12. Stability lobe diagrams of the boring bar with different internal damping coefficients
(L/d = 10 and TR = 0).

Table 4 lists the rotation speeds and feeds at different coordinates. These points were
located in the stable and unstable regions of the lobe diagrams of the boring bars with
different damping coefficients. In Figure 12 it can be seen that Point A was located in
the stable regions of the boring bars with damping coefficients of 0.5 and 1, indicating its
displacement response should be convergent. These results were consistent with the results
shown in Figure 13. Point B was located in the unstable region of the boring bar with a
damping coefficient of 0.5 and the stable region of the boring bar with a damping coefficient
of 1, indicating its displacement response should be divergent and convergent. These
results were also consistent with the divergent and convergent displacement responses at
Point B in Figure 13. Point C was located in the unstable regions with damping coefficients
of 0.5 and 1, indicating its displacement response should be divergent. These results
were consistent with the divergent displacement response at Point C in Figure 13. The
displacement response results fit well with the conclusions drawn from the lobe diagrams,
suggesting the reliability of the lobe diagrams.
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Figure 13. Displacement response curves of Points A, B, and C. 

4.3. Analysis of the Influencing Factors of the Boring Stability of the Boring Bar 
Figure 14 shows the boring stability lobe diagrams of the boring bars with different 

length-to-diameter ratios. In the figure it can be seen that the limit feed of the boring bar 
at the same rotation speed decreased with the increasing length-to-diameter ratio, 
suggesting that the increase in the length-to-diameter ratio increased the instability. When 
the length-to-diameter ratio exceeded 10, the limit cutting depth dropped rapidly, 
indicating great difficulties in deep-hole processing. A greater length-to-diameter ratio is 
indicative of thinner pores. At that moment, the boring bar with a larger length-to-
diameter ratio is featured by quite low rigidity with a very high risk of chattering. The 
limit cutting depth is quite low with a fairly low processing efficiency. In addition, it can 
also be observed from the figure that the length-to-diameter ratio of the boring bar 
imposed a slight effect on the initiation speed of new chatter instability in the high-speed 
rotation region. 
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Figure 13. Displacement response curves of Points A, B, and C.

Table 4. Rotation speeds and cutting depths of the different points in Figure 11.

Point Rotation Speed (rad/s) Feed (mm/rev)

A 600 0.25
B 600 0.75
C 600 1.5

4.3. Analysis of the Influencing Factors of the Boring Stability of the Boring Bar

Figure 14 shows the boring stability lobe diagrams of the boring bars with different
length-to-diameter ratios. In the figure it can be seen that the limit feed of the boring bar at
the same rotation speed decreased with the increasing length-to-diameter ratio, suggesting
that the increase in the length-to-diameter ratio increased the instability. When the length-
to-diameter ratio exceeded 10, the limit cutting depth dropped rapidly, indicating great
difficulties in deep-hole processing. A greater length-to-diameter ratio is indicative of
thinner pores. At that moment, the boring bar with a larger length-to-diameter ratio is
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featured by quite low rigidity with a very high risk of chattering. The limit cutting depth is
quite low with a fairly low processing efficiency. In addition, it can also be observed from
the figure that the length-to-diameter ratio of the boring bar imposed a slight effect on the
initiation speed of new chatter instability in the high-speed rotation region.
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Figure 13. Displacement response curves of Points A, B, and C. 

4.3. Analysis of the Influencing Factors of the Boring Stability of the Boring Bar 
Figure 14 shows the boring stability lobe diagrams of the boring bars with different 

length-to-diameter ratios. In the figure it can be seen that the limit feed of the boring bar 
at the same rotation speed decreased with the increasing length-to-diameter ratio, 
suggesting that the increase in the length-to-diameter ratio increased the instability. When 
the length-to-diameter ratio exceeded 10, the limit cutting depth dropped rapidly, 
indicating great difficulties in deep-hole processing. A greater length-to-diameter ratio is 
indicative of thinner pores. At that moment, the boring bar with a larger length-to-
diameter ratio is featured by quite low rigidity with a very high risk of chattering. The 
limit cutting depth is quite low with a fairly low processing efficiency. In addition, it can 
also be observed from the figure that the length-to-diameter ratio of the boring bar 
imposed a slight effect on the initiation speed of new chatter instability in the high-speed 
rotation region. 
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Figure 14. Stability lobe diagrams of the boring bar with different length-to-diameter ratios (ψ = 1
and TR = 0).

Figure 15 shows the effect of the change in internal damping on the cutting stability
of the boring bar when TR = 1 and L = 2 m (L/d = 15.7). Through comparison, when the
rotation speed was low, increasing the internal damping of the boring bar can enhance the
cutting stability of the boring bar, thereby leading to greater stable feed. However, at a
high rotation speed, a new boring chatter unstable region appeared due to the existence of
damping. The greater the damping, the smaller the initiation speed of the unstable region
and the larger the range of the unstable region enclosed by the high-speed lobe curve and
the horizontal axis. Generally, a higher inherent frequency suggests a larger limit cutting
depth, whereas the inner damping shows an opposite effect. Under higher inner damping,
the inherent vibration frequency can be reduced but still enhance the cutting stability at a
low rotation speed, thereby reducing the cutting stability at a high rotation speed.
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Figure 15. Effect of the change in internal damping on the stability (L = 2 m and TR = 1). 

Figure 16 shows the effect of the taper ratio of the boring bar on the cutting stability. 
From the figure it can be seen that ψ = 1  at the same rotation speed and increasing the 
taper ratio of the boring bar can obtain a greater stable feed, thereby enhancing the cutting 
efficiency. However, as the taper ratio increased, the initialization speed of the new high-
speed chattering unstable region changed slightly. By combining Figures 14–16, it can be 
concluded that the initialization speed of the cutting unstable region at a high rotation 
speed was most significantly affected by the damping coefficient but slightly affected by 
the taper ratio. The length-to-diameter ratio imposed almost no effect. 
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Figure 16. Effect of the taper ratio on the stability of the boring bar (ψ = 1  and L = 2 m). 

Figure 17 shows the effect of the ply angle on the cutting stability of the uniform-
section boring bar with a length of 2 m. Through comparison, as the number of 0° plies 

Figure 15. Effect of the change in internal damping on the stability (L = 2 m and TR = 1).

Figure 16 shows the effect of the taper ratio of the boring bar on the cutting stability.
From the figure it can be seen that ψ = 1 at the same rotation speed and increasing the
taper ratio of the boring bar can obtain a greater stable feed, thereby enhancing the cutting
efficiency. However, as the taper ratio increased, the initialization speed of the new high-
speed chattering unstable region changed slightly. By combining Figures 14–16, it can be
concluded that the initialization speed of the cutting unstable region at a high rotation
speed was most significantly affected by the damping coefficient but slightly affected by
the taper ratio. The length-to-diameter ratio imposed almost no effect.
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Figure 15. Effect of the change in internal damping on the stability (L = 2 m and TR = 1). 

Figure 16 shows the effect of the taper ratio of the boring bar on the cutting stability. 
From the figure it can be seen that ψ = 1 at the same rotation speed and increasing the 
taper ratio of the boring bar can obtain a greater stable feed, thereby enhancing the cutting 
efficiency. However, as the taper ratio increased, the initialization speed of the new high-
speed chattering unstable region changed slightly. By combining Figures 14–16, it can be 
concluded that the initialization speed of the cutting unstable region at a high rotation 
speed was most significantly affected by the damping coefficient but slightly affected by 
the taper ratio. The length-to-diameter ratio imposed almost no effect. 
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Figure 16. Effect of the taper ratio on the stability of the boring bar (ψ = 1 and L = 2 m). 

Figure 17 shows the effect of the ply angle on the cutting stability of the uniform-
section boring bar with a length of 2 m. Through comparison, as the number of 0° plies 

Figure 16. Effect of the taper ratio on the stability of the boring bar (ψ = 1 and L = 2 m).

Figure 17 shows the effect of the ply angle on the cutting stability of the uniform-
section boring bar with a length of 2 m. Through comparison, as the number of 0◦ plies
decreased and the 90◦ plies increased, the limit boring feed dropped from 0.074 mm/rev
to 0.03 mm/rev and the initialization speed of the new boring chattering unstable region
decreased from 1526.68 rad/s to 1038.07 rad/s. It can be concluded that the more 0◦ plies,
the greater the minimum limit feed of the boring bar and the greater the initialization speed
of the new boring chattering unstable region.
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Figure 17d shows the stability lobe diagrams of the boring bars with ply modes of
[0◦/90◦]5 and [90◦/0◦]5, respectively. The limit stable cutting depth increased slightly
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when 0◦ plies were arranged from inside to outside. It should be noted that more 0◦ plies
were more favorable for bending deformation; however, the composite boring bar with a
ply angle of 0◦ was the weakest in torsion resistance.

5. Conclusions

Aiming at overcoming the limitations in the current variable-section boring bar models,
this study introduced both sectional change and inner damping to establish the kinetic
control equations of composite boring bars with large length-to-diameter ratios. Moreover,
the effects of the various factors on the inherent vibration frequency and cutting stability
were qualitatively and quantitatively analyzed in theory. This study innovatively explored
the variation rules of the inherent frequency and cutting stability by taking both the
sectional change and damping into account. The main conclusions are described below.

(1) The increase in the length-to-diameter ratio can reduce the first-order inherent fre-
quency of free vibration and limit the boring feed while imposing no effect on the
initiation speed of the new chattering unstable region.

(2) The increase in the internal damping coefficient can reduce the first-order free vibra-
tion inherent frequency of the boring bar and simultaneously enhance the limit boring
feed. However, at a high rotation speed, the existence of damping will generate a new
boring chattering unstable region. Moreover, the unstable region will appear earlier
under a greater damping condition.

(3) At a damping ratio of 1 (i.e., ψ = 1), as the taper ratio of the boring bar increased, the
first-order inherent frequency and the limit feed during stable boring were enhanced.
The taper ratio imposed a slight effect on the initiation speed of the new chattering
unstable region during high-speed boring. Meanwhile, both the taper ratio of the
boring bar and the damping coefficient had interaction effects on the free vibration
characteristics and cutting stability. For the composite variable-section boring bar,
the effects of the internal damping and taper ratio should be considered. This is an
innovative point in this study.

(4) The ply angle can significantly affect the stable region during the boring process.
When the ply angle was 0◦, the stable region achieved the maximum, accompanied
by large rigidity and small damping. Therefore, the external surface should adopt a
0◦ ply mode to enhance the cutting stability.
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Appendix A

K11 =
–
Q11 sin4 β + 2(

–
Q13 + 2

–
Q55) sin2 β cos2 β +

–
Q33 cos4 β,

K12 =
–
Q12 sin2 β +

–
Q23 cos2 β,

K13 = (cos4 β + sin4 β)
–
Q13 + (

–
Q11 +

–
Q33 − 4

–
Q55) sin2 β cos2 β,

K14 = (
–
Q16 − 2

–
Q45) cos β sin2 β +

–
Q36 cos3 β,

K15 = (
–
Q13 −

–
Q11 + 2

–
Q55) sin3 β cos β + (

–
Q33 −

–
Q13 − 2

–
Q55) cos3 β sin β,

K16 = −
–
Q16 sin3 β− (2

–
Q45 +

–
Q36) sin β cos2 β, K22 =

–
Q22,

K23 =
–
Q12 cos2 β +

–
Q23 sin2 β, K24 =

–
Q26 cos β,

K25 = (
–
Q23 −

–
Q12) sin β cos β, K26 = −

–
Q26 sin β,

K33 =
–
Q11 cos4 β +

–
Q33 sin4 β + 2(

–
Q13 + 2

–
Q55) sin2 β cos2 β,

K34 =
–
Q16 cos3 β + (2

–
Q45 +

–
Q36) sin2 β cos β,

K35 = (
–
Q13 −

–
Q11 + 2

–
Q55) sin β cos3 β + (

–
Q33 −

–
Q13 − 2

–
Q55) sin3 β cos β,

K36 = −
–
Q36 sin3 β + (2

–
Q45 −

–
Q16) sin β cos2 β,

K44 =
–
Q44 sin2 β +

–
Q66 cos2 β; K46 = (

–
Q44 −

–
Q66) sin β cos β,

K45 = −
–
Q45 sin3 β + (

–
Q36 −

–
Q16 +

–
Q45) sin β cos2 β,

K55 = (
–
Q11 − 2

–
Q13 +

–
Q33 − 2

–
Q55) sin2 β cos2 β +

–
Q55(sin4 β + cos4 β),

K56 =
–
Q45 cos3 β + (

–
Q16 −

–
Q36 −

–
Q45) sin2 β cos β,

K66 =
–
Q44 cos2 β +

–
Q66 sin2 β, Kij = Kji , i, j = 1, . . . , 6,

(A1)
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where

Q11 = Q11 cos4 α + 2(Q12 + 2Q66) sin2 α cos2 α + Q22 sin4 α, Q13 = Q13 cos2 α + Q23 sin2 α,
Q12 = (Q11 + Q22 − 4Q66) sin2 α cos2 α + Q12(sin4 α + cos4 α), Q23 = Q13 sin2 α + Q23 cos2 α,
Q16 = (Q11 −Q12 − 2Q66) sin α cos3 α + (Q12 −Q22 + 2Q66) sin3 α cos α,
Q22 = Q11 sin4 α + 2(Q12 + 2Q66) sin2 α cos2 α + Q22 cos4 α, Q36 = (Q13 −Q23) sin α cos α,
Q26 = (Q11 −Q12 − 2Q66) sin3 α cos α + (Q12 −Q22 + 2Q66) sin α cos3 α,
Q33 = Q33, Q44 = Q44 cos2 α + Q55 sin2 α, Q45 = (Q55 −Q44) sin α cos α,
Q66 = (Q11 + Q22 − 2Q12 − 2Q66) sin2 α cos2 α + Q66(sin4 α + cos4 α),
Q55 = Q44 sin2 α + Q55 cos2 α, Qi,j = Qj,i , i, j = 1, . . . , 6,

(A3)

Qψ
11= 0.5π[(Q12ψ1 + Q12ψ2 + 4Q66ψ12) sin2 α cos2 α + Q22ψ2 sin4 α + Q11ψ1 cos4 α],

Qψ
12= 0.5π[

(
Q11ψ1 + Q22ψ2 − 4Q66ψ12) sin2 α cos2 α + Q12ψ1 sin4 α + Q12ψ2 cos4 α],

Qψ
13= 0.5π(Q13ψ3 cos2 α + Q23ψ3 sin2 α), Qψ

23= 0.5π(Q13ψ3 sin2 α + Q23ψ3 cos2 α),
Qψ

16= 0.5π[(Q11ψ1 −Q12ψ2 − 2Q66ψ12) sin α cos3 α + (Q12ψ1 −Q22ψ2 + 2Q66ψ12) sin3 α cos α],
Qψ

21= 0.5π[
(

Q11ψ1 + Q22ψ2 − 4Q66ψ12) sin2 α cos2 α + Q12ψ2 sin4 α + Q12ψ1 cos4 α],

Qψ
22= 0.5π[(Q12ψ1 + Q12ψ2 + 4Q66ψ12) sin2 α cos2 α + Q11ψ1 sin4 α + Q22ψ2 cos4 α],

Qψ
26= 0.5π[(Q11ψ1 −Q12ψ2 − 2Q66ψ12) sin3 α cos α + (Q12ψ1 −Q22ψ2 + 2Q66ψ12) sin α cos3 α],

Qψ
31= 0.5π(Q13ψ1 cos2 α + Q23ψ2 sin2 α), Qψ

32= 0.5π(Q13ψ1 sin2 α + Q23ψ2 cos2 α),
Qψ

33= 0.5πQ33ψ3, Qψ
36= 0.5π(Q13ψ1 −Q23ψ2) sin α cos α,

Qψ
44= 0.5π(Q44ψ23 cos2 α + Q55ψ13 sin2 α), Qψ

45= 0.5π(Q55ψ13 −Q44ψ23) sin α cos α,
Qψ

54 = Qψ
45, Qψ

55= 0.5π(Q55ψ13 cos2 α + Q44ψ23 sin2 α),
Qψ

61= 0.5π[(Q11ψ1 −Q12ψ1 − 2Q66ψ12) sin α cos3 α + (Q12ψ2 −Q22ψ2 + 2Q66ψ12) sin3 α cos α],
Qψ

62= 0.5π[(Q11ψ1 −Q12ψ1 − 2Q66ψ12) sin3 α cos α + (Q12ψ2 −Q22ψ2 + 2Q66ψ12) sin α cos3 α],
Qψ

63= 0.5π(Q13 −Q23)ψ3 sin α cos α,
Qψ

66= 0.5π[(Q11ψ1 −Q12ψ1 −Q12ψ2 + Q22ψ2) sin2 α cos2 α + Q66ψ12(sin2 α− cos2 α)
2
].

(A4)

Substituting the above transformation into the stress–strain equation, the following
can be obtained:

{σ} =


σxx =

–
K11εxx +

–
K

ψ

11
.
εxx

τxz = ks
–
K12γxz + ks

–
K

ψ

12
.
γxz

τxy = ks
–
K13γxy + ks

–
K

ψ

13
.
γxy

(A5)

where ks is the shear correction factor. For the Euler–Bernoulli beam theory without

considering the transverse shear deformation, ks = 0 was taken.
–
Kij and

–
K

ψ

ij are related
to the ply angle of the fiber and the elastic constant of the main direction of the material,
which can be expressed as [16]

–
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(A6)

where
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Ki6
′ = Ki6 + Ki4 tan β, Kψ
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4i tan β, i = 1...6;
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