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Abstract: The mechanical properties of concrete are the important parameters in a design code. The
amount of laboratory trial batches and experiments required to produce useful design data can be
decreased by using robust prediction models for the mechanical properties of concrete, which can
save time and money. Portland cement is frequently substituted with metakaolin (MK) because of its
technical and environmental advantages. In this study, three mechanical properties of concrete with
MK, i.e., compressive strength ( f ′c), splitting tensile strength ( fst), and flexural strength (FS) were
modelled by using four machine learning (ML) techniques: gene expression programming (GEP),
artificial neural network (ANN), M5P model tree algorithm, and random forest (RF). For this purpose,
a comprehensive database containing detail of concrete mixture proportions and values of f ′c, fst,
and FS at different ages was gathered from peer-reviewed published documents. Various statistical
metrics were used to compare the predictive and generalization capability of the ML techniques.
The comparative study of ML techniques revealed that RF has better predictive and generalization
capability as compared with GEP, ANN, and M5P model tree algorithm. Moreover, the sensitivity
and parametric analysis (PA) was carried out. The PA showed that the most suitable proportions of
MK as partial cement replacement were 10% for FS and 15% for both f ′c and fst.

Keywords: gene expression programming; artificial neural network; M5P; random forest; metakaolin;
compressive strength

1. Introduction

Concrete is the second most-consumed substance in the world after water. Portland
cement clinker is the base of the majority of cementitious binders that are being used in
concrete. The production of cement consumes a huge amount of energy and releases about
7% of CO2 into the atmosphere [1]. During cement production, the calcination process,
in which CaO is formed by extracting CO2 from CaCO3, is responsible for about 50%
of CO2 production while the remaining 50% CO2 is produced by energy use [2]. The
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demand for cement is increasing and it was predicted that the annual usage of Portland
cement would hit 6000 million tons by the year 2060 [3]. One of the ways to reduce cement
consumption is to use industrial by-products or greener materials that use less energy
during manufacturing as compared with cement, for example, metakaolin (MK). It was
found that up to 170 kg of CO2 emission can be reduced per ton of cement production
by using MK as a partial replacement for cement [4]. It is highly reactive pozzolan and
reacts with calcium hydroxide to produce C-S-H and alumina-containing phases [5]. The
use of MK in concrete as a partial replacement of cement helps to reduce the pore size
distribution and improve the different mechanical properties [6]. It was found that MK
helps to decrease the total porosity of paste by up to 20% [7] and refine pore structure [8].

The f ′c of concrete increased with the increase in MK content [9,10]. Kadri et al. [11]
concluded that MK contributes to the mortar strength due to three factors: pozzolanic
reaction of MK with calcium hydroxide, promotion of ordinary Portland cement hydration,
and filler effect. The increase in f ′c with MK inclusion is also attributed to the fact that
MK increases C-S-H gel and makes the structure dense [6]. Duan et al. [12] observed that
the fine particles of MK fill gaps between hydration products, matrix and aggregates, and
cement particles. This results in the denser interfacial transition zone (ITZ) between matrix
and aggregates and pore structure and an increase in f ′c. Moreover, the inclusion of MK
reduces the needle-like ettringite crystals and increases the content of fibrous C-S-H and
calcium aluminosilicate hydrates, which help to make the matrix denser. Ahmed et al. [13]
found that the addition of 10–15% MK in concrete enhances the f ′c of concrete at both 28
and 60 days as compared to the control mix. Brooks et al. [9] observed that by increasing
the content of MK from 0 to 10%, f ′c increased. Further increasing MK content to 15%
lowers the f ′c but it was still higher than that of the control mix. As an incorporation of MK
in cement-based materials increases f ′c, it increases fst as well, because Oluokun et al. [14]
observed that an increase in f ′c generally reflected an increase in fst.

Madanoust et al. [15] investigated the effects of MK (0–20%) as cement replacement
and with a water-to-binder (w/b) ratio of 0.32, 0.38, and 0.45 on the fst of concrete. For w/b
ratio of 0.32 and 0.45, fst first increased by increasing MK and showed maximum value
at 10% MK and then started to decrease but remained higher than the control mix. For
concrete with a w/b ratio of 0.38, fst increased until 15% MK and then started to decrease.
Guneyisi et al. [16] replaced cement with 0–20% MK and investigated fst of concrete at 1,
3, 7, 28, 90, and 120 days and with w/b ratios of 0.35 and 0.55. They observed that fst of
concrete increased by increasing MK content at all ages and for both w/b ratios. Dinakar
et al. [17] tested fst of concrete at specimen age of 28 days and w/b ratio of 0.3 and with MK
(0–15%) as cement replacement. They observed that the optimum level of MK in terms of fst
was 10%. Lenka et al. [4] measured fst of concrete with 0–20% MK as cement replacement
at 7, 28, and 90 days and with a w/b ratio of 0.43. Similar to Dinakar et al. [17], they found
10% MK as the optimum level. As discussed earlier, an increase in f ′c generally reflects an
increase in fst.

Lenka et al. [4] investigated the effect of 0 to 20% MK as cement replacement and
observed FS at 7, 28, and 90 days. They pointed out that FS of concrete with MK at all
replacement levels and at all ages was higher as compared with the control mix, and
optimal content was found to be 10%. John et al. [18] observed an increase in FS of concrete
by increasing MK replacement content and observed the maximum value of FS at 15% MK
replacement. Vu et al. [19] investigated the incorporation of 10% MK in OPC and concluded
that this percentage of cement replacement with MK performed satisfactorily in a normal
and adverse environment. Tawfiq et al. [20] found satisfactory FS at 10% MK content.

Generally, MK incorporation improves the properties of mortar and concrete; therefore,
the prediction of mechanical properties of concrete including f ′c, fst, and FS could help to
save time and cost, help in scheduling activities such as formwork removal, and promote the
use of MK in the concrete industry. Researchers have been modelling different properties of
cement-based materials for decades by using different machine learning (ML) techniques,
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including gene expression programming (GEP) [21], artificial neural network (ANN) [22],
M5P model tree algorithm [23], and random forest (RF) [24].

GEP has been successfully used for predicting different concrete properties. For
example, Javed et al. [21] developed a model for predicting f ′c of sugarcane bagasse ash
concrete by using GEP and compared with linear regression (LR) and nonlinear regression
(NLR) analysis. They concluded that the GEP technique performed better as compared
with LR and NLR with a coefficient of determination (R2) of 0.83 and 0.85 for the training
and testing sets, respectively. Aslam et al. [25] collected 357 data points from the literature
and predicted the f ′c of high-performance concrete by using GEP. They compared the GEP
model with LR, NLR, and other published models and concluded that GEP showed high
performance as compared with other models with R2 values of 0.9 and 0.91 for training and
testing sets, respectively. Azimi et al. [22] used the GEP and artificial neural network (ANN)
to predict the f ′c and FS of cement mortar with micro- and nano-silica. They pointed out
that ANN performed better as compared with GEP.

Naderpour et al. [26] predicted the f ′c of recycled aggregate concrete (RAC) by using
ANN. The input parameters used were w/c, natural fine and coarse aggregates, water
absorption, recycled coarse aggregate, and water/total material. ANN model gave R2

values of 0.9 for training, 0.89 for validation, and 0.83 for the testing set. Getahun et al. [27]
estimated the f ′c and fst of concrete incorporating rice husk ash as cement replacement
and reclaimed asphalt pavement as natural aggregates replacement by using ANN. They
observed a correlation coefficient (R) of 0.98. 0.99, and 0.98 for training, validation, and
testing sets, respectively. Marijana et al. [28] used waste rubber as a natural aggregate
replacement and predicted f ′c of concrete by ANN. They achieved an accuracy of 96%
by changing ANN architecture. Mohammed et al. [29] modelled the f ′c of cement-based
mortar with high volume fly ash by using ANN and M5P. For the training set, M5P gave
89% accuracy while ANN showed 93% accuracy. For the testing set, ANN and M5P showed
values of R = 0.99 and 0.95, respectively.

Ayaz et al. [30] predicted the f ′c of concrete with a high volume of mineral admixtures
such as fly ash and slag at different ages by using M5P. The main advantages of M5P are
that it gives a simple empirical equation and it is convenient to develop and implement
it [23]. Farooq et al. [31] completed a comparative study of the prediction of f ′c of high
strength concrete (HSC) by using GEP and RF. RF (R2 = 0.96) performed better in prediction
as compared with GEP (R2 = 0.90).

Previous studies have focused on the experimental route to find the optimum content
of MK required to ensure desirable mechanical properties of concrete [15–17]. In the
analysis of concrete structure, the key mechanical properties of concrete include f ′c, fst,
and FS. Therefore, it is desirable to develop a model which can accurately predict the f ′c,
fst, and FS of concrete with the following input parameters: cement (C), MK, w/b ratio,
fine aggregate (FA), coarse aggregate (CA), superplasticizer (SP), and age of specimen
(days). The following paragraph briefly summarizes the influence of input parameters on
the mechanical properties of concrete.

Cement, which is the major binder of concrete, contains C3S and C2S that contribute
to the formation of C-S-H. C-S-H makes up more than half of the cement paste and is the
main factor in the development of concrete strength. For various kinds of concrete, the w/b
ratio has varied effects. For example, in low- and medium-strength concrete, the porosity
of ITZ and matrix increases by increasing the w/b ratio, thus deteriorating the mechanical
properties. However, in high-strength concrete, a small reduction in the w/b ratio results in
a high increase in the f ′c. ITZ that is less porous and the hydration product’s large surface
area at a low w/b ratio are responsible for this. As compared to other input parameters of
concrete, aggregates contribute less to strength. The strength of the aggregate is scarcely
used in normal strength concrete. The failure or capacity of concrete is typically caused
by ITZ and matrix since the aggregate particles are several times stronger than these two
components. The SP ensures the workability/rheology of concrete at a low w/b ratio, so by
decreasing the w/b ratio, the strength increases. The age of a sample is another significant
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input component. Age improves hydration products. By increasing time, the hydration of
anhydrous cement particles occurs, which increases the amount of C-S-H gel and increases
strength [32].

This paper has two aims: (1) to model and compare the f ′c, fst, and FS of concrete
incorporating MK by an evolutionary algorithm (GEP), ANN, and decision trees (M5P and
RF). (2) To explore the influence of different input parameters on the mechanical properties
of concrete with MK by using parametric analysis. Moreover, sensitivity analysis was also
carried out in order to find out the relative contribution of input parameters on mechanical
properties. It is important to mention that the compressive strength of concrete with MK
was not modelled by using M5P because of the large database (around 982 data points)
which generates a significant number of linear models (greater than 40). More suitable ML
techniques for the prediction of mechanical properties of concrete with MK may be found.

2. Data Collection

The database was collected from the literature and outliers were deleted. The remain-
ing data comprised 982 data points for f ′c, 204 data points for fst, and 63 data points for FS.
Our aim was to collect a large database and, therefore, all test results of mechanical proper-
ties of concrete with MK conducted based on international standards were collected for use
in this study. This database was collected from 45 published studies [4,15–18,33–73] and
is shown in the supplementary document. In the supplementary document, Tables S1–S3
contain the information of input parameters and output for f ′c, fst, and FS database, re-
spectively. The collected database includes C, MK, w/b ratio, FA, CA, SP, and days as input
parameters and f ′c, fst, and FS as output parameters. The descriptive statistics of input and
output variables used in the training set are shown in Table 1. These values help to give
insights into the range and distribution-related properties of independent and dependent
variables used in the training set.

All the data points used for modelling of f ′c of concrete with MK were for cube
150 mm. The f ′c of cylinder ∅100 mm× 200 mm was converted to f ′c of cube 150 mm by
multiplying with factor 1.1 for normal-strength concrete (NSC) and 0.98 for HSC (according
to ACI 363R, HSC is concrete that has specific f ′c for the design of 55 MPa or greater). In
addition, f ′c of cube 100 mm was converted to cube 150 mm by multiplying with 0.96 for
NSC and 0.9 for HSC [74]. All the results of fst were for cylinder ∅150 mm× 300 mm.
The fst results obtained from cylinders ∅150 mm × 150 mm and ∅100 mm × 200 mm
were converted into the equivalent of fst obtained from cylinder ∅150 mm× 300 mm by
multiplying with factors 0.93 and 0.91, respectively [75,76]. The database for FS was for the
prism size 100× 100× 500 mm.

Table 1. Descriptive statistics of input and output variables used in the training set.

Statistical
Indicator

C (kg/m3)
MK

(kg/m3) w/b Ratio FA (kg/m3)
CA

(kg/m3) SP (kg/m3) Days Strength
(MPa)

f ′c Database

Minimum 176.25 0 0.21 272.5 0 0 1 4

Maximum 680 256 0.8 1502 1510 24 180 107

Mean 384.77 44.35 0.447 765 991 3.6 36 48.86

Standard error 2.8 1.15 0.004 5.95 8.88 0.125 1.4 0.73

Standard
deviation 87 36.26 0.124 186.3 278.33 3.91 44.54 22.85

Kurtosis −0.13 3.59 0.45 3.29 2.3 7.44 3.83 −0.435
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Table 1. Cont.

Statistical
Indicator

C (kg/m3)
MK

(kg/m3) w/b Ratio FA (kg/m3)
CA

(kg/m3) SP (kg/m3) Days Strength
(MPa)

f ′c Database

Skewness 0.03 1.1 0.73 1.14 −1.3 2.16 2.07 0.48

fst Database

Minimum 266 0 0.21 272.5 175.1 0 1 1.1

Maximum 570 256 0.75 989 1265 12.4 120 5.88

Mean 400 44.1 0.44 756 866 4.23 34.62 3.44

Standard error 4.59 2.72 0.008 12.63 18.64 0.23 2.21 0.071

Standard
deviation 65.69 39 0.12 180.83 267 3.34 31.67 1.01

Kurtosis −0.36 4.2 −0.005 −0.39 1.6 −0.68 0.37 −0.25

Skewness 0.14 1.31 0.41 −0.58 −1.11 0.41 1.23 0.42

FS Database

Minimum 304 0 0.28 624.8 822 0 7 4.5

Maximum 570 100 0.48 843 1265 8.55 90 10.75

Mean 399.5 44.22 0.415 716 1051 1.97 39.98 7.38

Standard error 7.21 4.04 0.006 11.44 20.7 0.24 3.89 0.18

Standard
deviation 57.21 32.05 0.051 90.83 164.5 1.94 30.89 1.42

Kurtosis 0.59 −1.31 1.024 −1.61 −1.3 0.92 −0.95 0.055

Skewness 0.31 0.03 −1.085 0.5 −0.22 1.01 0.74 0.461

3. Methodology
3.1. Gene Expression Programming

GEP is a branch of genetic programming (GP) and it was originated by Ferreira [77].
The GP is a method for solving problems that are not domain specific. It uses Darwinian
reproduction and the survival of the fittest principles to solve problems. In order to obtain
a solution whose length can change throughout a run, GP employs a parse tree structure.
Function set, terminal set, fitness function, control parameters, and terminal condition
are the five distinct elements of GEP. The first three components control the algorithm’s
search space, while the latter two components control the search’s speed and quality [78].
A character string of fixed length is used to get a solution in the GEP algorithm. The parse
trees of different sizes and shapes are then used to present the solution and these trees
are called expression trees (ETs). The complex and nonlinear programs can be generated
with the help of the multi-genic nature of GEP. Arithmetic operations are represented as
a function set in each gene of the GEP (for example, +, −, ×, /, etc.), and constants and
fixed-length variables are represented as a terminal set (for example, 1, 2, a, b). In general,
the number of chromosomes controls how long the program will run. An error may be
reduced but running time is lengthened by increasing the number of chromosomes.

Figure 1 represents the ET with one gene, three head sizes, and a function set of +, −,
and ∗. In order to obtain the mathematical formula, ET has to be read from left to right and
top to bottom. The mathematical formula of ET in Figure 1 is ((C ∗MK) + (0.5 − SP)).
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Figure 1. ET with one gene and three head size.

Figure 2 shows the flowchart of the GEP algorithm. Random generation of a chromo-
some with a fixed length for each individual is the starting point of the GEP algorithm. The
individuals are evaluated and chosen based on their fitness for reproduction. This process
continues with a new individual for a few generations and stops when a solution is found.
Conversion in population is performed on the selected program by using genetic operators,
such as mutation, rotation, and crossover [77].
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3.2. Artificial Neural Network

Artificial neural network (ANN) is a widely used artificial intelligence (AI) method.
There are many types of ANN such as radial basis function network, feedforward neural
network (FNN), spiking neural network, etc. Among them, the widely used method is
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FNN [80]. Single-Layer Perceptron (SLP) and Multi-Layer Perceptron (MLP) are two types
of FNN. Because of a single perceptron, SLP cannot execute non-linear problems; therefore,
MLP is often used for non-linear problems [80].

An input layer, hidden layer(s), units (neurons), weights, an activation function, and
an output layer are the typical components of an MLP. The input layer receives information
from the outside environment. Without completing any calculations, the input layer sends
these data to neurons in the hidden layer. The majority of a network’s internal processing
takes place in hidden layers, which are situated in between the input and output layers.
The calculations are displayed to the environment outside by the output layer. The weights
are used to connect adjoining layers and the function of the activation function is to decide
how neurons will generate output value for the next layer [80]. Figure 3 shows a three-layer
MLP with two inputs, one hidden layer with four hidden neurons, and two outputs.
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Three common forms of activation functions are linear transfer (purelin), hyperbolic
tangent (tanh), and sigmoid (logsig). For problems with function fitting, linear transfer
functions work effectively. The ranges of the outputs of the tanh and logsig functions,
respectively, are −1 to 1 and 0 and 1. The fact that tanh can simulate input values that
contain negative, neutral, and positive numbers is one of its advantages over logsig [81].

There are a few advantages of ANN, such as: (1) it can model the relatively complex
process and it does take outliers into account which makes its scope broad; (2) it can
learn from examples and can build a relationship between dependent and independent
variables [82]. More information about the ANN can be found in [81].

3.3. M5P Model Tree Algorithm

M5 algorithm was originally discovered by Quinlan [83] and the M5P algorithm [84]
is its expanded form. In order to handle enumerated attributes and missing values for
attributes, the M5P method was modified from M5. The M5P algorithm converts all
enumerated properties into binary variables prior to tree creation [85].

The illustration of the M5 algorithm is presented in Figure 4. The input data are di-
vided into a number of sub-spaces, each of which contains data with shared characteristics
(Figure 4a). To lessen a variation in the data inside a specific sub-space, linear regression
models are applied. The splitting process is then carried out on a number of nodes depend-
ing on data gathered from the preceding stage, and each node is separated according to a
certain attribute (Figure 4b). This stage enables the creation of a structure that resembles an
inverted tree. When it comes to fresh data, they begin at the top of the tree’s root, travel
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through the nodes, and finally arrive at the leaf. Each node’s mathematical logic compares
the data to the split value and aids in determining the data’s path to the leaf.
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The input space is initially partitioned into a tree-like structure of different sub-spaces.
At the node, the variability is calculated using the standard deviation of the values. Stan-
dard deviation reduction (SDR) is used to reduce the expected error at the node and helps
to build a tree as follows:

SDR = sd(S)−∑
i

Si
|S| × sd(Si) (1)

where sd is the standard deviation, Si are the sets produced by splitting node in accordance
with a given attribute, and S is the set of data that comes to the node [84].

Using a pruning strategy, the over-training issue is managed. However, the trimming
procedure might result in jarring breaks between adjacent linear models. The final phase is
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the smoothing procedure to solve this issue. The final model of the leaf is created during
the smoothing phase by combining all models from the leaf to the root. This filters the
estimated value of the leaf [23].

3.4. Random Forest

RF is a supervised ML method that comprises an ensemble of tree structures. ML
techniques like bagging and random feature selection are used in RF [86]. In bagging, the
bootstrap sample is generated using training data, and each tree is individually formed
based on this sample. The estimate process then makes use of the average of the tree
outputs [87]. A modified variation of bagging is RF. In RF, instead of selecting all features
for a tree, a random subset of features is chosen. Due to its randomness, RF is resistant to
overfitting and outperforms other ML methods like ANN and support vector machines [86].

RF has good generalization capability [86] and it provides a flexible framework with
room for selecting objective functions (task-specific), various classes of splitting functions,
or posterior models. Tree depth and the number of trees are the main hyperparameters
in RF. The depth of a tree directly impacts the generalization ability of each tree, so its
maximal allowable limit should be optimized [88]. An increasing number of trees helps to
decrease prediction error by average out of noisy predictions. The schematic of the RF is
shown in Figure 5. A detailed description of RF methodology can be found in [86].
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4. Model Development and Evaluation Criteria

The collected database was randomly divided into two sets: 70% and 30% for the
training and testing sets, respectively. The f ′c, fst, and FS of concrete incorporating MK were
considered to be a function of the following input parameters while developing models:

f ′c, fst, and FS = f (C, MK, w/c, FA, CA, SP, days) (2)

where f ′c, fst, and FS are in MPa, while C, MK, FA, CA, and SP are in kg/m3.
For GEP modelling, three models were developed for the mechanical properties of

concrete incorporating MK named: GEP I for f ′c, GEP II for fst, and GEP III for FS. The
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parameters used in the GEP algorithm for three GEP models are shown in Table 2. The Sqrt,
Exp, Ln, Log, Inv, X2, X3, X4, X5, 3Rt, 4Rt, 5Rt denote square root, exponential, natural
logarithm, inverse, X to the power of 2, X to the power of 3, X to the power of 4, X to the
power of 5, cube root, quartic root, and quintic root, respectively.

Table 2. Parameters of developed GEP models.

Parameters GEP I GEP II GEP III

Genes 4 5 3

Head size 13 10 8

Chromosomes 50 30 250

Function set

+, −, ∗, /, Sqrt, Exp, Ln, Inv,
X2, X3, X4, X5, 4Rt, 5Rt, Sin,
Cos, Tan, Sec, Cosh, Tanh,
Coth, Sech

+, −, ∗, /, Sqrt, Exp, Ln, Log,
Inv, 3Rt, Cos, Tan, Cot, Sec,
Coth, Tanh, Sech

+, −, ∗, /

Linking function Multiplication Addition Addition

Generation 400,000 70,000 50,000

Fitness function error type RMSE RMSE RMSE

Mutation rate 0.00138 0.00138 0.00138

The input, output, and hidden layer specifications are the initial stage in creating an
ANN model(s). All of the ANN models used in this study have one hidden layer, one input
layer, and one output layer. All of the proposed ANN models have a 7-n-1 architecture.
Trainlm, which changes bias and weight values in line with Levenberg-Marquardt (LM)
optimization, was utilized for the training function [81]. Additionally, for the performance
function and adaptation learning function, respectively, learngdm and mean squared error
were used. The log-sigmoid was chosen as a transfer function in all created ANN models.

Three models were developed for the mechanical properties of concrete with MK
named: ANN I for f ′c, ANN II for fst, and ANN III for FS. In this study, the number
of epochs, max_fail, µ, and min_grad values were kept as 1000, 35, 0.001, and 1 × 10−7,
respectively for all developed ANN models.

The M5P algorithm generates linear regression mathematical equations after making
different classes of data. The general form of the M5P algorithm can be written as follow:

f ′c, fst, or FS = a + (b×C) + (c×MK) + (d×w/b) + (e× FA) + (f×CA) + (g× SP) + (h× days) (3)

Two M5P-based models were developed for concrete with MK inclusion named M5P
II for fst and M5P III for FS. Similar to other GEP and ANN techniques used in this study,
three models were developed for estimating the mechanical properties of concrete with
MK by using RF named RF I for f ′c, RF II for fst, and RF III for FS.

For comparison purposes among models developed by GEP, ANN, M5P, and RF,
graphical presentations of absolute error (AE) were drawn for both training and testing
data sets. A horizontal line on an absolute error of 10 MPa was drawn for f ′c results and
the percentages of data below it were mentioned. For fst and FS results, this operation was
performed on an absolute error of 0.75 MPa.

For the four ML techniques, several trials were run in order to obtain a higher value
of the R2 and R, and lower values of relative squared error (RSE), mean absolute error
(MAE), root mean squared error (RMSE) for both training and testing sets. Moreover, a
performance index (ρ) was used to assess the model performance as a function of both R
and relative root mean squared error (RRMSE).

The mathematical expressions for R2, R, RSME, RRSME, MAE, RSE, and ρ are given in
Equations (4)–(10).

R2 = 1−
(

∑n
i=1(ei − pi)

2

∑n
i=1(pi)

2

)
(4)
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R =
∑k

i=1(ei − ei)(pi − pi)√
∑k

i=1(ei − ei)
2 ∑k

i=1(pi − pi)
2

(5)

aRMSE =

√
1
n ∑n

i=1(ei − pi)
2 (6)

RRMSE =
1
| e|

√
1
n ∑n

i=1(ei − pi)
2 (7)

RSE =
∑n

i=1(pi − ei)
2

∑n
i=1( e− ei)

2 (8)

MAE =
∑n

i=1|ei − pi|
n

(9)

ρ =
RRMSE

1 + R
(10)

where e is the average experimental value, n represents the total number of samples, and ei
and pi are the experimental and predicted values, respectively.

Poor performance is indicated for models with R2 < 0.7 [89] while a model with
R > 0.8 indicates a significant positive correlation between estimated and experimental
outcomes [90]. The RSME, MAE, and RSE illustrate how accurate the proposed model is; a
high value demonstrates how far the estimated results differ from the experimental results,
whilst a low value demonstrates an acceptable level of accuracy in the estimated outcomes.

In addition to the aforementioned statistical indicators, the discrepancy ratio (DR) was
also utilized to evaluate the performance of developed models. DR is expressed as:

DR = log
pi
ei

(11)

where all the terms are as described previously.
A precise match between the estimated and real values is indicated by a DR of zero.

Between actual and predicted values, a negative DR denotes underestimation and a positive
DR denotes overestimation. In this study, in models developed for f ′c of concrete with MK,
the accuracy is defined as a percentage of DR values fall in the range of −0.1 to 0.1; this
range was also used by Benhood et al. [23]. However, for fst and FS database, the accuracy
is defined as percentage of DR values that fall in the range of −0.05 to 0.05.

5. Results and Discussion
5.1. Developed Models for Compressive Strength
5.1.1. GEP I Model

To develop all GEP models in this study, GeneXproTools 5.0 software was used.
Different researchers have used different parameters of the GEP algorithm in order to
obtain a model with high accuracy and generalization capability as shown in Table 3. In
this study, several runs were tried in order to obtain: (1) a relatively simple model by trying
to minimize the number of genes and head size as a number of genes increases sub–ET size
and head size increases the complexity within each gene. (2) A model that gives a high
value of R2 and R for training and testing sets and a low value of MAE, RMSE, RSE, and ρ.
After several trials, the parameters of the optimum GEP model (GEP I) for f ′c of concrete
with MK are given in Table 2 and generated ETs are shown in Figure 6. The mathematical
formula was obtained from Figure 6 by following the procedure as mentioned in Section 3.1
and given as follows:

f ′c = A × B × C × D (12)
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where

A = Tanh
(

cosh
(

exp
((

5
√

sec(−0.52CA)
)
− (tan(sech(MK× SP)))3

))
)

B =

Coth

 5

√
1

sin
((

( FA+MK
FA )

2
)
−(sin(4.1+CA))

)


4

w/b

C = Ln

 4

√√√√(((w
b

)
−
(
((sin(FA) + 7.7)× (Days)) +

((
SP
−8.1

)4
)))5

)2


D = Sec 2

√√√√cos(cos
((

w
b + sec((sec (SP + 7.86))×

(
− 1

171

))3
)
)

3
)

Table 3. Different parameters of the GEP algorithm used by researchers to obtain a reliable and
robust model.

No. of
Chromosomes

Head
Size

No. of
Genes

Linking
Function Function Set Output R2

(Training Set)
R2

(Testing Set) Ref.

30 10 4 Addition +, −, ∗, /, X2, 3Rt f ′c of concrete with
bagasse ash 0.83 0.85 [21]

30 10 4 Addition +, −, ∗, / f ′c of high
strength concrete 0.91 0.9 [25]

26 12 3 Multiplication +, −, ∗, /, Sqrt, X3
f ′c of geopolymer
concrete with
blast-furnace slag

0.92 0.94 [91]

20 4 2 Multiplication +, −, ∗, /, Sqrt fst by using f ′c
and w/b 0.87 0.88 [92]

The comparison of actual and estimated results for training and testing data sets by
GEP I for f ′c of concrete with MK and their absolute error is shown in Figure 7. The R2

value of 0.81 for the training set shows that GEP predicted values correlate well nonlinearly
with actual results, while the R2 value of 0.81 for the testing set indicates that the GEP
algorithm can predict the output well by using unseen data as input, indicating its high
generalization capability.

AE was also plotted in order to assess the performance of GEP prediction. It is shown
in Figure 7c that a relatively large portion of training data (76.3%) are below the AE of
10 MPa with an average error or MAE of 7.1 MPa. For testing data, 74.2% of data lie below
10 MPa with an average error of 7.3 MPa. Training data that are below 10 MPa AE are
slightly higher (2.8%) as compared with testing data.

5.1.2. ANN I Model

The ANN I model and other ANN models (ANN II and ANN III) developed in this
study were trained by using MATLAB R2019a neural network toolbox. After several
trials, the best ANN model was achieved with the architecture of 7-12-1 named ANN
I. Figure 8a,b show that the value predicted by the ANN I model matches excellently
with actual experimental results, having a value of R2 equal to 0.94 for both training and
testing sets. This value of R2 for both data sets is 16% higher as compared with the value
obtained from the GEP I model. The high R2 value for the testing set indicates that ANN
has a high generalization capacity and can predict the output based on unseen data once
it is adequately trained on given input parameters and output. Moreover, the slope of
regression for both data sets is close to the ideal fit (1 for the ideal case) indicating a slight
difference between actual and estimated results.
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A very large portion of the training (92%) and testing (93%) data sets is below the AE
of 10 MPa as shown in Figure 8c,d. The percentage of data below AE of 10 MPa obtained
by ANN I is 20.6% and 25% higher for training and testing data sets as compared with GEP
I. This large quantity of data below AE of 10 MPa shows that difference between actual and
predicted results is small.

5.1.3. RF I

The RF I model and other RF models in this study (RF II and RF III) were developed by
using WEKA version 3.9.5 (developed by University of Waikato, Hamilton, New Zealand).
All the settings of parameters were kept as default for all the RF models developed in this
study. Figure 9a,b present the comparison between predicted values obtained from RF I
and experimental results for training and testing sets. An excellent value of R2 (i.e., 0.99),
which is approaching ideal condition 1, for both data sets indicates that RF is an excellent
tool for the prediction of f ′c of concrete with MK and has a high capability to forecast
output based on un-seen data set. The high prediction capability of RF I is also obvious
from the slope of the regression line which is 0.95 and 0.96 for training and testing data
sets, respectively. For both training and testing sets, the R2 values given by RF I are 22.2%
and 5.3% higher than that of GEP I and ANN I, respectively.
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The percentages of data of AE below 10 MPa are almost 100% for both data sets as
shown in Figure 9c,d. This depicts that the difference between actual and predicted results
is not high and is less as compared with GEP I and ANN I. This is also clear from the value
of average error for both data sets which is 1.45 MPa for training and 1.32 MPa for the
testing set.

5.1.4. Comparison of GEP I, ANN I, and RF I

It is clear from Table 4 that the RF I predicted values correlated excellently with actual
results, with values of R equal to 0.997 and 0.996 for training and testing sets, respectively.
With respect to the values of R for both data sets, the order of correlation between predicted
and actual results for developed models was RF I > ANN I > GEP I. In case of statistical
errors (i.e., RMSE, RRMSE, RSE) and ρ value, the order of developed models for f ′c was
RF I < ANN I < GEP I for the training data set. This shows that the RF I model has
high performance (as indicated by the low value of ρ) and predicted results are close to
experimental data followed by ANN I and GEP I. In the case of the testing set, for values
of RRMSE, RSE, and ρ, the order of developed models is similar to that observed in the
training set.

In addition, Figure 10 shows that, for the training set, the accuracy of RF I, ANN I,
and GEP I is 99.43%, 90.23%, and 75.43%, respectively, as measured by the percentage of
DR values that fall in the range of −0.1 to 0.1. In the case of the testing set, the accuracy is
99.66%, 94.29%, and 70.14% for RF I, ANN I, and GEP I, respectively.
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Figure 9. Experimental and predicted values of f ′c by RF I for (a) training set and (b) testing set, and
their corresponding absolute error for (c) training data set and (d) testing data set.

Table 4. Statistical evaluation of GEP I, ANN I, and RF I.

Model
Training Set Testing Set

R RMSE RRMSE RSE ρ R RMSE RRMSE RSE ρ

GEP I 0.9 9.3 0.19 0.19 0.1 0.9 9.43 0.2 0.19 0.12

ANN I 0.97 5.49 0.12 0.063 0.061 0.97 5.18 0.1 0.063 0.051

RF I 0.997 2.03 0.044 0.01 0.02 0.996 1.86 0.04 0.01 0.02

The high performance and prediction capability of ANN I over GEP I is in agreement
with Nazari et al. [93] and Yu et al. [94]. Nazari et al. [93] predicted the water absorption
(%) of HSC containing TiO2 nanoparticles by using two ANN-based models (they named
ANN I and ANN II) and two GEP-based models (GEP I and GEP II). For the training set,
ANN I and ANN II showed the values of R2 equal to 0.99 and 0.97, respectively, and GEP
I and GEP II gave the values of R2 equal to 0.91 and 0.85, respectively. In the case of the
testing set, ANN I and GEP I gave the value of R2 equal to 0.96 and 0.9, respectively, while
these values were 0.93 and 0.85 in the case of ANN II and GEP II, respectively. Yu et al. [94]
predicted the degradation of elastic modulus induced by the alkali-silica reaction by using
soft computing techniques, including ANN and GEP. For the training set, ANN and GEP
showed values of R equal to 0.98 and 0.86, respectively. For the testing set, these values
were 0.93 and 0.91 by using ANN and GEP, respectively.
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Figure 10. DR values of GEP I, ANN I, and RF I for (a) training set and (b) testing set.

The high prediction and generalization capability of RF I as compared with GEP I is
in agreement with the study by Mohsin et al. [95]. They modelled the f ′c of fly ash based
geopolymer concrete by using GEP and RF. In case of RF model, the values of R for training
and testing set were 0.98 and 0.99, respectively, while in case of the GEP model, these values
were 0.86 and 0.96 for the training and testing sets, respectively.

5.2. Developed Models for Splitting Tensile Strength
5.2.1. GEP II

The parameters of the optimal GEP model (GEP II) are shown in Table 2 and the
developed expression tree is given in Figure 11. The empirical expression decoded from
the expression tree is given as follows:

fst = A + B + C + D + E (13)

where
A = Ln (sec

(
−4.5 +

(w
b + 8.8

))
+ (MK + (tan(FA) + C)))

B =
(

Inv
(

ln
(

2
√

CA
))
×
(
coth

(w
b

)))
+ cos(sech(−4.1×MK))

C = Cos (log(Days)) +
(

3

√
inv
(

2
√

CA
)
− log(MK + C)

)
D = Sech

(
3
√

cos(sec(SP))× ((Days + C)− (FA−MK))
)
− 5.7

E = Exp
(

cos
(

cot 3.1×FA
SP−CA

)
− cos

(
tanh

(
SP
−0.83

)))
The comparison of GEP II predicted values and actual results along with AE for both

training and testing sets is shown in Figure 12. A high correlation between estimated and
experimental values was found as indicated by R2 values which were 0.86 and 0.9 for
training and testing sets. A slight difference of 0.04 was also observed between R2 values
of training and testing sets. The slope of the regression line is high, i.e., 0.89 and 0.87 for
training and testing sets, indicating a high correlation.
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Figure 12. Experimental and predicted values of fst by GEP II for (a) training set and (b) testing set,
and their corresponding absolute error for (c) training data set and (d) testing data set.

In addition, AE is plotted and the horizontal line is drawn on AE of 0.75 MPa, and the
percentage of data below this line is shown in order to give more insight into the capability
of the model to predict output close to real values as shown in Figure 12c,d. It is clear
from the figures that the majority of data are below the AE of 0.75 MPa for both data sets
(i.e., 93% and 95% for training and testing sets, respectively).

5.2.2. ANN II

After several trials, the best ANN model (ANN II) was obtained with an architecture
of 7-11-1. The plot of predicted and actual values for the training and testing sets are
shown in Figure 13a,b. Values of R2 are relatively close to 1 for training (R2 = 0.92) and
testing (R2 = 0.96) sets. These higher values of R2 for both data sets indicate that ANN can
recognize the relationship between input and output variables well and produce output
by using unseen data with high accuracy. As compared with GEP II, these values were
6.98% and 6.7% higher for training and testing sets, respectively. Moreover, the slope of
the regression line was slightly higher for the training set and considerably higher for the
testing set as compared with GEP II.

Very large data are below the AE of 0.75 MPa for the training set (97%) and testing set
(100%), as shown in Figure 13c,d. This shows that ANN II was trained well and predicted
the output which was very close to the experimental output.
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Figure 13. Experimental and predicted values of fst by ANN II for (a) training set and (b) testing set,
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5.2.3. M5P II

In this study, all M5P models were developed by using the Waikato Environment for
Knowledge Analysis (WEKA) software version 3.9.5 (Hamilton, New Zealand). The model
trees are generated as shown in Figure 14. The term LM at the tree leaves represents the
linear model identified by the M5P algorithm. The corresponding coefficients for linear
models developed by M5P II based on Equation (3) are shown in Table 5.

Figure 15a,b depict the correlation between M5P II predicted values and experimental
results. The values of R2 were 0.88 and 0.86 for training and testing sets, respectively. For
the training set, this value was slightly higher as compared with GEP II but lower than
that of ANN II. In the case of the testing set, it was lower than both GEP II and ANN II.
In term of the percentage of data below AE of 0.75 MPa, M5P II perform slightly better as
compared with GEP II for both training and testing sets.

5.2.4. RF II

Figure 16 shows the comparison of actual and predicted values by RF II along with
AE for training and testing sets. Excellent correlation was observed for both data sets, with
R2 equal to 0.98 and 0.99 for training and testing sets. This impressive value of R2 for both
data sets indicates that RF is a potential candidate for predicting fst of concrete with MK
with high accuracy and generalization capability. Moreover, almost all the data were below
the AE of 0.75 MPa for both data sets. The average error for both data sets was approaching
zero, indicating that the difference between actual and predicted values was very small.
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lower than that of ANN II. In the case of the testing set, it was lower than both GEP II and 
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Figure 14. Generated model tree structure of M5P II.

Table 5. Coefficients of linear models developed by M5P II based on Equation (3).

Models
Coefficients

a b c d e f g h

LM 1 5.52 0 −0.0002 −1.19 −0.003 0 0.145 0.03

LM 2 7.06 −0.003 0.005 −6.091 −0.001 0.0002 0.015 0.0214

LM 3 5.2 −0.003 0.0037 −5.55 0.0017 0.0002 0.0151 0.0151

LM 4 5.78 −0.005 0.0035 −4.62 −0.0002 0.0015 0.0151 0.022

LM 5 8.08 −0.0041 0.0015 −8.45 0.0006 0.0003 0.063 0.01

LM 6 8.4 −0.004 0.0015 −8.45 0.0003 0.0003 0.074 0.01

LM 7 3.732 0.0016 0.004 −2.3 −0.0006 0 −0.0053 0.011

LM 8 9.6 0.0025 0.0076 −2.955 −0.0077 0 −0.049 0.0574

LM 9 6.9 0.0047 0.0099 −2.0359 −0.0057 0 −0.0404 0.0063

LM 10 15.8 0.0013 0.012 −5.56 −0.012 0 −0.047 0.005

LM 11 15.8 0.0013 0.0119 −5.56 −0.012 0 −0.047 0.005

LM 12 10.57 0.0032 0.011 −4.43 −0.008 0 −0.047 0.005
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Figure 15. Experimental and predicted values of fst by M5P II for (a) training set and (b) testing set,
and their corresponding absolute error for (c) training data set and (d) testing data set.

For the training set, the values of R2 obtained by RF II were 13.95%, 6.5%, and 11.4%
higher as compared with GEP II, ANN II, and M5P II, respectively. In the case of the
testing set, R2 of RF II was 10%, 3.1%, and 15.11% higher than that of GEP II, ANN II, and
M5P II, respectively.

5.2.5. Comparison of GEP II, ANN II, M5P II, and RF II

Table 6 shows statistical measures of different models developed for predicting fst of
concrete with MK. For the training set, the order of value of R for different models was RF
II > ANN II > M5P II > GEP II. In the case of the value of RMSE, RRMSE, RSE, and ρ , this
order was reversed, i.e., RF II < ANN II < M5P II < GEP II. A slight change was observed
in the case of the testing set, in which M5P II and GEP II replaced each other’s position,
respective to their positions in the case of the training set. In addition, Figure 17 shows that
the accuracy of GEP II, ANN II, M5P II, and RF II is 69.45%, 89.58%, 81.94%, and 97.23%,
respectively for the training set, while it is 77.05%, 95.08%, 68.86%, and 100%, respectively
for the testing set. The order of accuracy given by DR for all models in Figure 17 is aligned
with the order of accuracy of all models by using different statistical measures as shown in
Table 6. Overall, RF performed better as compared with the other three machine learning
techniques for predicting fst of concrete with MK and these results are in agreement with
the prediction results of f ′c database.
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Table 6. Statistical evaluation of GEP II, ANN II, M5P II, and RF II.

Model
Training Set Testing Set

R RMSE RRMSE RSE ρ R RMSE RRMSE RSE ρ

GEP II 0.93 0.378 0.111 0.14 0.06 0.95 0.339 0.096 0.11 0.05

ANN II 0.96 0.2816 0.0836 0.08 0.043 0.98 0.198 0.0548 0.04 0.03

M5P II 0.94 0.3547 0.1053 0.12 0.05 0.93 0.4053 0.112 0.17 0.06

RF II 0.99 0.135 0.04 0.02 0.02 0.99 0.122 0.0337 0.015 0.02

5.3. Developed Models for Flexural Strength
5.3.1. GEP III

The optimal parameters found after several trials for predicting FS of concrete with
MK are shown in Table 2 with the name GEP III. The ET developed by GEP III is given in
Figure 18 and decoded mathematical equation from the figure is as follows:

FS = A + B + C (14)
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where
A =

(
0.57

((7.3−MK)×(SP))+(MK−w/b)

)
+ 6.1

B = −0.52
((0.21−MK)×(SP))−(( FA

CA )−0.93)

C = w
b −

(5.5+Days)×(−16.7)
(SP×Days)+C
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The relationship between GEP III predicted values and actual values along with AE
for both training and testing sets is shown in Figure 19. The values of R2 were 0.88 and 0.86
for training and testing sets, respectively. In the case of the training set, 80% of data are
below AE of 0.75 MPa, while it is 89% in the case of the testing set, as shown in Figure 19c,d.

5.3.2. ANN III

Similar to ANN II, the best accuracy for ANN III was obtained with the architecture of
7-11-1. As shown in Figure 20a,b, the value of R2 = 0.95 for both training and testing data
sets shows that ANN III trained well with given inputs and outputs and estimated outputs
by using unseen input parameters with high accuracy. This value of R2 was 7.95% and 10.5%
higher as compared with training and testing sets of GEP III, respectively. Significantly less
error was noted in the case of the testing set as 100% of data are below the AE of 0.75 MPa,
showing the high generalization ability of ANN III, as shown in Figure 20d.

5.3.3. M5P III

By using the default setting for parameters of WEKA software, only one linear model
was obtained (due to the small database) for FS whose empirical expression is given below:

FS = 16.33− (0.0145×C)−
(

10.8× w
b

)
+ (0.33× days) (15)

The prediction capability of M5P III is observed to be relatively poor as compared with
GEP III and ANN III as indicated by Figure 21a,b which shows that R2 values for training
and testing sets are 0.73 and 0.76, respectively. For the training set, this value was 17% and
23.16% lower as compared with GEP III and ANN III, respectively, while for the testing set,
this value was 11.62% and 20% lower as compared with GEP III and ANN III, respectively.



Materials 2022, 15, 5435 25 of 36

In addition, the relatively low performance of M5P III can be observed in Figure 21c, which
shows that 48% of the data are greater than the AE of 0.75 MPa.
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5.3.4. RF III

As compared with other ML techniques for modelling FS of concrete with MK, ex-
cellent performance was observed by RF III. Figure 22a,b show an excellent correlation
between predicted and experimental values, i.e., for both training and testing sets, the
value of R2 = 0.98. This shows that RF III is a highly accurate, reliable, precise, and robust
model. Figure 22c,d further strengthen the high accuracy of RF III, which shows that 100%
of data are below 0.75 MPa for both data sets with low average errors.
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5.3.5. Comparison of GEP III, ANN III, M5P III, and RF III

For both training and testing sets, the order of R between predicted and measured
values by different models is RF III > ANN III > GEP III > M5P III, as shown in Table 7. The
same order was observed by the value of R2 as discussed previously and by the percentage
of DR that fall in the range of −0.05 to 0.05, as shown in Figure 23. In the case of the value
of RMSE, RRMSE, RSE, and ρ, the order of models was RF III < ANN III < GEP III < M5P
III for both data sets.

Table 7. Statistical evaluation of GEP III, ANN III, M5P III, and RF III.

Model
Training Set Testing Set

R RMSE RRMSE RSE ρ R RMSE RRMSE RSE ρ

GEP III 0.94 0.5326 0.07226 0.125 0.04 0.93 0.455 0.0616 0.16 0.03

ANN III 0.98 0.3522 0.048 0.055 0.02 0.97 0.2753 0.0373 0.06 0.02

M5P III 0.85 0.858 0.1146 0.3 0.06 0.87 0.7054 0.099 0.66 0.05

RF III 0.99 0.247 0.0366 0.03 0.018 0.99 0.147 0.0207 0.03 0.01
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6. Sensitivity and Parametric Analysis

In order to find out the relative contribution of input parameters on outputs, sensitivity
analysis (SA) was conducted by using the model proposed by Gandomi et al. [96] and as
given in Equations (16) and (17).

Ni = fmax(xi)− fmin(xi) (16)

Si =
Ni

∑n
j=1 Nj

× 100 (17)

where, fmin(xi) and fmax(xi) are the minimum and maximum predicted outputs based on
ith input variable, in which other input variables are kept constant at their mean values.

In order to calculate the variation in f ′c, fst, and FS by changing MK content and
days, parametric analysis (PA) was carried out. The PA was performed by observing a
change in f ′c, fst, and FS by increasing MK content and age of specimen from its minimum
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to maximum value while keeping all other input parameters at their mean values. The
comparative study showed that RF performed better than the other modelling techniques;
however, in this study, both sensitivity and parametric analysis was carried out by using
GEP due to its convenience [79]. It is important to note that the accuracy of GEP models
for the prediction of all three mechanical properties was high; therefore, it can be used to
explore materials characteristics through sensitivity and parametric analysis.

For both f ′c and fst, the w/b ratio seemed to be the most influential parameter,
followed by days, SP, C, MK, FA, and CA, as shown in Figure 24. However, in the case of
FS, the number of days is the most influential parameter, followed by SP, w/b ratio, C, MK,
FA, and CA.
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The PA in Figure 25 shows the variation in mechanical properties of concrete by
increasing MK content from its minimum to maximum value. The development of concrete
strength with MK incorporation can be attributed to: (i) pozzolanic reaction of MK with
calcium hydroxide, (ii) acceleration of cement hydration, and (iii) the filling effect due to
MK particles [15]. In mortar with MK, the formation of alumina phases such as C2ASH8 is
responsible for higher strength at early ages [97]. The rapid and early pozzolanic reaction
of MK with CH may decrease the initial and final setting times of concrete with MK [55].
Figure 25a depicts that for up to 35 kg/m3 addition of MK (which is about 10% cement
replacement), f ′c increases linearly. After further increasing MK content up to 69 kg/m3

(about 15% cement replacement), the f ′c increases but nonlinearly. MK content from 69 to
105 kg/m3 (about 25% cement placement) increases the f ′c nonlinearly but with slower
rate as compared with the 69 kg/m3. Further increase in MK beyond 105 kg/m3 does
not increase f ′c significantly. Similar to our results, Rahmat et al. [15] investigated f ′c
of different SCC with MK incorporation (0–20%) at different w/b ratios and at different
curing ages and observed that the most remarkable strength developments were found
with 10–15% MK replacement. Hamdy et al. [39] investigated six different proportions
of 0, 10, 15, 20, 30, 40, and 50% cement replacement with MK for high-strength concrete
and observed f ′c at 3 and 7 days. They concluded that maximum f ′c was observed at 15%
MK replacement. After the 30%, the f ′c was observed to be lowered as compared with
plain concrete. The decrease in f ′c by increasing MK content beyond optimum content
may be due to the reason that higher MK content decreases the CaO/SiO2 ratio [72],
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which results in the higher requirement of SP [34] and clinker dilution effect due to partial
replacement of cement with MK [46]. Moreover, at a low w/c ratio, increasing MK%
beyond 15% decreased the f ′c and fst, as, in this case, less calcium hydroxide is available
for reaction with MK [39]. Figure 25b shows that from 10–40 kg/m3 MK content (about
2.5–10% cement replacement), fst increases almost linearly. By further increasing MK
content up to 60 kg/m3 (about 15% cement replacement), fst increases non-linearly, but
with a faster rate as compared with further increase in MK content. Above 100 kg/m3 (or
about 25% cement replacement), no significant improvement in fst is observed. Rahmat
et al. [15] also observed that SCC showed better fst with 10–15% MK as cement replacement.
Kannan et al. [53] incorporated five different proportions of 5, 10, 15, 20, 25, and 30% MK
as particle cement replacement and observed a maximum value of fst at 20% and then
a decrease in fst beyond this percentage. The trend of fst with MK was similar to that
observed for f ′c with MK. Figure 25c depicts that from the incorporation of MK up to
50 kg/m3 (about 10% cement replacement), FS increases significantly. From 50 to 100 kg/m3

MK content (about 10 to 20% cement replacement), the increase in FS was not significant.
Lenka et al. [4] also observed that concrete gave a maximum performance in terms of FS at
10% MK inclusion as cement replacement.
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Figure 26a shows that the rate of strength development at early ages (up to 7 days)
is fast, which can be attributed to the fast pozzolanic reaction of MK [98]. Bai et al. [99]
observed an up to 92% increase in early age strength with the incorporation of 5% MK as
compared with plain concrete. Erhan et al. [16] found that concrete strength with MK at
early ages (1–7 days) was 5–23% greater as compared with plain concrete, depending on
MK replacement level and w/b ratio. From 14–60 days, the f ′c development of concrete
with MK was slow and no significant strength development was observed after 90 days.
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Figure 26b shows that, similar to f ′c, the development of fst at an early age (1 day) is very
high as compared with further increase in time. From 3 to 90 days, fst increased but with a
much slower rate as compared with day 1. Similar to f ′c and fst, the rate of FS development
is higher in the first 7 days as compared with the rest of the days, as shown in Figure 26c.
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7. Conclusions

Compressive strength ( f ′c), splitting tensile strength ( fst), and flexural strength (FS)
of concrete are the parameters of the design in many codes. An accurate and reliable
estimation of these parameters can save cost and time, and help in scheduling activities such
as formwork removal. In this study, f ′c, fst, and FS of concrete with the incorporation of
metakaolin (MK) as partial cement replacement were modelled using four machine learning
(ML) techniques: gene expression programming (GEP), artificial neural network (ANN),
M5P model tree algorithm, and random forest (RF). For this purpose, a comprehensive
database was gathered from peer-reviewed published documents. The database used in
the modelling was comprised of 982 data points for f ′c, 204 data points for fst, and 63 data
samples for FS of concrete with MK. For all three databases, the input parameters were
cement, MK, w/b, fine and coarse aggregates, superplasticizer, and age of a specimen in
days. Many statistical metrics were used to compare the predictive performance of ML
techniques used in this study. In the end, sensitivity and parametric analysis (PA) was
performed. Based on the application of GEP, ANN, M5P, and RF for predicting f ′c, fst, and
FS of concrete with MK, the following conclusions can be drawn:

1. For modelling f ′c of concrete with MK, RF I (R2 = 0.99) showed excellent predictive
capability followed by ANN I (R2 = 0.94) and GEP I (R2 = 0.81) for both training and
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testing sets. These results were also supported by other statistical metrics such as R,
RMSE, RSE, MAE, DR, and ρ.

2. For the training set, in the case of the fst prediction, RF II performed better with
R2 = 0.98 followed by ANN II (R2 = 0.92), M5P II (R2 = 0.88), and GEP II (R2 = 0.86). A
slight change was observed in the order of ML techniques in the case of the testing set,
where GEP II (R2 = 0.90) performed well as compared with M5P II (R2 = 0.86), while
the order of RF II and ANN III was the same as observed for the training set.

3. Similar to the prediction results of f ′c and fst database, RF III remained on top with
respect to its excellent prediction performance as compared with other ML techniques
for the FS database. The values of R2 equal to 0.98 and 0.98 were observed by RF
III and ANN III for both training and testing sets. For the FS database, M5P III’s
performance was relatively low as compared with other ML techniques and showed
R2 = 0.73 and 0.76 for training and testing sets, respectively. GEP III showed better
prediction potential as compared with M5P III with R2 = 0.88 and 0.86 for training
and testing sets, respectively.

4. PA analysis showed that 15% MK incorporation as partial cement replacement was
suitable for both f ′c and fst, while this content was 10% for FS. In addition, significant
strength development was observed at early ages with MK incorporation for all the
mechanical properties.

8. Future Research

1. In this study, four individual machine learning techniques were used for predicting
the mechanical properties of concrete with MK. It would be beneficial to use the
ensemble ML technique and compare it with individual ML techniques.

2. More properties of concrete with MK such as rheology, elastic modulus, and durability
characteristics need to be modelled by using advanced ML techniques.
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16. Güneyisi, E.; Gesoğlu, M.; Mermerdaş, K. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin.

Mater. Struct. 2008, 41, 937–949. [CrossRef]
17. Dinakar, P.; Sahoo, P.K.; Sriram, G. Effect of metakaolin content on the properties of high strength concrete. Int. J. Concr. Struct.

Mater. 2013, 7, 215–223. [CrossRef]
18. John, N. Strength properties of metakaolin admixed concrete. Int. J. Sci. Res. Publ. 2013, 3, 1–7.
19. Vu, D.; Stroeven, P.; Bui, V. Strength and durability aspects of calcined kaolin-blended Portland cement mortar and concrete. Cem.

Concr. Compos. 2001, 23, 471–478. [CrossRef]
20. Tawfik, A.; Metwally, K.A.; Zaki, W.; Faried, A.S. Hybrid effect of nanosilica and metakaolin on mechanical properties of cement

mortar. Int. J. Eng. Res. Technol. 2019, 8, 2278-0181.
21. Javed, M.F.; Amin, M.N.; Shah, M.I.; Khan, K.; Iftikhar, B.; Farooq, F.; Aslam, F.; Alyousef, R.; Alabduljabbar, H. Applications of

gene expression programming and regression techniques for estimating compressive strength of bagasse ash based concrete.
Crystals 2020, 10, 737. [CrossRef]

22. Azimi-Pour, M.; Eskandari-Naddaf, H. ANN and GEP prediction for simultaneous effect of nano and micro silica on the
compressive and flexural strength of cement mortar. Constr. Build. Mater. 2018, 189, 978–992. [CrossRef]

23. Behnood, A.; Behnood, V.; Gharehveran, M.M.; Alyamac, K.E. Prediction of the compressive strength of normal and high-
performance concretes using M5P model tree algorithm. Constr. Build. Mater. 2017, 142, 199–207. [CrossRef]

24. Erdal, H.; Erdal, M.; Simsek, O.; Erdal, H.I. Prediction of concrete compressive strength using non-destructive test results. Comput.
Concr. 2018, 21, 407–417.

25. Aslam, F.; Farooq, F.; Amin, M.N.; Khan, K.; Waheed, A.; Akbar, A.; Javed, M.F.; Alyousef, R.; Alabdulijabbar, H. Applications
of Gene Expression Programming for Estimating Compressive Strength of High-Strength Concrete. Adv. Civ. Eng. 2020,
2020, 8850535. [CrossRef]

26. Naderpour, H.; Rafiean, A.H.; Fakharian, P. Compressive strength prediction of environmentally friendly concrete using artificial
neural networks. J. Build. Eng. 2018, 16, 213–219. [CrossRef]

27. Getahun, M.A.; Shitote, S.M.; Gariy, Z.C.A. Artificial neural network based modelling approach for strength prediction of concrete
incorporating agricultural and construction wastes. Constr. Build. Mater. 2018, 190, 517–525. [CrossRef]
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76. Kadleček, V.; Modrý, S. Size effect of test specimens on tensile splitting strength of concrete: General relation. Mater. Struct. 2002,
35, 28–34. [CrossRef]

77. Ferreira, C. Gene expression programming: A new adaptive algorithm for solving problems. Complex Syst. 2001, 13, 87–129.
78. Sarıdemir, M. Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash. Constr.

Build. Mater. 2010, 24, 1911–1919. [CrossRef]
79. Shah, H.A.; Rehman, S.K.U.; Javed, M.F.; Iftikhar, Y. Prediction of compressive and splitting tensile strength of concrete with fly

ash by using gene expression programming. Struct. Concr. 2021. [CrossRef]
80. Shahmansouri, A.A.; Yazdani, M.; Ghanbari, S.; Bengar, H.A.; Jafari, A.; Ghatte, H.F. Artificial neural network model to predict

the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J. Clean. Prod. 2020,
279, 123697. [CrossRef]

81. Liu, Q.-f.; Iqbal, M.F.; Yang, J.; Lu, X.-y.; Zhang, P.; Rauf, M. Prediction of chloride diffusivity in concrete using artificial neural
network: Modelling and performance evaluation. Constr. Build. Mater. 2020, 268, 121082. [CrossRef]

82. Topcu, I.B.; Sarıdemir, M. Prediction of properties of waste AAC aggregate concrete using artificial neural network. Comput.
Mater. Sci. 2007, 41, 117–125. [CrossRef]

83. Quinlan, J.R. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence,
Singapore, 16–18 November 1992; pp. 343–348.

84. Wang, Y.; Witten, I.H. Induction of model trees for predicting continuous classes. In Working Paper 96/23; University of Waikato:
Hamilton, New Zealand, 1996.

85. Almasi, S.N.; Bagherpour, R.; Mikaeil, R.; Ozcelik, Y.; Kalhori, H. Predicting the building stone cutting rate based on rock
properties and device pullback amperage in quarries using M5P model tree. Geotech. Geol. Eng. 2017, 35, 1311–1326. [CrossRef]

86. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
87. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
88. Bertsimas, D.; Dunn, J. Optimal classification trees. Mach. Learn. 2017, 106, 1039–1082. [CrossRef]
89. Sarıdemir, M. Effect of specimen size and shape on compressive strength of concrete containing fly ash: Application of genetic

programming for design. Mater. Des. (1980–2015) 2014, 56, 297–304. [CrossRef]
90. Gandomi, A.H.; Alavi, A.H.; Mirzahosseini, M.R.; Nejad, F.M. Nonlinear genetic-based models for prediction of flow number of

asphalt mixtures. J. Mater. Civ. Eng. 2011, 23, 248–263. [CrossRef]
91. Shahmansouri, A.A.; Bengar, H.A.; Ghanbari, S. Compressive strength prediction of eco-efficient GGBS-based geopolymer

concrete using GEP method. J. Build. Eng. 2020, 31, 101326. [CrossRef]
92. Özcan, F. Gene expression programming based formulations for splitting tensile strength of concrete. Constr. Build. Mater. 2012,

26, 404–410. [CrossRef]
93. Nazari, A.; Riahi, S. Prediction split tensile strength and water permeability of high strength concrete containing TiO2 nanoparticles

by artificial neural network and genetic programming. Compos. Part B Eng. 2011, 42, 473–488. [CrossRef]

http://doi.org/10.1061/(ASCE)MT.1943-5533.0000944
http://doi.org/10.3311/PPci.11463
http://doi.org/10.1617/s11527-007-9345-7
http://doi.org/10.1080/19648189.2019.1663268
http://doi.org/10.1016/j.jobe.2019.101053
http://doi.org/10.1016/j.nucengdes.2005.08.004
http://doi.org/10.1007/BF02482087
http://doi.org/10.1016/j.conbuildmat.2010.04.011
http://doi.org/10.1002/suco.202100213
http://doi.org/10.1016/j.jclepro.2020.123697
http://doi.org/10.1016/j.conbuildmat.2020.121082
http://doi.org/10.1016/j.commatsci.2007.03.010
http://doi.org/10.1007/s10706-017-0177-0
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1007/BF00058655
http://doi.org/10.1007/s10994-017-5633-9
http://doi.org/10.1016/j.matdes.2013.10.073
http://doi.org/10.1061/(ASCE)MT.1943-5533.0000154
http://doi.org/10.1016/j.jobe.2020.101326
http://doi.org/10.1016/j.conbuildmat.2011.06.039
http://doi.org/10.1016/j.compositesb.2010.12.004


Materials 2022, 15, 5435 36 of 36

94. Yu, Y.; Nguyen, T.N.; Li, J.; Sanchez, L.F.; Nguyen, A. Predicting elastic modulus degradation of alkali silica reaction affected
concrete using soft computing techniques: A comparative study. Constr. Build. Mater. 2021, 274, 122024. [CrossRef]

95. Khan, M.A.; Memon, S.A.; Farooq, F.; Javed, M.F.; Aslam, F.; Alyousef, R. Compressive Strength of Fly-Ash-Based Geopolymer
Concrete by Gene Expression Programming and Random Forest. Adv. Civ. Eng. 2021, 2021, 6618407. [CrossRef]

96. Gandomi, A.H.; Yun, G.J.; Alavi, A.H. An evolutionary approach for modeling of shear strength of RC deep beams. Mater. Struct.
2013, 46, 2109–2119. [CrossRef]

97. Curcio, F.; DeAngelis, B.; Pagliolico, S. Metakaolin as a pozzolanic microfiller for high-performance mortars. Cem. Concr. Res.
1998, 28, 803–809. [CrossRef]

98. Poon, C.-S.; Lam, L.; Kou, S.; Wong, Y.-L.; Wong, R. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes.
Cem. Concr. Res. 2001, 31, 1301–1306. [CrossRef]

99. Bai, J.; Wild, S.; Gailius, A. Accelerating early strength development of concrete using metakaolin as an admixture. Mater. Sci.
2004, 10, 338–344.

http://doi.org/10.1016/j.conbuildmat.2020.122024
http://doi.org/10.1155/2021/6618407
http://doi.org/10.1617/s11527-013-0039-z
http://doi.org/10.1016/S0008-8846(98)00045-3
http://doi.org/10.1016/S0008-8846(01)00581-6

	Introduction 
	Data Collection 
	Methodology 
	Gene Expression Programming 
	Artificial Neural Network 
	M5P Model Tree Algorithm 
	Random Forest 

	Model Development and Evaluation Criteria 
	Results and Discussion 
	Developed Models for Compressive Strength 
	GEP I Model 
	ANN I Model 
	RF I 
	Comparison of GEP I, ANN I, and RF I 

	Developed Models for Splitting Tensile Strength 
	GEP II 
	ANN II 
	M5P II 
	RF II 
	Comparison of GEP II, ANN II, M5P II, and RF II 

	Developed Models for Flexural Strength 
	GEP III 
	ANN III 
	M5P III 
	RF III 
	Comparison of GEP III, ANN III, M5P III, and RF III 


	Sensitivity and Parametric Analysis 
	Conclusions 
	Future Research 
	References

