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Abstract: Crevice corrosion behavior of Alloy 690 in high-temperature aerated chloride solution
was studied using a self-designed crevice device. The SEM, EDS, XRD, and XPS analyses results
indicated that the oxide films outside the crevice consisted of Ni-Cr oxides containing a small amount
of hydroxides, and the oxide films on crevice mouth consisted of a (Ni,Fe)(Fe,Cr)2O4 spinel oxides
outer layer and a Cr(OH)3 inner layer, and the oxide films inside the crevice consisted of a α-CrOOH
outer layer and a Cr(OH)3 inner layer. When crevice corrosion occurred, the hydrolysis of Cr3+

led to the formation of Cr(OH)3 inside the crevice, and caused the pH value of crevice solution to
decrease, and Cl− migrated from outside the crevice into inside the crevice due to electrical neutrality
principle and accumulation. When the water chemistry inside the crevice reached the critical value of
active dissolution of metal, the active dissolution of metal inside the crevice occurred. In addition,
(Ni,Fe)(Fe,Cr)2O4 spinel oxides on the crevice mouth were formed by the deposition of metal ions
migrated from inside the crevice. The mechanism of crevice corrosion and the formation mechanism
of oxide films at different regions were also discussed.

Keywords: Alloy 690; high-temperature corrosion; crevice corrosion; oxidation; chlorination

1. Introduction

Nickel-based Alloy 690 is extensively used as steam generator (SG) tube material in
nuclear power industries due to its high corrosion resistance [1–5]. However, Alloy 690 is
vulnerable to crevice corrosion damage during long-time operation of pressurized water
reactors (PWRs) [6–8]. Alloy 690 located in the crevices between the SG tube and tube
support plate, and the tube sheet or deposits are easily attacked by corrosion [8–14]. The
enrichment of aggressive impurity ions occurs inside the crevice during crevice corrosion.
Thus, although the concentration of impurities in the SG feedwater is extremely low, and it
can concentrate inside the crevice, producing an aggressive local environment and therefore
accelerating corrosion degradation of SG tubes [14,15]. Thus, the crevice corrosion damage
of SG tubes has become a key factor affecting the normal operation of PWRs.

Chloride ion (Cl−) is one of the most aggressive ions that can lead to localized corro-
sion of SG tube materials [10,16,17]. According to the crevice corrosion mechanism, Cl−

can migrate into the crevice and concentrate, while the hydrolysis of metal ions inside
the crevice leads to a decrease in the pH value of the crevice solution [5,16], which can
increase the corrosivity of crevice solution, therefore destroying the passive film of metal
and causing crevice corrosion [18–25]. Many researchers have investigated the effects of
Cl− on the crevice corrosion behaviors of nickel-based alloys and stainless steels (SSs).
Oldfield et al. [18] investigated the crevice corrosion behavior of 316 SS, and they found
that the acidification of crevice solution was caused by the hydrolysis of Cr3+; this was
due to the hydrolysis equilibrium constant of Cr3+ being smaller than other metal ions.
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Macdonald et al. [14] investigated the effects of Cl− on crevice corrosion of Alloy 600 in
200 ◦C water and reported that Cl− can increase the corrosion rate of Alloy 600 inside
the crevice, and the crevice corrosion is not obvious in 200 ◦C water without Cl−. Nev-
ertheless, little work has been carried out to investigate the crevice corrosion behavior of
Alloy 690 in high-temperature chloride solutions. Our previous paper [13] investigated
the crevice corrosion behaviors of Alloy 690 in 290 ◦C deaerated chloride solution and
found that nodular corrosion occurred inside the crevice. The effect of dissolved oxygen
(DO) on corrosion behaviors of nickel-based alloys in high-temperature water has been
extensively studied [4,5]. The increase of DO concentration in high-temperature water can
promote the corrosion of nickel-based alloys. In addition, M. Eškinja et al. [26] investigated
the corrosion behavior of a ferritic steel in CO2 environment using the optimized linear
polarization resistance method, and found that iron carbonate (FeCO3) was detected as the
main component of the corrosion productions with highest protective performance on the
surface of the ferritic steel.

The purpose of the present paper was to clarify the crevice corrosion mechanism of
Alloy 690 in high-temperature aerated chloride solution and to find the effective paths
to resist crevice corrosion in high-temperature pressurized water, thereby ensuring the
safe service of SG tubes in PWRs. In this study, the crevice corrosion behavior of Alloy
690 in high-temperature aerated chloride solution was studied using a self-designed crevice
device. The oxide films formed at different regions of the crevice sample of Alloy 690 were
characterized and the related mechanism of crevice corrosion was also discussed.

2. Experimental Section
2.1. Materials and Crevice Device

Table 1 shows the chemical composition of Alloy 690 used in the present paper. All
crevice samples were gradually abraded to #2000 using emery paper followed by ethanol
degreasing. Figure 1 shows the schematic diagram of crevice device that consisted of
two Alloy 690 samples: a zirconia bolt and a Alloy 690 nut [5,6]. The use of the crevice
apparatus has been described in detail in previous papers [5–7,27,28]. The crevice length
and crevice width were controlled at 4 mm and 125 µm respectively in the present paper,
as shown in Figure 1b.

Table 1. Chemical compositions of Alloy 690 (wt. %).

Material C N S P Mn Ti Al Si Cu Fe Cr Ni

Alloy 690 0.03 0.013 0.001 0.007 0.293 0.202 0.202 0.292 0.01 10.61 30.04 58.3
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2.2. Crevice Corrosion Immersion Test

Crevice corrosion immersion test was carried out in a static autoclave made of Hastel-
loy C276. In fact, the concentration of Cl− in bulk solution ranges from a few ppb to
dozens of ppb in PWR secondary circuit, while it would reach hundreds of ppm inside the
crevice [6,8,10,15]. In order to accelerate the test, the experimental solution was 0.0002 M
(7.1 ppm) sodium chloride (NaCl) solution, which was prepared with deionized water
(0.06 µs/cm conductivity) and was aerated. The crevice corrosion immersion test was
carried out in 290 ◦C NaCl solution for 200 h.

2.3. Methodology

After the immersion test, the sample was cleaned carefully with alcohol and dried
by hair dryer. The surface appearance of the crevice sample was examined using a Leica
S6D stereomicroscope. The micro-morphologies of oxide films were characterized using
a scanning electron microscope (FEI XL30 SEM), which was equipped with an Energy
Dispersive Spectrometer (EDS). The structures of oxide films were analyzed using a D/Max
2400 X-ray diffraction (XRD) analyzer with Co K alpha radiation (λ = 1.78892 Å). The
chemical compositions of oxide films were analyzed by an X-ray photoelectron spectroscopy
(ESCALAB 250 XPS). The XPS sputtering area was 2 × 2 mm, and the spectrum was
acquired on a 0.5 mm diameter spot [5,29–31]. More information about the XPS device and
processing XPS data has been detailed in previous work [5,29–31].

3. Results
3.1. Surface Appearance

Figure 2 shows the surface appearance of the crevice sample exposed to 290 ◦C NaCl
solution. It was found that active dissolution of the metal occurred inside the crevice (the
region indicated by the red arrows), but not outside the crevice. The color and appearance
of the oxide films inside and outside the crevice are different, indicating that the crevice
corrosion did occur during the immersion test. According to the color of the oxide films,
the sample surface was divided into three regions, namely, outside the crevice, crevice
mouth, and inside the crevice.
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Figure 3 shows the surface morphologies and EDS results of the oxide films formed
at different regions of the crevice sample exposed to 290 ◦C NaCl solution. Although the
EDS analysis is a semi-quantitative method, its results can reflect the relative content of
various elements in the oxide films. Some oxide clusters deposited on the needle-like and
flaky oxides were observed in the region outside the crevice (Figure 3a), and the EDS result
(Figure 3b) indicates that these oxide clusters are rich in Ni and Cr. A large amount of
vermicular and spherical oxides were densely distributed at crevice mouth (Figure 3c), and
the EDS result (Figure 3d) indicated that these oxides are rich in Cr and Fe. In addition, it
can be found the oxides formed at the crevice mouth were the most. A large amount of
traces of active dissolution of metal was observed in the region inside the crevice (Figure 3e),
and the EDS result (Figure 3d) indicated that these oxides are rich in Cr.
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Figure 3. Surface morphology and EDS results of the oxide films formed at different regions of
the crevice sample exposed to 290 ◦C NaCl solution: (a,b) outside the crevice, (c,d) crevice mouth,
(e,f) inside the crevice.

3.2. XRD Analysis of Oxide Films

Figure 4 shows the XRD analysis results of the oxide films at different regions of crevice
sample exposed to 290 ◦C NaCl solution. No characteristic peaks of oxides were identified
outside the crevice, which may be because the oxide films were very thin. The characteristic
peaks of spinel oxides were identified at crevice mouth and the EDS result suggests that
the spinel oxides were rich in Fe and Cr, which indicates that the oxide films are mainly
Fe-Cr spinel with a little Ni ((Ni,Fe)(Fe,Cr)2O4). Only the characteristic peaks of α-CrOOH
with the crystal structure of rhombohedral [32] were identified inside the crevice.

3.3. XPS Analysis of Oxide Films

Figure 5 shows the XPS depth profiles of the oxide films formed at different regions of
crevice sample in 290 ◦C NaCl solution. It should be noted that there was no sputtering into
substrate in the three regions. The oxide films formed outside the crevice and on crevice
mouth were rich in Ni and Cr (Figure 5a,b), but the Cr content was higher than Ni. The
oxide films formed inside the crevice were rich in Cr (Figure 5c). However, the oxide films
formed on crevice mouth were mainly Fe-Cr spinel (EDS, XRD), which is inconsistent with
the XPS analysis. This may be because the width of the Fe-Cr spinel layer formed on crevice
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mouth is very small, so the oxide films formed outside and inside the crevice (Figure 5c)
were also sputtered during XPS sputtering.

Materials 2022, 15, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 3. Surface morphology and EDS results of the oxide films formed at different regions of the 
crevice sample exposed to 290 °C NaCl solution: (a,b) outside the crevice, (c,d) crevice mouth, (e,f) 
inside the crevice. 

3.2. XRD Analysis of Oxide Films 
Figure 4 shows the XRD analysis results of the oxide films at different regions of 

crevice sample exposed to 290 °C NaCl solution. No characteristic peaks of oxides were 
identified outside the crevice, which may be because the oxide films were very thin. The 
characteristic peaks of spinel oxides were identified at crevice mouth and the EDS result 
suggests that the spinel oxides were rich in Fe and Cr, which indicates that the oxide films 
are mainly Fe-Cr spinel with a little Ni ((Ni,Fe)(Fe,Cr)2O4). Only the characteristic peaks 
of α-CrOOH with the crystal structure of rhombohedral [32] were identified inside the 
crevice. 

 
Figure 4. XRD analysis results of the oxide films at different regions of crevice sample exposed to
290 ◦C NaCl solution.

Materials 2022, 15, x FOR PEER REVIEW 6 of 13 
 

 

Figure 4. XRD analysis results of the oxide films at different regions of crevice sample exposed to 
290 °C NaCl solution. 

3.3. XPS Analysis of Oxide Films 
Figure 5 shows the XPS depth profiles of the oxide films formed at different regions 

of crevice sample in 290 °C NaCl solution. It should be noted that there was no sputtering 
into substrate in the three regions. The oxide films formed outside the crevice and on crev-
ice mouth were rich in Ni and Cr (Figure 5a,b), but the Cr content was higher than Ni. The 
oxide films formed inside the crevice were rich in Cr (Figure 5c). However, the oxide films 
formed on crevice mouth were mainly Fe-Cr spinel (EDS, XRD), which is inconsistent with 
the XPS analysis. This may be because the width of the Fe-Cr spinel layer formed on crev-
ice mouth is very small, so the oxide films formed outside and inside the crevice (Figure 
5c) were also sputtered during XPS sputtering. 

 
Figure 5. XPS depth profiles of the oxide films formed at different regions of crevice sample exposed 
to 290 °C NaCl solution: (a) outside the crevice, (b) crevice mouth, (c) inside the crevice. 

Figure 6 shows the O 1s, Ni 2p3/2 and Cr 2p3/2 core lever spectra outside the crevice 
of the crevice sample exposed to 290 °C NaCl solution. Because there is a large amount of 
adsorbed oxygen and carbon on the outmost surface, the data were distorted at 0 s sput-
tering [5]. The sputtering time was 60 s, 840 s, and 1500 s. Table 2 shows the binding en-
ergy of targeted oxides or hydroxides [12,33–40]. The peak of O2− dominated throughout 
the sputtering progress, indicating that the oxide films were mainly oxides. The peaks of 
Ni2+OX and Cr3+OX also dominated throughout the sputtering progress, and the peaks of 
Ni2+OH and Cr3+OH were very weak, indicating that the oxide films were mainly Ni-Cr ox-
ides and contained a little Ni(OH)2 and Cr(OH)3. In addition, it could be found that the 
intensity of OH- decreased and the intensity of O2− increased with increasing of sputtering 
time, indicating that the hydroxides mainly exist in the outer layer of the oxide films, while 
the inner layer of the oxide films are mainly oxides. 

  

Figure 5. XPS depth profiles of the oxide films formed at different regions of crevice sample exposed
to 290 ◦C NaCl solution: (a) outside the crevice, (b) crevice mouth, (c) inside the crevice.



Materials 2022, 15, 5434 6 of 12

Figure 6 shows the O 1s, Ni 2p3/2 and Cr 2p3/2 core lever spectra outside the crevice
of the crevice sample exposed to 290 ◦C NaCl solution. Because there is a large amount
of adsorbed oxygen and carbon on the outmost surface, the data were distorted at 0 s
sputtering [5]. The sputtering time was 60 s, 840 s, and 1500 s. Table 2 shows the binding
energy of targeted oxides or hydroxides [12,33–40]. The peak of O2− dominated throughout
the sputtering progress, indicating that the oxide films were mainly oxides. The peaks of
Ni2+

OX and Cr3+
OX also dominated throughout the sputtering progress, and the peaks of

Ni2+
OH and Cr3+

OH were very weak, indicating that the oxide films were mainly Ni-Cr
oxides and contained a little Ni(OH)2 and Cr(OH)3. In addition, it could be found that the
intensity of OH− decreased and the intensity of O2− increased with increasing of sputtering
time, indicating that the hydroxides mainly exist in the outer layer of the oxide films, while
the inner layer of the oxide films are mainly oxides.
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Table 2. Binding energies of XPS peaks.

Element Species Binding Energy (eV)

O O2− (1s) 530.3
OH− (1s) 531.7

Ni Ni0 (2p3/2) 852.7
Ni0 sat (2p3/2) 858.5
Ni2+

OX (2p3/2) 854.4
Ni2+

OH (2p3/2) 856.5
Ni2+

sat (2p3/2) 861.7
Cr Cr0 (2p3/2) 574.3

Cr3+
OX (2p3/2) 576.1

Cr3+
OH (2p3/2) 577.6



Materials 2022, 15, 5434 7 of 12

Figure 7 shows the O 1s, Ni 2p3/2 and Cr 2p3/2 core lever spectra on crevice mouth
of the crevice sample exposed to 290 ◦C NaCl solution. The peak of O2− dominated
throughout the sputtering progress, indicating that the oxide films on crevice mouth were
also mainly Ni-Cr oxides. However, the intensities of OH− and Cr3+

OH peaks on the crevice
mouth were stronger than outside the crevice, indicating the content of Cr(OH)3 formed
on crevice mouth was greater than that outside the crevice. In addition, XRD and EDS
analyses indicated that the oxide films contain Fe-Cr spinel. Thus, the oxide films formed
on crevice mouth consist of Ni-Cr oxides and Fe-Cr spinel and contain some Cr(OH)3.
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sample exposed to 290 ◦C NaCl solution.

Figure 8 shows the O 1s and Cr 2p3/2 core lever spectra inside the crevice of the
crevice sample exposed to 290 ◦C NaCl solution. The intensity ratio of O2− to OH− and the
intensity ratio of Cr3+

OX to Cr3+
OH were approximately 1 at 60 s sputtering, indicating that

the oxide films on the outmost surface inside the crevice are α-CrOOH, which is consistent
with the XRD analysis. The peak of OH− dominated with the sputtering time increasing to
840 s and 1500 s, indicating the oxides beneath α-CrOOH in the oxide films were mainly
Cr(OH)3. Thus, the oxide films formed inside the crevice consist of a α-CrOOH outer layer
and a Cr(OH)3 inner layer.
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4. Discussion

The SEM, EDS, XRD, and XPS analyses results indicate that crevice corrosion did occur
in Alloy 690 during the immersion test and the corrosion mechanisms at different regions
of the crevice sample are different. In our previous paper, the oxide films formed outside of
Alloy 690 crevice sample in 290 ◦C pure water containing 3 ppm DO consisted of an Ni-Fe
spinel outer layer and a porous NiO inner layer [5,7]. This is because Cr-containing oxides
in the oxide films are thermodynamically unstable in oxygenated high-temperature water
and dissolve, resulting in the formation of the porous NiO layer [41–44]. However, the
oxide films outside the crevice were Cr-rich oxides in the present paper. Many researchers
have reported that the mechanism of Cl− promoting metal corrosion is that it can promote
the dissolution of Ni and Fe in the metal [10,13,17]. The dissolution rate of Ni and Fe
induced by Cl− may be higher than that of Cr induced by high DO concentration, resulting
in the oxide films being rich in Cr. The formation mechanism of the oxide films outside
the crevice is that the preferential dissolution of Ni and Fe induced by Cl− results in the
formation of Cr-rich oxides at initial stage of corrosion. With increasing the immersion
time, the Cr-rich oxides layer thickens, and a large amount of dissolved Ni2+ induced by
Cl− reacts with the Cr-rich oxides to form Ni-Cr oxides. In addition, a small amount of Ni2+

and Cr3+ hydrolyze to form hydroxides. Eventually, the oxide films outside the crevice
consist of mainly Ni-Cr oxides and contain a little Cr(OH)3 and Ni(OH)2.

Metal ions are dissolved from substrate inside the crevice during crevice corrosion.
These metal ions cannot quickly diffuse to outside the crevice due to the small crevice
width, resulting in the enrichment of metal ions inside the crevice [19,45,46]. The hydrolysis
of these metal ions can produce a mass of H+, causing the pH value of crevice solution
to decrease. In order to maintain the electrical neutrality of crevice solution, Cl− could
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migrate from outside the crevice into inside the crevice and accumulates, leading to the
concentration of Cl− being higher in crevice solution than bulk solution [21,47–50]. Thus,
the corrosivity of crevice solution increases, promoting the corrosion of metal inside the
crevice [21,47–50]. The crevice solution reaches the critical value of active dissolution of
metal, which occurs inside the crevice [18,19]. In addition, the oxygen is depleted inside
the crevice, resulting in the corrosion potential of metal being lower inside the crevice than
outside the crevice. Thus, the metal inside the crevice acts as an anode while the metal
outside the crevice acts as a cathode [18,19,21].

The hydrolysis constant of Cr3+ is smaller than Fe2+ and Ni2+, leading to the formation
of Cr(OH)3 inside the crevice, which could be verified by the XPS results (Figure 8). With
the development of crevice corrosion, the hydrolysis of Cr3+ produces a large amount of
Cr(OH)3, which leads to the pH of crevice solution reaching the critical value of active
dissolution of metal, and promotes the dissolution of metal inside the crevice as shown in
Figures 2 and 3e. However, XRD and XPS analyses (Figures 4 and 8) indicate that α-CrOOH
is present on the outmost surface inside the crevice. Kuang et al. [4] also reported that
α-CrOOH was present on Alloy 690 in high-temperature water containing low DO. In the
present paper, the α-CrOOH may be converted from Cr(OH)3. Thus, the oxide films inside
the crevice consist of a α-CrOOH outer layer and a Cr(OH)3 inner layer.

The dissolved metal ions from substrate inside the crevice diffused gradually out of
the crevice with the development of crevice corrosion. When these metal ions diffused
to the crevice mouth, they deposited to form a large amount of (Ni,Fe)(Fe,Cr)2O4 spinel
oxides (Figures 3 and 4). This is due to the DO concentration on the crevice mouth being
close to outside the crevice [20,28]. Thus, the oxides formed on the crevice mouth are
the greatest. The structure of spinel oxides is face-centered cubic (FCC), and the spinel
oxides (AB2O4) with space group Fd-3m involve two sites, crystallographically distinct:
the tetrahedral site A and the octahedral site B [51]. In turn, these oxides formed on crevice
mouth could enhance the blocking effect and result in severe crevice corrosion. In addition,
the hydrolysis of Cr3+ migrated from the crevice also produced some Cr(OH)3 on the
crevice mouth. Eventually, the oxide films on the crevice mouth consisted of a spinel oxides
outer layer and a Cr(OH)3 inner layer.

Figure 9 shows the schematic of crevice corrosion of Alloy 690 in 290 ◦C aerated
chloride water. At the initial stage of crevice corrosion, the water chemistry inside and
outside the crevice was consistent. The preferential dissolution of Fe and Ni induced by
Cl− resulted in the formation of Cr-rich oxides inside and outside the crevice. With the
development of crevice corrosion, a large amount of metal ions dissolved from substrate
accumulated inside the crevice, and the hydrolysis of Cr3+ caused the acidification of the
crevice solution. Meanwhile, Cl− migrates from outside the crevice into inside the crevice
and accumulates due to electrical neutrality principle (Figure 9a). In addition, the oxygen is
depleted inside the crevice because the oxygen transport is restricted by crevice geometry,
resulting in the corrosion potential of the metal being lower inside the crevice than outside
the crevice. Thus, the metal inside the crevice acted as an anode while the metal outside the
crevice acted as a cathode (Figure 9a). When the water chemistry reached the critical value
of active dissolution of metal, the active dissolution of metal occurred inside the crevice
and the reduction of oxygen occurred outside the crevice (Figure 9b). In addition, the
hydrolysis of Cr3+ inside the crevice resulted in the formation of Cr(OH)3. The dissolved
metal ions induced by Cl− inside the crevice diffused to the crevice mouth and deposited
to form spinel oxides on the crevice mouth (Figure 9b). With the further development of
crevice corrosion, a large amount of Cr(OH)3 was formed inside the crevice and a large
amount of spinel oxides was formed on the crevice mouth (Figure 9c). In addition, Cr(OH)3
on the outmost surface inside the crevice was converted to α-CrOOH (Figure 9c). A large
amount of deposited spinel oxides on the crevice mouth enhanced the blocking effect and
resulted in severe crevice corrosion.
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Figure 9. Schematic of crevice corrosion of Alloy 690 exposed to 290 ◦C NaCl solution. (a) initial stage
of crevice corrosion (b) propagative stage of crevice corrosion (c) stable stage of crevice corrosion.

5. Conclusions

Crevice corrosion behavior of Alloy 690 in 290 ◦C aerated chloride solution was studied
using a self-designed crevice device. The following conclusions can be drawn.

(1) The oxide film formed outside the crevice consisted of Ni-Cr oxides containing a
small amount of Cr(OH)3 and Ni(OH)2, and the oxide film formed on the crevice mouth
consisted of a (Ni,Fe)(Fe,Cr)2O4 spinel oxides outer layer and a Cr(OH)3 inner layer, and
the oxide film formed inside the crevice consisted of a α-CrOOH outer layer and a Cr(OH)3
inner layer.

(2) The hydrolysis of Cr3+ led to the formation of Cr(OH)3 inside the crevice, and
caused the pH value of crevice solution to decrease, and Cl− migrated from outside the
crevice into inside the crevice and accumulated due to the electrical neutrality principle.
The water chemistry inside the crevice reached the critical value of active dissolution of
metal with the development of crevice corrosion, thereby resulting in the active dissolution
of metal inside the crevice.

(3) The metal ions dissolved from substrate diffused from inside the crevice to crevice
mouth and deposited to form a large amount of (Ni,Fe)(Fe,Cr)2O4 spinel oxides, which
enhances the blocking effect and result in a severe crevice corrosion.
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