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Abstract: This review critically examines the various ways in which the mechanical properties of
wood have been understood. Despite the immense global importance of wood in construction, most
understanding of its elastic and inelastic properties is based on models developed for other materials.
Such models neglect wood’s cellular and fibrous nature. This review thus questions how well models
that were originally developed for homogeneous and effectively continuous materials can describe
wood’s mechanical properties. For example, the elastic moduli of wood have been found by many
authors to depend on the size of the test specimen. Such observations are incompatible with classical
elasticity theory. There is also much uncertainty about how well elastic moduli can be defined for
wood. An analysis of different models for size effects of various inelastic properties of wood shows
that these models only approximate the observed behaviour, and do not predict or explain the scatter
in the results. A more complete understanding of wood’s mechanical properties must take account of
it being in some sense intermediate between a material and a structure.

Keywords: wood; size effect; Weibull; weakest link; strength; timber; lumber

1. Introduction

To the ancient Romans (and probably many modern readers of this article!), the first
part of the title of this article would be absurd. The Latin word materia from which the
English word ‘material’ is derived meant timber [1]. Ashby also included wood as a
material in his property maps [2].

Along with concrete and steel, one of the main uses of wood is in construction [3–7].
However, if you are going to design and build a structure, you require a good knowledge
of the mechanical response of the substances you use [8]. However, testing machines
large enough to measure the properties of the structural components of buildings are
uncommon and expensive. Therefore, mechanical measurements are usually performed
on small specimens. The assumption is then made that it is valid to extrapolate from data
obtained in this way to the response of large objects (such as beams, columns and floors) to
the loads they will be exposed to [9]. This methodology has long been found to be valid
for substances such as metals [9,10]. This is because the granularity of metals is small
enough that it can be ignored on the scale of their intended use. Wood, however, has both
a tubular and a fibrous structure [11–13] (Figure 1). Timber can also contain locked-in
strains, particularly if derived from the branches of trees [14–16]. The question then is
whether the mechanical properties of wood can be measured using techniques that were
developed for more homogeneous materials (such as metals), or whether wood’s mesoscale
heterogeneity [17,18] means that it needs to be thought about in some other way.

The most thorough attempts so far to mathematically analyze the anisotropic elastic
properties of wood taking into account its known structure were published by Price in
1929 [19] and by Kahle and Woodhouse in 1994 [20]. However, the equations both sets of
authors derived are so complicated that as far as we are aware, they have been more often
admired at a distance than actually used. The problem is that in order to use their results
it is necessary to know the mechanical properties of the cell wall material in situ [20–24]
because the indentation hardness of the cellulose/lignin combination that the cell walls of
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wood are made from depends on wall thickness [25]. The only plausible way of making
such measurements is nanoindentation [26–28], a technique that was developed in the
1980s [29] and first applied to wood in 1997 [30–32].
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Figure 1. Electron micrographs of tracheids in the xylem of Radiata Pine (Pinus radiata). (a) Transverse
section. (b) Longitudinal section. From [11].

In order to investigate the issues raised above, we start with a brief summary of the
origins and underlying assumptions of classical elasticity theory. We then discuss the
ways in which this theory has been applied to wood. This is followed by an overview
of some key studies that show that both the elastic and inelastic mechanical properties
of wood have been found to depend on the size of the specimen tested. We then present
some size-effect models that have been developed for homogeneous materials and discuss
their shortcomings for describing wood. We conclude by briefly considering whether
insights obtained from the mechanical properties of cellular materials may provide a
useful framework in which to consider wood. We also suggest topics that need further
investigation.

2. The Classical Understanding of Elasticity

The concept of linear elasticity is usually credited to Robert Hooke, who, in the 1670s,
proposed that for springs there exists a linear relation between the force applied and the
extension produced [33]. About 130 years later, Thomas Young popularized the concept of
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linear elasticity in Lecture 13 of a lecture course he published in 1807 [34]. This resulted in
the elasticity modulus, E, being named after him, which is defined as follows:

E = σ/ε (1)

where σ is the true stress and ε is the true strain.
However, as Truesdell pointed out in 1960 [35,36] and Bell in 1973 [37], significant

progress was made by other men in the understanding of elasticity during the 18th century.
For example, Jacob Bernoulli realized in 1705 that “a stress–strain relation ∆l/l = f (F/A)
characterizes a material rather than a particular specimen” [36] and Leonard Euler defined
the elastic modulus in 1727 [38–40]. Nevertheless, Young’s thirteenth lecture provides
helpful insights into the ways in which elasticity was understood in the early 19th century.

Young assumed that materials are isotropic, meaning that the constant of proportion-
ality between stress and strain is the same in all directions. He also focused his analysis
on substances which have a texture that is “uniform, and not fibrous” [34] (p. 145). By
‘fibrous’, Young meant both what we mean by the term (he gave moist or green wood as an
example of a fibrous substance [34] (p. 147)) and also, following Galileo [41–43], as a model
for analysing the bending and torsional deformation of homogeneous substances such as
metals. Young wrote as follows on pages 140–141 of his thirteenth lecture [34]:

“We might consider a wire as composed of a great number of minute threads, extending
through its length, and closely connected together; if we twisted such a wire, the external
threads would be extended, and in order to preserve the equilibrium, the internal ones
would be contracted . . . ”

During the 1820s to 1840s, Eaton Hodgkinson reported the results of some studies that
he and other men had performed on the strengths of cast iron, steel, stone and timber in
connection with a number of construction projects, particularly bridges [44–46]. A summary
table of some of his findings (which he quoted to an unjustifiable level of accuracy) is
presented as Table 1. Most of these measurements were made on site rather than in testing
workshops, which were usually a long way from where the information was immediately
needed [47]. Note that Hodgkinson did not report the information in terms of stress, but
following Girard [42] (Figure 2) as the load at which a pillar (i.e., rod) of a given material
broke (see, for example, Figure 3).

Table 1. Early 19th century data (quoted to an absurd level of precision) on the failure loads of
wrought iron, steel and timber pillars of various lengths and diameters. From [48].

Length.
Pillars with Both Ends Rounded. Pillars with One End Flat, and

the Other Rounded. Pillars with Both Ends Flat.

Diameter. Breaking
Weight. Diameter. Breaking

Weight. Diameter. Breaking
Weight.

W
ro

ug
ht

ir
on

. inches. inch. lbs. inch. lbs. inch. lbs.
90 3

4 1·017 1808 1·02 3355 1·02 5280
60 1

2 1·015 3938 1·03 8137 1·02 12,990
30 1

4 1·015 15,480 1·015 21,335 1·015 23,371
30 1

4 1·015 15,480 1·015 21,187 disc. 1·015 25,387 disc.
15 1

8 1·005 23,535 1·015 26,227 1·005 27,099

St
ee

l.

29·95 ·87 10,516 ·87 20,135 ·87 26,059

Ti
m

be
r.

60 1
2

Side of square.
1·75 3197 Side of square.

1·75 6109 Side of
square. 1·75 9625

1 inch is about 25 mm, 1 pound (lb.) is about 0.45 kg.
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Figure 2. Examples of late 18th/early 19th century on-site testing machines for determining the
compressive breaking loads of pillars (rods) of cast iron, steel and timber. (a) From [42]; (b) from [48].
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It should be noted that from at least the early 1860s, rocks and metals were known to
contain grains [49,50], although microstructural images demonstrating their granularity do
not seem to have been published until the 1880s (Figure 4).
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Figure 4. (a) Colour plate reproduction of a painting of the granular structure of granite observed in
1883 using polarized light microscopy. No scale bar or magnification was given. From [51]. (b) Optical
micrograph of the microstructure of acid-etched armour steel published by Bayles in 1883 [52]. This
photograph was originally taken by Sorby and presented at a lecture he gave to the Sheffield Literary
and Philosophical Society [53]. No magnification or scale bar was included.

According to Bell [10,54], an important set of careful tests that established linear
elasticity for “small quasistatic deformation” of metals were those performed by Alphonse
Duleau in the 1810s [10,55]. However, around the same time Pierre Dupin showed that the
deflection, δ, of the centrally loaded wooden beams had a quadratic rather than a linear
dependence on load, F, [56,57]:

δ = bF + cF2, (2)

where b and c are constants for a given type of wood. It should be mentioned here that
since a major use of wood in service is as beams, the study of wood in bending or flexure
(which is a mixture of the ‘pure’ states of compression, tension and shear) is important and
will be considered in more detail later.

Both men were motivated by practical problems: Duleau had been commissioned to
design a bridge out of iron and Dupin had been tasked to investigate the deformation of
wooden ships [58,59].

Extensive further experimentation during the 19th century helped to establish the laws
of linear elasticity for many materials [37,60–64], so that by the early 20th century, the theory
of linear elasticity had gained widespread acceptance as well as considerable mathematical
sophistication [65–67]. This was despite it being well known that the true elastic (that is to
say, recoverable) response of a wide variety of substances is nonlinear [10,68].

The basic question then that underlies this review is what needs to be true of a sub-
stance for elasticity theory to be applicable, even if only approximately. In 2013, Christensen
discussed this issue for failure [69]. He wrote as follows:

“Well-constructed failure theories can discriminate safe states of stress in materials
from states of certain failure, based upon calibration by a minimal number of failure-type
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mechanical properties. The specific purpose here is to provide failure criteria for general
types of materials. Two of the conditions that are taken to apply are those of a macroscopic
scale of consideration and the corresponding macroscopic homogeneity of the material.

The concepts of macroscopic scale and macroscopic homogeneity have connotations
familiar to everyone. However, trying to define these concepts in absolute terms is ex-
tremely difficult. Macroscopic homogeneity is taken to be the condition that the material’s
constitution is the same at all locations. Thus, the problem is shifted to the precise meaning
of the term ‘location’, which depends upon the scale of observation. Suffice to say, the scale
of observation is taken such that all the common forms of materials are included, such as
metals, polymers, ceramics, glasses, and some geological materials. Materials which are
excluded are porous materials, whether cellular or not, as well as granular materials.”

Christensen thus implicitly excluded wood from his theory of failure, since wood is
both porous and cellular.

In this review, we will take the term ‘material’ to mean a substance that has mechanical
properties that are independent of the size of the object made from it [9].

3. Problems with the Application of Elasticity Theory to Wood

Historical reports of mechanical tests on wood assume that classical elasticity theory
can be applied [19,70–72]. Thus, student textbooks about wood written from the 1950s
to the 1990s assumed that its mechanical properties can be measured, reported and used
similarly to any other material.

For example, in 1996 in the seventh edition of Desch and Dinwoodie’s student textbook
on timber [73], they introduce the mechanical properties of wood by defining a limit
of proportionality below which the deformation is linearly proportional to the applied
stress, the constant of proportionality being the Young’s modulus (Figure 5a). Beyond
this limit, they state that subsequent deformation is not recovered upon removal of the
stress (Figure 5b). The implicit assumption they were making was that wood mechanically
behaves similar to a ductile metal [74] and can thus be described as elastic–plastic. Many
people who study the mechanical properties of wood are still making the same assumption
up to the present day [75–78]. However, as Figures 6 and 7 show, the compressive stress–
strain response of wood is similar to that of polymer foams, albeit stronger. Thus, after a
certain stress is reached, both wood and polymer foams deform at almost constant stress
until their cellular structure has been destroyed (‘fully dense’), after which the stress climbs
rapidly as deformation proceeds.
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Figure 7. Schematic diagrams of rectangular wooden compression specimens cut at various angles to
the grain of the wood. (a) Parallel to the grain. (b) Perpendicular to the grain radially. (c) Perpendicu-
lar to the grain tangentially. (d) at 45◦ to the grain. The ‘+’ signs indicate the position of strain gauges.
From [84]. R means radial, L means length, T means tangential.
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Figure 9. Strengths of Korean Pine as a function of grain angle in (a) compression and (b) tension.
From [85].

Wood’s response to loading also depends on whether it is loaded in compression or
tension (Figures 10 and 11). Additionally, generally speaking, ‘straight-grained wood’ is
stronger in tension than compression [86]. Figures 10b and 11 also show that even clear
wood usually fails in a brittle manner under tension. The difference between the mechanical
response in compression and tension produced by bending is even more pronounced for
lumber/timber because of the presence of knots (Figures 12 and 13) [87].
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One major problem with testing wood in tension is gripping the specimens, which are
usually of the standard dog-bone design (Figure 14) as developed for metals [88]. For as
Dinwoodie pointed out: “[Tension tests are] performed only infrequently as the amount
of timber loaded in tension under service conditions is quite small. A further reason for
the lack of tensile data is the difficulties experienced in performing the tensile test: first,
due to the very high tensile strength of timber, it is difficult to grip the material without
crushing the grain, especially in low-density timbers; and second, in timber with very high
tensile strength, failure is frequently in shear at the end of the waisted region rather than in
tension within the waisted region. It is very difficult to conduct the standard tensile test in
green timber” [89].
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One striking comment that Desch and Dinwoodie made in their textbook is that the
Young’s modulus is “a material constant characterizing one piece of wood”. If true, this
statement makes the concept of Young’s modulus for wood almost useless, for elasticity
theory is of little use in designing large structures out of a substance if its moduli are only
known for individual specimens. In practice, this problem is hidden from sight because
engineers and architects design structures with large margins of safety in order to cope
with the imprecision with which mechanical properties are known for building materials,
let alone how their properties change during their service lifetime [90–99].

Desch and Dinwoodie go on to say that the modulus “will be similar for other samples
from the same part of the tree”. Such observations naturally lead on to the idea that the
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strength of wooden beams varies along their length, largely due to imperfections (or growth
‘defects’) such as knots (Figures 15–17) which are formed where branches connect with
other branches or the trunk of the tree [86,100,101]. Madsen also reported an effect of beam
length on strength even for knot-free (i.e., clear) wood [86,102–104]. For these reasons, a
distinction is usually made between ‘wood’ (termed defect-free or ‘clear’) and ‘lumber’ or
‘timber’, which contain knots. Madsen showed that the size effect is more pronounced for
timber the more knots it contains [102]. The effect on the tensile strength of a wooden beam
of the number of weak sections it contains was subsequently analysed and quantified by
Kohler and co-workers (Figure 18) [101].
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close by. (b) Failure occurs at peak load as the peak load coincides with a knot, even though that knot
is stronger than that shown in (a).
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Figures 15 and 16 also show schematically that one consequence of the cross-sectional
strength varying along the length of a beam is that failure rarely takes place where the
applied stresses are a maximum but can occur anywhere along the length [102]. This is
because the probability is very low that a critical defect (or ‘weakest link’) will occur where
the stress is at a maximum. One major implication of this is that the length of a beam will
have an effect on the strength that is measured. Madsen also found that wooden beams are
stronger in bending than in compression or tension [102]. This is because when a beam is
bent, only about 10% of its volume is subjected to high stresses, whereas when a beam is
loaded in pure compression or tension, all of it is subjected to the same stress.

4. Problems in Discerning Trends in the Strength of Wood

Madsen and Buchanan pointed out that one major problem with checking theories
of the mechanical properties of wood is that measurements of the strength of timber have
a large scatter [86] (see, for example, Figures 19–21). One major cause of this variation
is that cutting a piece of timber into small pieces for mechanical testing (e.g., Figure 14)
will produce some specimens that are defect-free (clear), whereas others will contain
knots (Figure 22). Other sources of intrinsic variation in wood’s mechanical properties are
moisture content and specific gravity (Figure 23), the species from which the wood was
obtained [105,106] and the circumstances under which the tree grew [107–111]. Extrinsic
factors such as the duration of loading can also have a large effect (Figure 24). It is
notable that compared with the metals or ceramics literature, information about specimen
preparation (such as surface finish) is usually lacking from the wood literature, although
when photographs of specimens are provided (e.g., Figure 14), care does seem to have been
taken in their preparation.
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Figure 24. Variation in ultimate bending strength with duration of stress (time between initial
application of load and failure) for unseasoned clear-wood Sitka Spruce (Picea sitchensis). From [112].

We have already mentioned in the discussion of Figures 15, 16 and 18 that long wooden
beams will likely be weaker than short ones. The data presented in Figure 22 hint that this
‘size effect’ can be produced by any dimension of a piece of timber, not just its length.

5. Size Effect Theories

The variability of measured mechanical properties with specimen size is neglected in
the classical theory of strength which assumes that “the mean strength obtained from a
number of geometrically similar tests [is] the measure of material strength” [113].

Mathematically, size effects are often described by the Weibull distribution [114], which
is one example of a weakest-link theory [115,116]. The big idea of weakest-link models
is that the overall strength of an object (such as a beam) depends only on the strength of
its weakest section, for once the stress in a section reaches the value needed to break that
section, the entire object will end up broken [9]. Williams pointed out back in 1957 that
artisans have known for centuries that (all other things being equal) short ropes are stronger
than long ones even though luminaries such as Galileo and Young convinced themselves
by the application of logic that this cannot be so [117–119].

As the name suggests, Weibull weakest-link theory was first developed by Weibull, his
first papers on this topic being published in 1939 [120,121]. He then reassessed the theory
in the early 1950s [122,123]. His analysis showed how the strength of a system is described
by a cumulative exponential distribution; therefore, the strength depends on the specimen
dimensions in the following manner:

σN ∝ D−(nd/m) (3)

where σN is the nominal strength, D is the size of the specimen (usually its length), nd
is the number of dimensions in which the structure is scaled (usually 2 or 3), and m is
an experimentally determined parameter [9,124,125]. A simple derivation of the above
formula was given by Barrett in 1974 [113].

It should be noted here that size effects exist for all substances, since the larger the
object, the greater is the probability that it will contain a critical flaw. As a result, size effects
are being actively investigated for a wide range of material types [9,96,124–138]. Therefore,
Weibull’s analysis can be applied to a beam made of steel with a set of defects randomly
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scattered along its length. Thus, in 1994, in a paper about the application of Weibull’s
theory to the problem of the strength of materials, Lindquist wrote [139]:

“Predicting yield of structural members under complex loading conditions is a difficult
task for the engineer. Complex loading often results in the structural members being
stressed biaxially or even triaxially, whereas yield strength data are usually only available
for tests conducted in uniaxial (tensile or compressive) or torsional stress states. The
test specimens are also typically much smaller than the actual structural members. The
problem, therefore, is to predict structural member yield using only these uniaxial and/or
torsional yield test results. The problem of relating the test results in simple stress states
to full-scale members under much more complicated stress conditions is often solved
using what is known as the maximum distortion energy theory.”

In this theory, the uniaxial distortion energy u is given by:

u = σ2/6G (4)

and the torsional distortion energy u is given by:

u = τ2/2G, (5)

where σ is the uniaxial stress, τ is the torsional stress, and G is the shear modulus.
Lindquist then discussed the classic ideas of Huber, Hencky and von Mises, who

analyzed elastic energy as being the sum of two parts: dilatation and distortion. Their basic
idea is that when the distortion energy reaches a critical value, the material yields. This
concept validates the use of data obtained in uniaxial and torsion stress tests when the state
of stress is complicated.

Lindquist then introduced Bayesian probability as follows:

“One must now consider how the test results on small samples of material relate to
the full-scale structural members. In many cases the yielded volume in a failed full-
scale member will be orders of magnitude larger than the yielded volume in the average
test specimen. It therefore seems reasonable that each test specimen’s distortion energy
capacity can be considered a point measurement of the distortion energy capacity for
large members. An engineer would therefore be interested in using the distribution of the
mean distortion energy capacity of the material (θ) rather than the distribution of the
test sample distortion energy capacities as a design guideline.”

Additionally, there are two other aspects that need to be properly defined for each case
if prediction is to be achieved: the characteristic energy and the characteristic length-scale
(which defines the volume). The fact that Lindquist chose the von Mises distortional energy
shows that he was being guided by metals thinking.

Later, Porter and co-workers essentially followed Griffith [140,141] and used the same
probability argument but without using Bayesian analysis [142]. This means that the energy
can be characteristic of any of the dissipation mechanisms open to a material and the
length-scale is thereby chosen from the dissipation mechanism.

The important thing about their argument is that a material can have many modes of
energy dissipation which all act at the same time. Dissipation is triggered by the activation
of the most probable. This may then add or remove dissipation mechanisms. Therefore,
for example, a brittle material starts with a single mechanism (crack initiation) but can
then develop a second mechanism (crack growth). Porter et al. considered that all of these
dissipation mechanisms were controlled by the point of inflection of the relevant volumetric
potential function.

About the same time, Christensen proposed a single criterion for all failure-like
mechanisms that could have made use of this idea [143]. Christensen’s idea relies on
a definition of failure which is atomistically local and is defined by the conversion of
stored elastic energy to some other form usually associated with irreversible deformation.
Note that Christensen explicitly said that his theory/methodology of failure did not cover
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“cellular materials (foams), granular materials, and other inhomogeneous materials forms.
Their failure criteria require separate development” [69,144].

A number of reasons for the existence of size effects in mechanical testing have been
identified: (i) friction in both quasistatic [145] and dynamic compression testing [146]
(testing in tension or bending can move around this problem); (ii) inertia in dynamic
testing, whether in tension or compression [146]; (iii) the distribution of flaws [120]; and
(iv) an internal cellular or fibrous structure [4].

6. Evidence of Size Effects in Wood

Weibull considered many materials, but wood was not among them. It was not until
the 1960s that Weibull’s weakest link analysis was first applied to wood by Bohannan [147,148]
who was also the first to report a size effect in the mechanical testing of wood [100]. Before
then the strength properties of timber/lumber had been derived from small-scale tests on
clear wood, which were then corrected for variables such as moisture content, load duration,
etc. However, this way of doing things did not take into account the fact that clear wood
(by definition) contains no visible defects whereas timber/lumber contains growth defects
such as knots resulting in differences in failure mode between wood and timber. Therefore,
in the 1980s, full-scale testing of representative specimens was recommended in which the
load was determined at which 10–15% of the samples would break. It was discovered that
deep-bending and wide-tension members are weaker than smaller counterparts, confirming
that there is indeed a size effect for wood. As there is visible variation in the mechanical
properties along the length of a wooden beam, it made sense to turn to Weibull’s analysis
(a well-established weakest link theory) to describe it [100,128].

Barrett assumed (for simplicity) that for wood “ . . . all variability in load-carrying is
due to natural material variability” and “A complete evaluation of risk of failure would
necessarily require a thorough knowledge of statistical variation of load quantities” [113].
Barrett also reported that as far back as 1956, Markwardt and Youngquist had observed
differences in the strength of differently sized specimens of wood loaded in tension but
offered no explanation [149]: “Their results presented show that strengths obtained are
specimen-dependent, which makes evaluation of material properties extremely difficult.”
For example, they found that halving the width of a specimen prepared according to ASTM
standards increased the strength of Douglas Fir from 254 to 312 psi (1.75 to 2.15 Mpa)
(Figure 25).
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Figure 25. Relationship between strength and volume for uniformly loaded Douglas Fir blocks.
From [113]. (References in the figure: ‘Thut (1970)’ [150], ‘Fox (1974)’ [151], ‘Madsen (1972)’ [152],
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Over the next 20 years or so, Barrett and co-workers studied bending, tension and
compression properties of Canadian softwoods parallel to their grain in order to quantify
the size effect for each of these three modes of loading [154]. They found there was a slight
tendency for the size factor to decrease with increasing modulus of rupture (Figure 26).
They also reported that for visually graded lumber, size effects were equal (at the 5%
significance level) across grades and tree species. Length effect factors for tension and
bending were similar. Width effect factors for bending tests were slightly higher than for
tension factors.
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From [154].

As mentioned earlier, the central objection to the classification of wood as a material
in the classical sense is the evidence that the mechanical properties of wood vary with the
size of objects made from it (Figures 22, 25, 27 and 28).
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Figure 28. Plots of the tension stress values at the lower 5% exclusion limit (calculated from the data
plotted in Figure 27) showing the size (width) effect more clearly. From [155].

A great deal of research has been and is being performed on the effect of specimen size
on the proportional limit and fracture stresses of wood. For example, Dinwoodie stated
on page 194 of his book about timber [89] that “Timber appears to exhibit size effects to
a greater extent than most other materials” and that Barrett had shown there is a relation
“between specimen volume and strength for timber loaded in tension perpendicular to
the grain” [113]. However, in that paper (published in 1974), Barratt also stated that
Weibull’s distribution had “does not appear to have been widely applied in studying wood
mechanical behavior”.

Analysis of the bending strength of Eucalyptus grandis samples showed that their
strength decreased with increasing specimen depth, despite there being significant variation
in the measurements obtained from specimens of the same size (see Figure 29) [130].
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Tests performed by Zauner and Niemz using cylindrically symmetric specimens of
Norway Spruce (Picea abies) (Figure 30) also demonstrated a clear decrease in strength
with increasing specimen size (Figure 31) [125]. The three theories they investigated
were (i) Weibull’s Weakest Link Theory (WLT) (Equation (3)), (ii) Bazant’s Size Effect
Law (SEL) which is based on linear elastic fracture mechanics (Equation (6)) [156], and
(iii) Carpinteri’s Multi-Fractal Scaling Law (MFSL) which is based on geometric arguments
(Equation (7)) [157].

σN =
B√

1 − D
D0

(6)

where B and D0 are experimentally determined constants.

σN =

√
A +

B
D

, (7)

where A and B are experimentally determined constants.
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of the three size effect laws they considered is the best, and one may as well go with the 
simplest fit, which is the Weakest Link (or Weibull) Theory. 
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Materials 2022, 15, 5403 23 of 46

As the various numerical factors in these three equations are determined from the
experiments they performed, it is not surprising that all three equations fitted the data they
obtained. The main difference is that the Weibull plot is a straight line through the highly
scattered data, whereas the other two theories deviate in different directions for specimen
sizes larger and smaller than those shown in Figure 31. Note that the data and fits are
presented in this figure using a log–log plot. Hence, the scatter in the data is even worse
than it appears in the plot. To conclude, is not possible to tell from these tests which of the
three size effect laws they considered is the best, and one may as well go with the simplest
fit, which is the Weakest Link (or Weibull) Theory.

Many other papers exist which corroborate these results, such as those shown in
Figure 32. Therefore, although there has long been debate about which mathematical
law best describes the size effect (Figures 33 and 34) [138,158–161], there is widespread
consensus that the strength of wood decreases as the specimen size increases (Figure 34).

Materials 2022, 15, x FOR PEER REVIEW 24 of 48 
 

 

Many other papers exist which corroborate these results, such as those shown in Fig-
ure 32. Therefore, although there has long been debate about which mathematical law best 
describes the size effect (Figures 33 and 34) [138,158–161], there is widespread consensus 
that the strength of wood decreases as the specimen size increases (Figure 34). 

 
Figure 32. (a) Plot of bending strength, 𝜎 , of Spruce wood against beam depth, h. (b) Plot of 𝜎  against 
h to test Bazant’s size effect law (see Equation (6) and [156]). From [162]. Circles are data points. 

  
(a) (b) 

Figure 32. (a) Plot of bending strength, σN , of Spruce wood against beam depth, h. (b) Plot of
σ2

N against h to test Bazant’s size effect law (see Equation (6) and [156]). From [162]. Circles are
data points.



Materials 2022, 15, 5403 24 of 46

Materials 2022, 15, x FOR PEER REVIEW 24 of 48 
 

 

Many other papers exist which corroborate these results, such as those shown in Fig-
ure 32. Therefore, although there has long been debate about which mathematical law best 
describes the size effect (Figures 33 and 34) [138,158–161], there is widespread consensus 
that the strength of wood decreases as the specimen size increases (Figure 34). 

 
Figure 32. (a) Plot of bending strength, 𝜎 , of Spruce wood against beam depth, h. (b) Plot of 𝜎  against 
h to test Bazant’s size effect law (see Equation (6) and [156]). From [162]. Circles are data points. 

  
(a) (b) 

Materials 2022, 15, x FOR PEER REVIEW 25 of 48 
 

 

  
(c) (d) 

Figure 33. Plots of data obtained for modulus of rupture (MOR) for specimens of structural size 
against MOR for small specimens of mixed hardwoods. The lines in each plot represent various 
functions of structural size. (a) Exponential; (b) logarithmic; (c) power; (d) polynomial. From [160]. 

 
(a) 

 
(b) 

Figure 33. Plots of data obtained for modulus of rupture (MOR) for specimens of structural size
against MOR for small specimens of mixed hardwoods. The lines in each plot represent various
functions of structural size. (a) Exponential; (b) logarithmic; (c) power; (d) polynomial. From [160].

MFSL theories are based on a model of brittle failure due to the propagation of
microcracks. The idea is that below some critical strain microcracks do not propagate
sufficiently to have any effect at the macro scale, but the correlation length of these cracks
grows to infinity at the critical strain [157]. Carpinteri and Chiaia treated critical failure
using the framework of phase transitions, arguing that at the critical point the system
has similar fluctuations on all length scales and therefore no characteristic length can be
associated with this process. Such self-similarity properties make the system analogous
to a mathematical fractal. This analysis results in an expression which scales the nominal
tensile strength, σN , with one of the dimensions, D, of the specimen (see Equation (7)).

Bazant’s Size Effect Law, in contrast, is based on the observation that a well-defined
Fracture Process Zone (FPZ) exists for all ‘quasi-brittle’ materials; hence, there is a character-
istic size scale associated with fracture [156]. This model results in the relation presented in
Equation (6), which relates the fracture strength, σN, to the size of the specimen, D, scaled
in terms of a parameter D0.
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Figure 34. (a) Assessment of power law assumption for mean strength of European White Oak
(Quercus robur and Quercus petraea) boards simulated by four different models. (b) Simulated length
effect of tensile strengths obtained using four fitted models showing the variation for all grades
studied. From [138].

The Size Effect Law was first tested against data for the fracture stress of concrete [163],
but has since been tested for wood [162,164]. While there is still no complete consensus,
the Size Effect Law seems the best candidate for a general law to describe the scaling of
fracture properties.

However, since the 1960s, Weibull’s theory has been widely used for wood, albeit
with some modifications, and has had some success in modelling the observed size effect
data [130], although Bazant and Yavari have pointed out a number of problems with it [9].

As mentioned before, the mechanical properties of lumber are dominated by a small
number of large defects whereas those of (clear) wood are governed by a large number of
small defects [103]. Additionally, in lumber, the distribution of defects along the length
may be different to those in the other two dimensions, i.e., depth and width. Therefore, a
two-parameter Weibull distribution is needed with the boundary condition of zero strength
for infinite size.
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In 1986, Madsen and Buchanan analysed the length effect using brittle fracture
theory [86]:

x1

x2
=

(
L2

L1

)1/k1

, (8)

where x1 and x2 are the strengths of beams of length L1 and L2. This function is plotted
in Figure 35 for L2

L1
= 0.5. The experimental data that they obtained for Canadian Spruce

are shown in Figure 36. This figure also shows that they found that strength increased with
depth, contrary to their theory. At that time, they had no explanation for this observation.
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tion is subjected to (up to that point, only shear and tension had been included in Cana-
dian design standards). Figure 37 shows the differences between the tensile, compressive 
and bending strengths. The bending strength can be seen to be intermediate between ten-
sile and compressive strength, which makes sense since bending is a mixture of tension 
and compression. Figure 38 shows that wood is brittle in tension and ductile in compres-
sion (see also Figures 10 and 11). Failure in bending can be either brittle (Figure 39) or 
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Madsen and Buchanan also took a new approach to the study of size effects by consid-
ering bending [86]. Bending is the mode of loading that most wood used in construction
is subjected to (up to that point, only shear and tension had been included in Canadian
design standards). Figure 37 shows the differences between the tensile, compressive and
bending strengths. The bending strength can be seen to be intermediate between tensile
and compressive strength, which makes sense since bending is a mixture of tension and
compression. Figure 38 shows that wood is brittle in tension and ductile in compression
(see also Figures 10 and 11). Failure in bending can be either brittle (Figure 39) or ductile
(Figure 40).

Materials 2022, 15, x FOR PEER REVIEW 28 of 48 
 

 

 
Figure 37. Effect of grain angle on the tensile, bending and compression strengths of timber. From 
[89]. 

 
(a) 

 
(b) 

Figure 37. Effect of grain angle on the tensile, bending and compression strengths of timber. From [89].

Materials 2022, 15, x FOR PEER REVIEW 28 of 48 
 

 

 
Figure 37. Effect of grain angle on the tensile, bending and compression strengths of timber. From 
[89]. 

 
(a) 

 
(b) 

Figure 38. Cont.



Materials 2022, 15, 5403 28 of 46
Materials 2022, 15, x FOR PEER REVIEW 29 of 48 
 

 

 
(c) 

Figure 38. (a) Shear localization in a block of wood compressed longitudinally and parallel to the 
cellular structure. From [79]. (b) Example of shear fracture due to tensile loading of Pinus koraiensis. 
From [85]. (c) SEM and optical image of natural wood broken by bending. From [165]. 
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Figure 39. (a) Photograph of failed wood specimen that had been subjected to a bending load. (b) 
The load–displacement graph for the specimen shown in (a). The graph shows that no plastic defor-
mation occurred before failure, i.e., the failure was brittle. From [100]. 

Figure 38. (a) Shear localization in a block of wood compressed longitudinally and parallel to the
cellular structure. From [79]. (b) Example of shear fracture due to tensile loading of Pinus koraiensis.
From [85]. (c) SEM and optical image of natural wood broken by bending. From [165].
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Figure 39. (a) Photograph of failed wood specimen that had been subjected to a bending load. (b) The
load–displacement graph for the specimen shown in (a). The graph shows that no plastic deformation
occurred before failure, i.e., the failure was brittle. From [100].
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Figure 40. (a) Photograph of failed wood specimen that had been subjected to a bending load. (b) 
The load–displacement graph for the specimen shown in (a). The graph shows that plastic defor-
mation occurred before failure, i.e., the failure was ductile. From [100]. 

The most thorough study performed so far of size effects in timber was carried out 
by Madsen and Tomoi [104]. They studied wood from three different species of tree 
(spruce, pine and fir), each cut into 27 different length, breadth and depth combinations 
(Figure 41). They tested at least 100 specimens for each test configuration. Their testing 
programme used clear (i.e., knot-free) wood. 

Figure 40. (a) Photograph of failed wood specimen that had been subjected to a bending load. (b) The
load–displacement graph for the specimen shown in (a). The graph shows that plastic deformation
occurred before failure, i.e., the failure was ductile. From [100].

The most thorough study performed so far of size effects in timber was carried out by
Madsen and Tomoi [104]. They studied wood from three different species of tree (spruce,
pine and fir), each cut into 27 different length, breadth and depth combinations (Figure 41).
They tested at least 100 specimens for each test configuration. Their testing programme
used clear (i.e., knot-free) wood.

If Weibull’s theory is true, log(strength) will be linearly related to log(length) [86].
They found that beam length was of primary importance (Figure 42). There was a weak (or
inconsistent) effect of depth (Figure 43).
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graphs of log(strength) vs. log(aspect ratio), where aspect ratio = (length times depth) ra-
ther than log(volume) as is suggested by Weibull’s theory [147]. However, although Mad-
sen found that the strength of shorter wooden beams is greater than that of longer ones 
[103], he found that his experimental data were fitted better by log(strength) vs. log(vol-
ume) (Figure 44) [103]. Figure 44 also shows that the size effect was smaller for wet wood 
as opposed to dry wood, and that “a length effect could not be found for wet material”. 
Even for dry tests, there was only a 5% reduction in strength for when the length was 
doubled. The mode of loading was also found to be important, the length effect being 
small for compression compared with tension and bending. Madsen found the way the 
load was distributed along the beams (Figure 45) was very important, but he did not quan-
tify this effect. 

Figure 43. Fifth and fiftieth percentile strength data obtained from three-point loading of Hem-Fir
wooden beams of the same span-to-depth ratio, but with different depths. These data were obtained
in 1976. From [86].

In the 1960s, Bohannan found that for defect-free material, data were fitted best by
graphs of log(strength) vs. log(aspect ratio), where aspect ratio = (length times depth) rather
than log(volume) as is suggested by Weibull’s theory [147]. However, although Madsen
found that the strength of shorter wooden beams is greater than that of longer ones [103],
he found that his experimental data were fitted better by log(strength) vs. log(volume)
(Figure 44) [103]. Figure 44 also shows that the size effect was smaller for wet wood as
opposed to dry wood, and that “a length effect could not be found for wet material”.
Even for dry tests, there was only a 5% reduction in strength for when the length was
doubled. The mode of loading was also found to be important, the length effect being small
for compression compared with tension and bending. Madsen found the way the load
was distributed along the beams (Figure 45) was very important, but he did not quantify
this effect.

Most size effect studies have been performed quasistatically. The results of one very
recent study of the impact fracture of two different woods (Figure 46) shows that the size
effect may be more complicated in impact than at low rates of strain (Figure 47) [166].

The weakest link theories discussed so far have assumed that flaws are uniformly
distributed, but due to the way trees grow, flaws are arranged anisotropically in tim-
ber/lumber [86]. Thus, different distribution functions will be needed for different direc-
tions. As an example of this, Madsen observed an effect of length but not of depth on
strength. Quantifying this, he found an 18% reduction in strength when the beam length
was doubled. To summarize, Madsen found that (i) the size effect can be described by a
parameter g equal to the slope of the graph of log(strength) and log(size) (Figure 48); (ii) g
was 0.22 for tension, 0.10 for compression and 0.20 for bending; (iii) the length effect did
not depend on depth for the widths he tested.
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The scaling of the elastic properties of wood with specimen size has been studied
by only a few people, but those papers that do exist on this topic demonstrate that the
effect is real, although the evidence is contradictory as to what the trends are [134,167]. For
example, measurements made by Hu et al. on Fagus sylvatica showed that increasing the
height of the specimen increased the modulus, whereas increasing the cross-sectional area
decreased the modulus [134] (Table 2 and Figure 49).



Materials 2022, 15, 5403 34 of 46

Materials 2022, 15, x FOR PEER REVIEW 35 of 48 
 

 

parameter g equal to the slope of the graph of log(strength) and log(size) (Figure 48); (ii) 
g was 0.22 for tension, 0.10 for compression and 0.20 for bending; (iii) the length effect did 
not depend on depth for the widths he tested. 

 
Figure 48. Schematic plot showing how the size effect parameter ‘g’ is calculated. From [86]. 

The scaling of the elastic properties of wood with specimen size has been studied by 
only a few people, but those papers that do exist on this topic demonstrate that the effect 
is real, although the evidence is contradictory as to what the trends are [134,167]. For ex-
ample, measurements made by Hu et al. on Fagus sylvatica showed that increasing the 
height of the specimen increased the modulus, whereas increasing the cross-sectional area 
decreased the modulus [134] (Table 2 and Figure 49). 

Table 2. Key to the specimen dimensions for which data are plotted in Figure 49. From [134]. 

Specimen Label 
Dimensions 

Cross-Sectional Area/mm2 
Width/mm Length/mm Height/mm 

1 10 10 10 
2 10 10 20 
3 10 10 30 
4 20 20 30 
5 30 30 30 

Figure 48. Schematic plot showing how the size effect parameter ‘g’ is calculated. From [86].

Table 2. Key to the specimen dimensions for which data are plotted in Figure 49. From [134].

Specimen Label

Dimensions

Cross-Sectional Area/mm2

Width/mm Length/mm Height/mm

1 10 10 10
2 10 10 20
3 10 10 30
4 20 20 30
5 30 30 30Materials 2022, 15, x FOR PEER REVIEW 36 of 48 

 

 

 
Figure 49. Proportional limit stresses for five different sizes of specimens of Fagus sylvatica cut in 
different orientations with respect to the trunk of the tree. From [134]. 

However, a similar study by Xavier et al. on Pinus pinaster showed the opposite effect: 
increasing the specimen height decreased the modulus and increasing the cross-sectional 
area increased the modulus [167], as shown in Table 3 and Figure 50. They showed con-
clusively that this was due to friction between the specimen ends and the anvils used to 
compress the wooden cylinders. 

Table 3. Average values and standard deviations of the longitudinal modulus of elasticity for vari-
ous lengths and cross-sections of specimens of Pinus pinaster. From [167]. 

Cross-Section/mm2 
Height/mm 

30 60 120 
20 × 20 15.7 ± 2.7 GPa 15.9 ± 3.1 GPa 14.5 ± 2.0 GPa 
30 × 30 16.9 ± 2.9 GPa 15.1 ± 3.0 GPa 15.1 ± 2.9 GPa 
40 × 40 18.1 ± 1.7 GPa 16.1 ± 2.7 GPa 15.8 ± 2.3 GPa 

Figure 49. Proportional limit stresses for five different sizes of specimens of Fagus sylvatica cut in
different orientations with respect to the trunk of the tree. From [134].



Materials 2022, 15, 5403 35 of 46

However, a similar study by Xavier et al. on Pinus pinaster showed the opposite
effect: increasing the specimen height decreased the modulus and increasing the cross-
sectional area increased the modulus [167], as shown in Table 3 and Figure 50. They showed
conclusively that this was due to friction between the specimen ends and the anvils used to
compress the wooden cylinders.

Table 3. Average values and standard deviations of the longitudinal modulus of elasticity for various
lengths and cross-sections of specimens of Pinus pinaster. From [167].

Cross-Section/mm2 Height/mm

30 60 120

20 × 20 15.7 ± 2.7 GPa 15.9 ± 3.1 GPa 14.5 ± 2.0 GPa
30 × 30 16.9 ± 2.9 GPa 15.1 ± 3.0 GPa 15.1 ± 2.9 GPa
40 × 40 18.1 ± 1.7 GPa 16.1 ± 2.7 GPa 15.8 ± 2.3 GPa
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Figure 50. Plot of the ratio of elastic moduli measured two different ways for Maritime Pine specimens
against specimen length for three different cross-sections. The two methods used were (i) optical
(digital image correlation, DIC) and (ii) mechanical (a displacement transducer). From [167].

The problem of data scatter is well demonstrated in plots of various strength parame-
ters obtained using standard-sized specimens against the same parameters obtained using
micro-sized specimens (Figure 51) in tension, compression and bending. Figure 51 also
shows that the size effect is more pronounced for tension as compared to compression.
Micro-sized specimens are increasingly being used to minimize the amount of wood taken
from a structure for testing [168]. However, as we have been at pains to point out in this
review, there are serious concerns with using small specimens (it will only work if the
mechanical properties at two different size scales are well-correlated).

Zhou et al. analyzed the effects of varying both lumber grade and specimen width
on the elastic modulus of Chinese Larch (Larix gmelinii), [131]. Grading was performed
visually on the basis of the observed defects. Their data do not show any compelling overall
trends, and there is a large variation found within the data obtained from a single grade
and width (Figure 52) [169].
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various grades (labelled C40 through to C18) of Scots Pine taken from various parts of the tree trunks
(B, butt; M, middle; T, top). Data obtained using four-point bend experiments. From [169].
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There are few studies which report measurements made for compression, tension and
bending moduli for the same sample of wood. However, tests performed on man-made
cellular substances show different size effects for compression, bending, shear and torsion
of the same material, an observation which casts further doubt on the validity of the concept
of elastic modulus to such substances [133].

The effect of size on wood’s mechanical properties can be reduced by gluing small
pieces of wood together so as to create a more homogeneous product [170–172], but it is
not always practical to do this.

7. Modelling Wood

The data for wood summarized in this review support the idea that an elastic modulus
can only reliably be used to characterize an individual specimen, rather than a species of
wood in general, due to the large variation observed from specimen to specimen. However,
as discussed in Section 3 (Problems with the application of elasticity theory to wood),
much of the literature on the strength properties of wood has assumed that its mechanical
properties can be described using concepts developed for materials that are effectively
homogeneous and continuous. Significant discrepancies with such theories, particularly
the influence of the size of the specimen being tested, suggest that standard material models
do not adequately describe wood. This section will therefore present three theories that
have been developed to describe size effects in materials, and evaluate how well they apply
to wood.

A number of studies have sought to model wood on several different scales, from
nano to macro, in order to describe its response to mechanical loads [12,13,20,173–176]. For
example, Zhan and co-workers suggested a representative volume element approach [13]
(Figure 53), whereas Guindos and Guaita used geometrical approximations to the shapes
of knots (three-dimensional growth defects) with some success (Figures 54 and 55). The
size of knots has also been found to have an effect on strength [177].
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Figure 55. Schematic diagram showing the types of knots used in the parametric study: (a) cylindrical,
(b) truncated conical, (c) shallow conical, (d) edge, and (e) inclined. From [178].

Another category in which wood is often discussed is that of cellular structures, the
theory of which has been and is being developed for metal, polymer and ceramic foams;
however, it should be noted at this point that wood has a tubular rather than a cellular
morphology. This seems a promising method to describe those aspects of wood which
quasi-brittle theories cannot, since whereas quasi-brittle theories were not developed for
substances which have a mesoscale repeating substructure (such as wood), this is the
central focus of cellular models [18].



Materials 2022, 15, 5403 40 of 46

One of the main insights to be taken from this body of literature is the strong depen-
dence of bulk properties on boundary conditions in materials with heterogenous repeating
structures. Wheel et al. used a simple model of a beam consisting of alternating layers of
two materials with different moduli [179]. By simply altering the geometry of the setup, the
model predicted opposing size effects, some geometries exhibiting an increase in strength
with a decrease in size (‘stiffening effect’) and others a decrease in strength with a decrease
in size (‘softening effect’). Wheel et al. concluded that “the circumstances determining
the nature of the size effect appear to be governed entirely by the surface state of the
material” [179].

Surface effects were found in other investigations. For example, Anderson and Lakes
showed that open cells at the surface of a polymer material resulted in a softening ef-
fect [180]. Karakoç and Freund simulated experiments performed on the cellular structure
of Picea abies, and concluded that the observed softening effect is the result of boundary
effects, specifically the presence of stress-free walls at cell boundaries [132]. In 2018, in
an overview of research into size effects in lattice structures, Yoder et al. argued that the
non-homogenous nature of a cellular material, especially the difference in behaviour near a
stress concentrator, means that attempts to model cellular substances as continuous materi-
als are inherently flawed [133]. Against this, Tekoglu and Onck argued in 2005 that in the
limiting case of a large number of cells, a foam can be approximated as continuous [129].

To summarize, this body of research into cellular materials may provide insights into
the mechanical properties of wood, as long as its tubular and fibrous structure is taken
into account.

8. Conclusions and Matters for Further Study

Significant size effects have been observed for the mechanical properties of wood. As
a result, wood does not meet the criteria for being considered as a material in the sense that
that the mechanical response of wooden structures cannot be predicted from performing
mechanical tests on small specimens from the same source. Wood, therefore, should be
thought of as being an intermediate between a material and a structure.

The main way of reducing the size effect for wood is cross-lamination, but it is not
always practical or possible to do this.

While Bazant’s size effect law provides a good approximation to inelastic size effects
in wood, a more accurate model would consider wood in a category of its own distinct
from other quasi-brittle materials (such as concrete) and focus on its fibrous and tubular
structure. The published literature on artificial cellular materials provides a promising
body of research to gain insights from, bearing in mind that these differ from wood in
mostly being three-dimensional foams.

There is also scope for further experimental investigation of the effects of different
specimen geometries on the mechanical properties of wood.
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