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Abstract: Nowadays, concretes blended with pozzolanic additives such as fly ash (FA), silica fume
(SF), slag, etc., are often used in construction practices. The utilization of pozzolanic additives and
industrial by-products in concrete and grouting materials has an important role in reducing the
Portland cement usage, the CO2 emissions, and disposal issues. Thus, the goal of the present work is
to estimate the compressive strength (CS) of polyethylene terephthalate (PET) and two supplementary
cementitious materials (SCMs), namely FA and SF, blended cementitious grouts to produce green mix.
For this purpose, five hybrid least-square support vector machine (LSSVM) models were constructed
using swarm intelligence algorithms, including particle swarm optimization, grey wolf optimizer,
salp swarm algorithm, Harris hawks optimization, and slime mold algorithm. To construct and
validate the developed hybrid models, a sum of 156 samples were generated in the lab with varying
percentages of PET and SCM. To estimate the CS, five influencing parameters, namely PET, SCM,
FLOW, 1-day CS (CS1D), and 7-day CS (CS7D), were considered. The performance of the developed
models was assessed in terms of multiple performance indices. Based on the results, the proposed
LSSVM-PSO (a hybrid model of LSSVM and particle swarm optimization) was determined to be
the best performing model with R2 = 0.9708, RMSE = 0.0424, and total score = 40 in the validation
phase. The results of sensitivity analysis demonstrate that all the input parameters substantially
impact the 28-day CS (CS28D) of cementitious grouts. Among them, the CS7D has the most significant
effect. From the experimental results, it can be deduced that PET/SCM has no detrimental impact
on CS28D of cementitious grouts, making PET a viable alternative for generating sustainable and
green concrete. In addition, the proposed LSSVM-PSO model can be utilized as a novel alternative
for estimating the CS of cementitious grouts, which will aid engineers during the design phase of
civil engineering projects.

Keywords: cementitious grouts; polyethylene terephthalate waste; supplementary cementitious
materials; swarm intelligence; particle swarm optimization

1. Introduction

In recent times, plastic manufacture and increased use have placed a tremendous envi-
ronmental strain on society [1]. The production of plastic waste is fast expanding in tandem
with population growth, and it is estimated that by 2050, global plastic waste production
will have doubled [2]. Plastic production expanded exponentially between 1950 and 2015,
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from 2.3 million tons to 448 million tons [3]. According to the literature, over half of all plas-
tic has been manufactured in the last 15 years [4]. Approximately 8 million tons of plastic
garbage are washed into the oceans yearly [5]. Since the 1950s, more than 8.3 billion tons
of plastic has been created, with around 60% of that plastic ending up in landfills and the
natural environment [6]. Thus, it is essential to investigate the recycling of plastic wastes
to address this global environmental challenge. It is also desirable to substitute virgin
materials used in construction with waste resources. Therefore, recycling plastic waste in
construction projects can help achieve this goal to a large extent. Moreover, recycling waste
plastic on a large scale can substantially contribute to the economy and environment. In
contrast, the consumption of natural resources can be decreased by substituting plastic
waste for aggregates or sand, thereby reducing environmental pollution and construction
costs, and enhancing the engineering qualities of asphalt concrete. Furthermore, recycling
plastic waste can lessen the burden of landfills and conserve marine life. Due to population
expansion and industrialization, industrial wastes and/or by-products (such as FA and
SF) which pose a grave threat to the ecosystem are increasing day by day. Therefore, the
reuse and recycling of these wastes and/or by-products could be a feasible alternative in
the construction industry.

In construction work, waste plastic has frequently been used as a bitumen or aggregate
replacement [7]. Significant improvements in the performance attributes of binder and
asphalt mixtures has been shown in the literature [8]. To date, very little research has
been undertaken to investigate the use of polyethylene terephthalate (PET) in cementitious
materials [9,10]. Furthermore, the impact of PET on the mechanical properties of cemen-
titious materials has been explored [11]. Note that waste plastics are utilized as a fiber
or a replacement for fine and coarse aggregates in the concrete industry [12]. Generally,
waste plastics are used to make lightweight concrete elements by replacing aggregates [13].
According to a recent study, incorporating recycled PET as a fiber in the concrete mixture
increased the tensile strength and crack resistance [14]. It is pertinent to mention here that
with the incorporation of PET as an aggregate or sand replacement with a volume greater
than 10%, the compressive strength (CS) of concretes is significantly reduced compared
to standard strength of concrete. Partial replacement of cement with plastic waste was
also investigated in the literature, and a considerable drop in CS was found [15]. Specifi-
cally, a 5% to 20% substitution of cement can reduce the concrete CS by between 23% and
72% [16]. Schaefer et al. [17] noticed a reduction in CS when waste PET was utilized as
a partial replacement for cement in mortars. It is interesting to note that, according to
Schaefer et al. [17], using irradiated plastic (by subjecting it to gamma radiations) in place
of conventional plastic can partially restore the strength loss of concrete caused by the
addition of plastic. PET is a semi-crystalline polyester that has an isotropic microstructure
because to its glassy amorphous nature [18]. Irradiation has an impact on the two key
properties of PET, namely chain-scission and crosslinking. Due to the chain-scission action,
PET crystallinity rises [19]. Irradiation-induced crosslinking of the polymers results in
improved adhesion, toughness, material stability, and high impact resistance [20]. Gamma
radiation aids in enhancing the concrete’s performance characteristics. Fiber-reinforced
concrete (FRC) has considerably enhanced the physical characteristics of cementitious com-
posites. Exposure to gamma radiation can further enhance the mechanical characteristics
of FRC [21]. This results from the polymer’s structure being altered by irradiation through
the processes of crosslinking, scission, and chain grafting, which are all dependent on the
gamma dosage that was administered [22]. Schaefer et al. [17] recently investigated the
possibility of using irradiated plastic in place of cement to create a cementitious composite.
In contrast to non-irradiated plastic, they discovered that plastic exposed to radiation had
improved mechanical characteristics and a compact microstructure. Further investigation
is necessary to determine the impact of irradiation plastic alone or in conjunction with com-
mercially available silica fume on the initial and hardened characteristics of a cementitious
composite. This will improve the researchers’ comprehension of the possible application of
radioactive plastic as a cement replacement in the building sector. The strength of cement
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mortar can be increased by substituting gamma-irradiated PET with additional replacement
of fly ash (FA) or silica fume (SF) [9]. A detailed review of the literature shows that the
addition of gamma-irradiated waste plastic to cementitious grouts can improve the strength
of cementitious grouts [23].

FA and SF are classified as supplemental cementing materials (SCM). Numerous
studies have been conducted on the effects of mineral admixtures, such as FA and SF,
on the mechanical characteristics of geopolymer and Portland cement concrete [24,25].
Golewski [26] discovered that FA might lengthen the concrete’s real fracture path, increas-
ing the concrete’s durability. According to Gil et al. [27], the simultaneous application of
FA and SF modifies the concrete’s fracture toughness based on the Mode I fracture. It could
be possible to make concrete using siliceous FA and SF instead of cement. Cementitious
composites with higher alumina content mineral admixtures, such as metakaolin, ceramic
waste powder, and clay brick waste powder, showed greater compressive strength at high
temperatures [28]. According to Khan et al. [29,30], FA, SF, and calcium carbonate whisker
may significantly enhance the mechanical characteristics of fiber-reinforced concrete. FA
and SF can improve the performance of cement concrete due to their pozzolanic properties.
In order to achieve sustainability, greater performance, and economical benefits, the use
of materials or mineral admixtures to substitute cement in mortar and concrete is almost
unavoidable. Therefore, recycling municipal and industrial wastes or waste by-products as
a replacement for cement, sand, or aggregates could be beneficial to the environment in
terms of reducing the use of non-renewable natural resources. This will also be advanta-
geous to the construction industry in terms of cost savings and enhanced concrete qualities.
On the contrary, the CS of cementitious grout is typically determined in the laboratory [31].
The determination of the CS of cementitious grout in the laboratory is time-consuming and
costly. One of the causes is the need for specialized laboratory equipment. In addition,
professional engineers and highly skilled technicians are required for manufacturing and
testing. Hence, it is of practical need to come up with intelligent data-driven methods to
determine the CS of cementitious grout based on existing test results.

Currently, soft computing techniques are gaining popularity due to their superior
predictive abilities compared to regression-based techniques, and they are used to mimic
the complex behavior of a variety of structural engineering problems [32–35]. In civil
engineering, the application of machine learning (ML) algorithms has been extensively
documented since 2000 [36]. In recent decades, numerous ML algorithms, such as artificial
neural networks (ANNs) [37,38], support vector machine (SVM) [39], least-square support
vector machine (LSSVM) [40], genetic programming (GP) [41], gene expression program-
ming (GEP) [42], extreme learning machine (ELM) [43], multivariate adaptive regression
spline (MARS) [44], adaptive neuro-fuzzy inference system (ANFIS) [45], and more [46,47],
have been utilized to solve a variety of engineering problems.

Ferreira and Jalali [48] estimated the early age of CS using a strategy based on non-
destructive testing results. Ni and Wang [49] used multi-layer feed-forward neural net-
works to predict the 28-day CS (CS28D) of concrete. Rafi and Nasir [50] proposed an
analytical method for forecasting CS28D based on the 7-day CS (CS7D) of concrete. Despite
their practical significance, prior researchers have made no attempts to build regression-
based ML models for estimating the CS28D of waste PET/SCM mixed cementitious grout.
Thus, this study was motivated to fill the gap in the literature. Specifically, LSSVM was
used to compute the CS28D of waste PET/SCM blended cementitious grout.

Based on the most recent research, it has been determined that ML approaches are
ideally suited for predicting the CS of concrete. In addition, as the topic of interest is
complex, it is necessary to examine various sophisticated ML models in order to identify
more accurate estimating models. The LSSVM is an effective instrument for nonlinear
and multivariable modelling [51]. This regression-based ML model has been effectively
implemented in different engineering domains. However, none of the prior research has
used hybrid LSSVM models to estimate the CS28D of waste PET/SCM blended cementitious
grout. Therefore, the purpose of the present study is to fill this gap in the literature.
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It is important to note that the LSSVM model requires proper configuration of its
hyperparameters, including the regularization (γ) and kernel function (σ) parameters.
These two hyper-parameters have a substantial impact on the outcome of the learning
phase and, consequently, influence the predictive ability of the LSSVM-based model. Note
that it is not so easy to specify these parameters since they must be sought in continuous
domains and there is an infinite number of parameter sets. Therefore, numerous researchers
have combined metaheuristic (MH) algorithms and ML models because parameter tuning
problems can be phrased as optimization problems.

Previous studies have demonstrated the efficacy of MH algorithms in modelling
complex phenomena in different engineering problems. Combining symbiotic organisms
search (SOS) and LSSVM, Prayogo and Susanto [52] improved the predictive accuracy
of the employed models to calculate the friction capacity of driven piles in cohesive soil.
Yuan et al. [53] used LSSVM–GSA (a hybrid model of LSSVM and gravitational search algo-
rithm) to estimate the short-term wind power. Xue [54] presented a hybrid LSSVM model
of particle swarm optimization to predict slope stability. Nevertheless, the application of
swarm intelligence (SI) algorithms in CS estimation of PET/SCM blended cementitious
grout has not yet been investigated. Therefore, this study presents a comparative assess-
ment of five hybrid LSSVM models constructed with five distinct SI algorithms, namely
particle swarm optimization (PSO), grey wolf optimizer (GWO), salp swarm algorithm
(SSA), Harris hawks optimization (HHO), and slime mold algorithm (SMA), to optimize
the hyper-parameters of LSSVM [55].

2. Materials and Methods

For developing hybrid models, the data was obtained from the previous experimental
results of Khan et al. [9], previously employed by Khan et al. [56] for developing genetic
programming models. Ordinary Portland cement (OPC), PET waste, SF, FA, and superplas-
ticizer were obtained for the experimental work. The PET waste with a particle size of less
than 150 µm was used as a substitute for cement.

The cementitious grouts were mixed in the laboratory as per the ASTM provision [57].
The required quantity of cement, PET waste, FA, and SF were initially dry mixed followed
by adding two-thirds of water and further mixing. Note that, to ensure the homogeneity
of cement grouts, the remaining water and superplasticizer were added and blended
thoroughly. After mixing, flow cone apparatus was used to the flow the freshly prepared
cement grout [9]. According to ASTM specifications, 1 L of fresh grout must flow out of
a cone in 11 to 16 s [58]. All combinations of grouts and their CS was evaluated using a
compression testing machine. In each case, 50 mm × 50 mm × 50 mm mould was used.
The CS of cement grouts was tested after 1-day, 7-day, and 28-day curing. For this purpose,
a universal testing machine of 3000 kN capacity was used. Subsequently, the 1-day, 7-day,
and 28-day CS (i.e., CS1D, CS7D, and CS28D, respectively) of hardened cement grouts were
recorded [59].

2.1. Computational Approaches

The working principle of LSSVM as well as a brief overview of MH algorithms are
presented and discussed in this sub-section.

2.1.1. Least-Square Support Vector Machine (LSSVM)

LSSVM, a regression-based ML approach based on the structural risk reduction princi-
ple, was introduced by Suykens et al. [60]. The learning phase of LSSVM is rapid because it
only entails solving a set of linear equations., The dataset can be prepared in the following
format to build a prediction model in LSSVM: D = {xk, yk}, k = 1, 2, . . . , N; where k is
the kth sample and N is the total number of samples. LSSVM tries to develop a mapping
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function y(x) that estimates the response variable against a set of input parameters x. In
LSSVM, the following formulation is used for function approximation.

y(x) =
N

∑
k=1

αkK(xk, xl) + b (1)

where k is the index number; b is the bias; and K(xk, xl). is the kernel function. Generally,
the radial basis function is used kernel function, which can be given by:

k(xk, xl) = exp

(
−||xk − xl ||2

2σ2

)
(2)

where σ. is the kernel parameter. The following optimization task is necessary to construct
a LSSVM model:

JP(w, e) =

{
1
2

wTw +
γ

2

N

∑
k=1

e2
k

}
, (3)

yk = wT∅(xk) + b + ek (4)

where ek ∈ R represents the kth error variable; w and b are the two parameters that are
used function approximation; γ and ∅(xk) are the regularization constant and mapping
function, respectively.

2.1.2. Overview of MH Algorithms

This sub-section provides a brief description of MH algorithms. In general, the
adoption of MH approaches to solve various problems has increased tremendously [61].
They are gradient methods that are free and can tackle highly complicated optimization
problems more effectively than conventional approaches [62]. Additionally, they are
easier to execute and more efficient than conventional optimization techniques. There are
various inspirations for MH approaches, which can be categorized into four groups. These
categories include (a) swarm intelligence (SI) techniques, (b) human-inspired algorithms,
(c) evolutionary algorithms (EAs), and (d) natural phenomenon approaches. Figure 1
illustrates these categories.
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The first group, referred to as SI techniques, mimics the behavior of swarms in nature
during food-seeking. ACO [63], ABC [64], ALO [65], GWO [66], SMA [67], SSA [68],
PSO [69], and WOA [70] are the most common algorithms in this group. The second group
is reliant on human behavior. The human-inspired algorithms are FDO [71], GSO [72],
HS [73], ICA [74], LCA [75], SLC [76], SLO [77], TLBO [78], and VPL [79]. The motivation
for the algorithms in the third group, known as EAs, comes from mimicking natural genetic
concepts such as crossover, mutation, and selection. This category includes a number of
MH techniques such as BBO [80], CMAES [81], DE [82], ES [83], EP [84], GA [41], and
GP [85]. The fourth group is attempting to imitate natural phenomena such as rain, spirals,
wind, and light. This group includes SO [86], WCA [87], WDO [88], AO [89], GSA [90], and
SA [91] are some of the other MH approaches that are based on physical laws.

In this work, five SI algorithms including PSO, GWO, SSA, HHO, and SMA were
used to optimize the hyper-parameters of LSSVM and five hybrid LSSVM models, namely
LSSVM-PSO, LSSVM-GWO, LSSVM-SSA, LSSVM-HHO, and LSSVM-SMA, were con-
structed. Note that detailed working principles of the employed MH are not presented in
this study because they have already been established in the literature. The original studies
of Kennedy and Eberhart [69] for PSO, Mirjalili et al. [66] for GWO, Mirjalili et al. [68] for
SSA, Heidari et al. [92] for Harris hawks optimization (HHO), and Li et al. [67] for SMA,
can be referred to for this purpose. However, a brief overview of these MH is presented in
the following sub-section.

2.1.3. A Brief Overview of Employed MH Algorithms

In this sub-section a brief overview of the employed algorithms, namely PSO, GWO,
SSA, HHO, and SMA, is presented.

PSO [69,93] is a swarm-based MH inspired by the motion of bird flocks and schooling
fish. The fundamental goal of this MH is to find the globally-optimal solution using a
multidimensional search space. PSO begins its search operation by initializing the random
velocities and locations of the particles. In PSO, each particle moves based on its “best”
position and the “best” position of the group as a whole, but they tend to move randomly.
The particle’s position is updated according to its own best position and the direction of the
global best position. Iteratively, the particle velocities are updated based on the difference
between their personal best position and the global best location. Utilizing exploitation
and exploration processes, the particles eventually converge on the ideal solution.

Mirjalili et al. [66] introduced GWO based on the hunting behavior of grey wolves. In
the wild, grey wolves live in groups of 5 to 12 individuals. Based on their responsibilities
and decision-making roles during prey hunting, they are categorized into four types: (a) the
group leader is the alpha (α) wolf, (b) the second-in-command is the beta (β) wolf, (c) the
subordinate is the delta (δ) wolf, and (d) the lowest ranking is the omega (ω) wolf. In
GWO, individuals (referred to as solutions) are ranked from best to worst after being
evaluated using an objective function. The hunting process can be divided into three stages:
(a) tracking, chasing, and approaching the prey, (b) pursuing, encircling, and attacking
the prey, and (c) attacking the prey. Exploration takes place in the first two stages, with
exploitation taking place in the final stage.

In SSA [68], salps are members of the Salpidae family and have a cylinder-shaped,
translucent body. Their tissues also resemble jellyfish closely. Moreover, salps and jellyfish
have a locomotory system in which water pushed into the body propels them forward. In
SSA, the population of salps is initially divided into two categories, namely leaders and
followers. The position of the leader is at the beginning of the chain, while the remainder
of the chain consists of followers. As with other SI approaches, the location of the salps
is specified in an n-dimensional search space. Consequently, the positions of all salps are
entered into a two-dimensional matrix. The SSA algorithm is good at exploitation and
exploration processes, which are both essential for avoiding local optima and discovering
improved solutions. During exploration, the entire search space is examined to determine
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the potential locations of a solution. In order to find the optimal solution, these areas are
exhaustively examined during the exploitation process.

HHO, as proposed by Heidari et al. [92], is based on Harris hawks’ cooperative
treatment and pursuit behavior. In HHO, hawks descend from several directions in an
attempt to startle their prey. In addition, Harris hawks are able to select a certain method
of pursuit based on the battle patterns of their target. HHO consists of three fundamental
stages: (a) amaze pounce, (b) tracking the target, and (c) many striking approaches. The first
phase is called exploration and is designed to wait, search, and mathematically discover
the desired hunt. The second phase transitions from exploration to exploitation and is
completed based on a rabbit’s external energy. In the final phase (known as exploitation),
hawks frequently assume a soft and sometimes hard environment to chase rabbits from
multiple directions. As a global optimizer, HHO has the benefit of being able to handle
issues with constraints.

In 2020, Li et al. [67] introduced SMA as one of the nature-inspired MH algorithms. It
is a mathematical model for simulating the propagation of slime mold waves. Due to their
unique characteristics and pattern, slime molds are able to utilize multiple food sources
simultaneously, allowing them to develop a venous network for their connections. In light
of these positive and negative responses, slime may be the most effective strategy for food
connection. SMA adaptively replicates the process of providing negative and positive
feedback during the propagation wave. Potentially, slime molds could adjust their search
patterns dynamically based on the quality of the food origin. SMA consists of two major
levels: (a) obtaining food in the manner in which slime collects food based on its scent in the
air, and (b) warping food in which slime conducts venous configuration contraction. Due
to higher exploitation and exploration abilities, SMA has been used in solving numerous
optimization tasks,

3. Dataset and Modelling

This section presents and discusses the descriptive details of the experimental results.
In addition, the computational approach for building hybrid LSSVM models is presented.

3.1. Descriptive Details

The descriptive details of the input (PET, SCM, FLOW, CS1D, and CS7D) and output
(CS28D) parameters are tabulated in Table 1. Herein, the minimum, mean, median, mode,
range, and the maximum values, standard error, standard deviation, sample variance,
Kurtosis, and skewness for all the parameters are presented. A smaller standard error
(in the range of 0.29 to 0.90) implies that the experimental database is quite trustworthy.
Moreover, the sample variance, which is between 13.55 and 126.89, demonstrates the
presence of a diverse set of test results. The parameters PET, SF, CS1D, and CS7D all have
negative Kurtosis values ranging between −0.35 and −1.54, with FLOW having the only
positive value of 0.67.

To better demonstrate the degree of correlation between the input parameters and
CS28D, Pearson correlation matrix is presented in Figure 2. From Figure 2, it can be seen
that the correlation between CS1D and CS28D, and CS7D and CS28D are 0.85 and 0.93,
respectively. The correlation between CS28D and other three influencing parameters, i.e.,
PET, SCM, FLOW, is in the range of −0.67 to 0.64. These data demonstrate that two
parameters, i.e., CS1D and CS7D, have a significant impact on CS28D of waste PET/ SCM
blended cementitious grout. In addition to the correlation matrix, frequency histogram
with sample distribution of all the input and output parameters is presented in Figure 3a–f.
As can be seen, the parameters SCM, CS1D, CS7D, and CS28D have a reduced degree of
skewness, whereas the parameter FLOW has a very high degree of skewness. However,
PET has zero skewness.
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Table 1. Description details of the main dataset.

Index PET SCM FLOW CS1D CS7D CS28D

Count 156 156 156 156 156 156
Minimum 0.00 0.00 9.10 5.64 19.19 33.64

Mean 5.00 4.62 16.30 18.66 37.20 53.74
Median 5.00 5.00 15.40 17.91 36.54 54.18
Mode 10.00 0.00 14.00 28.22 37.54 57.91
Range 10.00 10.00 19.50 27.67 42.62 48.90

Maximum 10.00 10.00 28.60 33.32 61.81 82.54
Standard error 0.29 0.33 0.34 0.61 0.76 0.90

Standard deviation 3.68 4.16 4.20 7.67 9.47 11.26
Sample variance 13.55 17.27 17.62 58.81 89.62 126.89

Kurtosis −1.35 −1.54 0.67 −1.07 −0.35 −0.58
Skewness 0.00 0.15 0.95 0.23 0.46 0.30
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3.2. Computational Modelling

In this study, the LSSVM hyper-parameter was determined using five MH algorithms.
As previously stated, LSSVM has two hyper-parameters, namely γ and σ. It is worth
noting that proper setup of these two parameters is necessary for constructing an efficient
LSSVM model, due to the fact these two parameters have a significant impact on the
performance. Therefore, five MH algorithms, namely PSO, GWO, SMA, and SOS were used
to optimize γ and σ, and five hybrid models, i.e., LSSVM-PSO, LSSVM-GWO, LSSVM-SSA,
LSSVM-HHO, and LSSVM-SOS, were constructed. For the construction of these models,
the following steps were followed: (a) initialize LSSVM and set kernel function; (b) set
upper and lower bounds (ub and lb) for γ and σ; (c) set termination criteria and cost
function; (d) data partition and selection of training subset; (e) initialize MH algorithms;
(f) set different deterministic parameters of MH algorithms such as such as swarm size
(NS), number of iterations (tmax), ub, lb, and other parameters; (g) training of LSSVM;
(g) calculate fitness in each iteration; (h) check terminating criteria; (i) check fitness and
obtained optimum values of γ and σ; (j) generation of hybrid model; and (k) prediction of
new dataset using the values of γ and σ. Figure 4 illustrates the hybrid LSSVM development
process. Notably, the deterministic parameters of MH algorithms also play a considerable
role in hybrid modelling; consequently, they must be calibrated properly during the course
of optimization process.
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It is pertinent to mention that the main dataset was separated into training and testing
subsets for the construction and verification of the hybrid LSSVM models. In this study,
80% of the overall dataset was allocated to the training subset, while the remaining 10%
was allocated to the testing subset. Note thatwhen it comes to deciding how many samples
to utilize for training a data-driven model, there is no pre-defined criterion available.
However, the researchers’ selection will be driven mostly by the nature of the problem at
hand. It is a common practice to consider a model that was constructed using a large dataset
to be superior to one that was constructed using a relatively modest number of observed
data points. With this information in mind, it was decided that the testing dataset would
consist of 20% of the main dataset. Figure 5 shows how computational modelling was used
to estimate the CS of waste PET/SCM blended cementitious grout. It may be noted that,
five-fold cross-validation approach was used to develop the best prediction model.
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4. Results and Discussion

This section describes the results of the hybrid LSSVM models used to estimate the
CS of waste PET/SCM blended cementitious grout. As indicated previously, prior to the
creation of the models, the primary dataset was divided into training (125 samples) and
testing (31 samples) subsets. All models were constructed and validated using identical
training and testing subsets. The outcomes of the constructed LSSVMs were then examined
using a number of metrics. In contrast, in addition to γ and σ, the NS, tmax, ub, lb, and
other deterministic parameters play an important part in hybrid modelling; thus, they were
calibrated appropriately during optimization. This is mainly due to the selection of opti-
mum values of hyper-parameters. The following sub-section describes the configuration of
different deterministic and hyper-parameters of hybrid LSSVM models in estimating the
CS of waste PET/SCM blended cementitious grout.

4.1. Parametric Details

As was already mentioned, choosing the optimum LSSVM hyper-parameters and
deterministic parameters of MH are important for constructing the best model. Because
of this, the values of γ and σwere set within a range with ub and lb. In this study, the ub
and lb of γ and σ were set to (100 and 0.10) and (50 and 0.10), respectively. Based on γ and
σ = LB + rand× (UB− LB), the values of these two parameters were chosen at random
and minimize the cost function iteratively. Here, rand represents a uniformly distributed
random between [0–1].

In each case, the values of NS and tmax were set to 30 and 100, respectively, The PSO
parameters c1 (cognitive coefficient) and c2 (social coefficient) were set to 1 and 2, respec-
tively. The value of SMA parameter z, was set to 0.2. Note that the values of the exploration
and exploitation constants were kept at their original values for other MH. Table 2 shows
the hyper-parameters of the constructed LSSVMs and the deterministic parameters of MH
algorithms. In addition, the convergence behavior of the developed hybrid LSSVM models
is presented in Figure 6. In the following sub-section, the performance of the LSSVM-PSO,
LSSVM-GWO, LSSVM-SSA, LSSVM-HHO, and LSSVM-SMA models is presented and
discussed. As indicated previously, the entire dataset was divided into training and testing
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datasets in the proportions of 80% and 20%, respectively. In order to perform a five-fold
cross-validation (CV) technique, the dataset was specifically partitioned 80:20. The best
performing model was chosen and examined based on performance gained (in terms of
RMSE criterion) throughout the testing phase. Note that, in Figure 6, the convergence
behavior of the best performing model has been presented. In Table 3, the performance
of five-fold CV is presented. The CV-1 dataset with lowest RMSE value was selected and
analysed in the following sub-section.

Table 2. Details of different parametric for hybrid LSSVMs.

Parameters LSSVM-PSO LSSVM-GWO LSSVM-SSA LSSVM-HHO LSSVM-SMA

NS 30 30 30 30 30
tmax 100 100 100 100 100
c1, c2 1,2 - - - -
z (Parameter of SMA) - - - - 0.20
ub and lb for γ 100 and 0.10 100 and 0.10 0 and 0.10 100 and 0.10 100 and 0.10
ub and lb for σ 50 and 0.10 50 and 0.10 and 0.10 50 and 0.10 50 and 0.10
ub and lb for OAs +1 and −1 +1 and −1 +1 and −1 +1 and −1 +1 and −1
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Table 3. Performance of CV based on RMSE criterion for the testing dataset.

CV Level LSSVM-PSO LSSVM-GWO LSSVM-SSA LSSVM-HHO LSSVM-SMA

CV-1 0.0424 0.0551 0.0551 0.0578 0.0602
CV-2 0.0430 0.0446 0.0446 0.0612 0.0513
CV-3 0.0437 0.0575 0.0575 0.0652 0.0679
CV-4 0.0453 0.0460 0.0460 0.0662 0.0653
CV-5 0.0430 0.0460 0.0460 0.0670 0.0710

Standard deviation 0.0010 0.0053 0.0053 0.0035 0.0069

4.2. Model Performance

It is important to note that, right after model development, various performance
metrics including Adj.R2, NS, PI, R2, RMSE, RSR, VAF, and WI, were used to evaluate
hybrid LSSVMs. Note that these indices are frequently used [94–116] to evaluate the
generalization capabilities of any prediction model from a variety of perspectives, including
correlation accuracy, related error, variance, and so on. The expressions of these indices can
be given as follows:

Adj.R2 = 1− (n− 1)
(n− p− 1)

(
1− R2

)
(5)
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NS = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − ymean)

2 (6)

PI = adj.R2 + 0.01VAF− RMSE (7)

R2 =
∑n

i=1 (yi − ymean)
2 −∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − ymean)

2 (8)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (9)

RSR =
RMSE√

1
n ∑n

i=1 (yi − ymean)
2

(10)

VAF (%) =

(
1− var(yi − ŷi)

var(yi)

)
× 100 (11)

WI = 1−
[

∑n
i=1 (yi − ŷi)

2

∑n
i=1{|ŷi − ymean|+ |yi − ymean| }2

]
(12)

where p and n represent the total number of input parameters and observations, respec-
tively; yi and ŷi are the actual and predicted ith values, respectively; and ymean is the average
of actual value. It is important to note that the value of these indices must match their ideal
value for an ideal model, which is provided in Table 4. It should also be noted that multiple
indices were used to assess the combined accuracy of the developed hybrid LSSVM models
from different aspects such as degree of correlation between the actual and predicted values,
associated error, variance, and relative error to the actual/experimental values.

Table 4. Ideal values of different indices.

Name of Different Indices Abbreviation Ideal Value

Adjusted coefficient of determination Adj.R2 1
Nash–Sutcliffe efficiency NS 1

Performance index PI 2
Coefficient of determination R2 1

Root mean square error RMSE 0
RMSE to observation’s standard deviation ratio R 0

Variance account factor VAF 100
Willmott’s index of agreement WI 1

Based on the performance of five-fold CV, the best performing model was selected for
prediction. From the information presented in Table 3, it can be shown that the LSSVM-PSO
model has a smaller standard deviation for all of the RMSE values, demonstrating its
superiority in the testing phase. Because CV-1 dataset has a lower level of error, it was
chosen to be the basis for hybrid LSSVM modelling. The performance of the developed
hybrid LSSVMs is presented in Tables 5–7, respectively, for the training, testing, total
datasets. The performance of the model when used to forecast the training and testing
datasets is presented in Tables 5 and 6, respectively. It should be mentioned that the
model’s performance using the training dataset was used to express the goodness of fit,
while the testing dataset was utilized to validate the predictive capability of the hybrid
LSSVM models. Based on R2 and RMSE values, the constructed LSSVM-GWO attained the
precise prediction (R2 = 0.9924 and RMSE = 0.0199) in the training phase. The other models
exhibit good agreement with the experimental dataset, with R2 values ranging from 0.9397
to 0.9924. Both LSSVM-GWO and LSSVM-SSA achieved the same level of accuracy, as seen
by their same NS, PI, R2, RMSE, RSR, and WI values.



Materials 2022, 15, 5242 13 of 22

Table 5. Performance parameters for the training dataset.

Models/Particulars Adj.R2 NS PI R2 RMSE RSR VAF WI Total Score

LSSVM-PSO Value 0.9889 0.9890 1.9541 0.9894 0.0239 0.1050 98.8981 0.9972 24
Score 3 3 3 3 3 3 3 3

LSSVM-GWO Value 0.9921 0.9923 1.9645 0.9924 0.0199 0.0875 99.2349 0.9981 40
Score 5 5 5 5 5 5 5 5

LSSVM-SSA Value 0.9920 0.9923 1.9645 0.9924 0.0199 0.0875 99.2347 0.9981 32
Score 4 4 4 4 4 4 4 4

LSSVM-HHO Value 0.9397 0.9419 1.8268 0.9422 0.0548 0.2410 94.1911 0.9846 16
Score 2 2 2 2 2 2 2 2

LSSVM-SMA Value 0.9372 0.9379 1.8184 0.9397 0.0567 0.2492 93.7924 0.9831 8
Score 1 1 1 1 1 1 1 1

Table 6. Performance parameters for the testing dataset.

Models/Particulars Adj.R2 NS PI R2 RMSE RSR VAF WI Total Score

LSSVM-PSO Value 0.9649 0.9677 1.8921 0.9708 0.0424 0.1797 96.9520 0.9920 40
Score 5 5 5 5 5 5 5 5

LSSVM-GWO Value 0.9463 0.9454 1.8386 0.9553 0.0551 0.2337 94.7355 0.9871 32
Score 4 4 4 4 4 4 4 4

LSSVM-SSA Value 0.9463 0.9454 1.8386 0.9553 0.0551 0.2337 94.7350 0.9871 24
Score 3 3 3 3 3 3 3 3

LSSVM-HHO Value 0.9281 0.9401 1.8104 0.9401 0.0578 0.2448 94.0068 0.9844 16
Score 2 2 2 2 2 2 2 2

LSSVM-SMA Value 0.9244 0.9348 1.7996 0.9370 0.0602 0.2553 93.5441 0.9822 8
Score 1 1 1 1 1 1 1 1

Table 7. Performance parameters for the total dataset.

Models/Particulars Adj.R2 NS PI R2 RMSE RSR VAF WI Total Score

LSSVM-PSO Value 0.9842 0.9846 1.9403 0.9847 0.0285 0.1243 98.4635 0.9961 40
Score 5 5 5 5 5 5 5 5

LSSVM-GWO Value 0.9824 0.9825 1.9346 0.9829 0.0303 0.1322 98.2613 0.9957 32
Score 4 4 4 4 4 4 4 4

LSSVM-SSA Value 0.9824 0.9825 1.9346 0.9829 0.0303 0.1322 98.2610 0.9957 24
Score 3 3 3 3 3 3 3 3

LSSVM-HHO Value 0.9400 0.9418 1.8263 0.9419 0.0554 0.2413 94.1751 0.9846 16
Score 2 2 2 2 2 2 2 2

LSSVM-SMA Value 0.9373 0.9375 1.8174 0.9393 0.0574 0.2500 93.7544 0.9829 8
Score 1 1 1 1 1 1 1 1

However, in the validation phase, the LSSVM-PSO was found to be the best per-
forming model with Adj. R2 = 0.9649, R2 = 0.9708, RMSE = 0.0424, and VAF = 96.9520.
From the results presented in Table 7, it can also be observed that that the proposed
LSSVM-PSO model achieves the best results in all matrices for the total dataset, with
Adj. R2 = 0.9842, R2 = 0.9847, RMSE = 0.0285, RSR = 0.1243, and VAF = 98.4635. Based
on testing results, it was determined that the LSSVM-GWO was the second-best model
(Adj. R2 = 0.9463, R2 = 0.9553, RMSE = 0.0551, RSR = 0.2337, and VAF = 94.7355), followed
by LSSVM-SSA model (Adj. R2 = 0.9463, R2 = 0.9553, RMSE = 0.0551, RSR = 0.2337, and
VAF = 94.7350), LSSVM-HHO (Adj. R2 = 0.9281, R2 = 0.9401, RMSE = 0.0578, RSR = 0.2448,
and VAF = 94.0068), and LSSVM-SMA (Adj. R2 = 0.9244, R2 = 0.9370, RMSE = 0.0602,
RSR = 0.2553, and VAF = 93.5441). The results of score analysis also indicate that the pro-
posed LSSVM-PSO attained the most accurate prediction with a total score of 40, followed
by LSSVM-GWO (total score = 32), LSSVM-SSA (total score = 24), LSSVM-HHO (total
score = 16), and LSSVM-SMA (total score = 8). Overall, the proposed LSSVM-PSO is signif-
icantly better than other hybrid LSSVM models and it can be concluded that the PSO is
indeed helpful in constructing the hybrid LSSVM model used for prediction of CS28D of
waste PET and SCM blended cementitious grout.
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4.3. Discussion of Results

In order to complete a data-driven study, the results and statistical ramifications must
be visualized. The use of visualizations aids in the detection of trends, patterns, noise, and
outliers in datasets that are more readily understood by the human brain. When wading
through a large and unorganized dataset, it is time-consuming to read the actual dataset.
Thus, the results of the constructed hybrid LSSVM are shown graphically in this sub-section.
Illustration of scatterplots between the actual and predicted CS of waste PET and SCM
blended cementitious grout is presented in Figure 7. Herein, combined scatterplots for the
training and testing datasets are presented. As noted, the dispersion of all created models
falls inside the ± 10% deviation line, confirming their preciseness during both the training
and testing phases.
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Figure 7. (a–e) Scatter plots between actual and predicted CS values for the training and testing datasets.

Furthermore, a Taylor diagram [117] and error plots are presented to visualize the
overall accuracy comprehensively. Note that Taylor diagrams are useful for quickly eval-
uating the precision of a model because of the brief information they provide in a 2D
mathematical diagram. Correlation coefficient, RMSE, and ratio of standard deviations
are all measures used to describe the preciseness between the experimental and estimated
observations. In a Taylor diagram, a model is represented by a “point.” It is important
to highlight that in a perfect model, the location of the “point” would be identical to the
location of the “reference point” (as shown in black color “Ref” point). Taylor diagrams for
the training and testing outcomes are shown in Figure 8, providing a clear illustration of
the accuracy of the created LSSVM-PSO in the testing phase.

Alternatively, the box plot of error between the experimental and estimated CS is
presented in Figure 9 for both training and testing results. Using this error graphic, one
can immediately examine the amount of association of the developed models. As stated
previously, multiple performance indices must be established to examine the preciseness of
a model from various perspectives; however, interpreting findings by studying the values
of each parameter is not only time-consuming, but also requires extensive observations.
Thus, illustration of results in the form of scatterplot, Taylor diagram and error plot, is
highly beneficial for rapid evaluation of a data-driven model.
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From the information presented in Tables 5–7 and Figures 7–9, it can be deduced that
the developed LSSVM-PSO attained the most precise prediction in the testing phase, indi-
cating its superiority in predicting the CS28D of waste PET and SCM blended cementitious
grout. However, to better to demonstrate the generalization capability of the proposed
LSSVM-PSO, sensitivity analysis (SA) was conducted to determine the effect of various
input parameters on the output. Additionally, OBJ creation was used to evaluate the overall
preciseness of the proposed LSSVM-PSO model.

In this study, a commonly used cosine amplitude approach [118] was employed to
quantify the relative impact of PET, SCM, FLOW, CS1D, and CS7D on the output, i.e., CS28D.
The outcomes of SA are shown in Table 8. The effect of PET, SCM, FLOW, CS1D, and



Materials 2022, 15, 5242 16 of 22

CS7D on the output is provided exclusively for LSSVM-PSO, LSSVM-GWO, LSSVM-SSA,
LSSVM-HHO, and LSSVM-SMA models. Note that the value close to unity signifies that the
parameter has the higher influence on the output. SA also displays the accuracy with which
a data-driven model can predict the desired outcome based on the influence of inputs on
output as determined by the original experimental results. On the other hand, OBJ creation
is used to establish how well a data-driven model works as a whole by combining the R2

and MAE values obtained in both training and testing phases. The following expression is
used to determine OBJ creation value [119].

OBJ =
(

NTR − NTS
NTL

)
×
(

MAETR

R2TR

)
+

(
2× NTR

NTL

)
×
(

MAETS
R2

TS

)
(13)

where NTR, R2
TR, and MAETR are the number of samples, determination coefficient, and

MAE values, respectively, for the training dataset, and NTS, R2
TS and MAETS are also

indicate the same parameters, bur for the testing dataset.

Table 8. Results of SA for the total dataset.

Parameters Actual LSSVM-PSO LSSVM-GWO LSSVM-SSA LSSVM-HHO LSSVM-SMA

PET 0.5111 0.5146 0.5084 0.5084 0.5134 0.5200
SCM 0.8570 0.8575 0.8561 0.8561 0.8620 0.8625

FLOW 0.6272 0.6313 0.6261 0.6261 0.6353 0.6443
CS1D 0.9620 0.9647 0.9639 0.9639 0.9709 0.9709
CS7D 0.9844 0.9871 0.9865 0.9865 0.9914 0.9904

The values OBJ creation for all the developed hybrid models are presented in Table 9.
Furthermore, all the models were ranked based on OBJ value. It can be seen that the
developed LSSVM-PSO secured first rank in estimating the CS28D of waste PET and SCM
blended cementitious grout. The developed LSSVM-GWO was determined the second-best
model followed by LSSVM-SSA, LSSVM-HHO, and LSSVM-SMA.

Table 9. Details of OBJ creation estimation.

Models MAE TR MAE TS R2 TR R2 TS OBJ_1 OBJ_2 OBJ Rank

LSSVM-PSO 0.0193 0.0328 0.9894 0.9708 0.0117 0.0134 0.0252 1
LSSVM-GWO 0.0144 0.0406 0.9924 0.9553 0.0088 0.0169 0.0257 2
LSSVM-SSA 0.0144 0.0406 0.9924 0.9553 0.0088 0.0169 0.0257 3

LSSVM-HHO 0.0437 0.0466 0.9422 0.9401 0.0279 0.0197 0.0476 4
LSSVM-SMA 0.0448 0.0479 0.9397 0.9370 0.0287 0.0203 0.0490 5

In comparison, Khan et al. [56] conducted a detailed study on changing genetic
parameters of GEP model. The GEP model that was ultimately chosen had the best sta-
tistical indices for the training and validation datasets, respectively (R = 0.977 and 0.975,
RMSE = 2.423 and 2.531, MAE = 1.918 and 2.055). It was established that for achieving
sustainable and green concrete, the function of PET/SCM has no detrimental effects on the
CS28D of cementitious grouts, making PET a viable option. The straightforward mathemati-
cal formulation of GEP was found to be effective, which results in time savings and lower
personnel costs for testing in civil engineering projects. The performance of the currently de-
veloped models is comparable to the previous model, thus are reliable and can be used for
accurate prediction of compressive strength of PET incorporated cementitious composites.

5. Summary and Conclusions

This study presents a hybrid ML paradigm of LSSVM for estimating the CS28D of
waste PET and SCM blended cementitious grout. Two SCMs, namely FA and SF, were
mixed with waste PET for this purpose, and cementitious grout was made and tested in
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the laboratory. Specifically, CS of 156 samples of 50 mm × 50 mm × 50 mm cubes were
tested. Subsequently, three influencing parameters, namely PET, SCM, and FLOW, along
with CS1D and CS7D were used to estimate the CS28D of cementitious grout using five
hybrid LSSVM models. Based on the experimental results with R2 and RMSE criteria, the
following conclusions can be drawn.

(a) The constructed LSSVM-PSO model attained the most accurate prediction (R2 = 0.9708
and RMSE = 0.0424) during the testing phase. Furthermore, the SA and OBJ creation
results show that the suggested LSSVM-PSO has achieved the highest level of perfor-
mance, indicating its robustness at all levels.

(b) The sensitivity analysis revealed that CS7D is most significant parameter which im-
pacts the long term CS28D of cementitious grouts mixes followed by CS1D, proportion
of the SCM, flow, and the content of PET.

(c) The developed LSSVM-PSO secured first rank in predicting the CS28D of cementitious
grout. Additionally, the suggested model has superiority as evidenced by its quicker
convergence (within six iterations).

(d) The primary advantage of the constructed LSSVM-PSO model is that the optimized
hyper-parameters are transferred to the co-ordination of each particle of the swarm,
and each particle’s position in the swarm is a solution for the said model. Since swarm
sizes of 30 and 100 iterations were used, only 3000 solutions were analysed in order to
acquire the appropriate LSSVM hyper-parameter values.

(e) Furthermore, convergence behaviour reveals that the created LSSVM-PSO model
converge within 10 iteration count, showing involvement of very minimal computing
effort to reach the specified accuracy level. This is another major advantage of the
LSSVM-PSO model.

(f) However, one of the limitations of the proposed model is the limitation of particle
position by the search space determined by the PSO parameters. Because there is
no rule of thumb, a trial-and-error strategy must be conducted to determine the
optimal searching space, which is a time-consuming task. Furthermore, while this
study was based on a real-life experimental dataset, the variance in the influencing
parameters may not be multi-dimensional. Therefore, more large-scale research
should be conducted to expand the use of LSSVM-PSO model in estimating the
intended output.

(g) Based on these facts, the proposed LSSVM-PSO model can be utilized as a novel
alternative for estimating the CS of cementitious grouts. Despite these limitations,
the suggested LSSVM-PSO model offers a new alternative tool for estimating CS
prediction of cementitious grouts in many construction projects.

Nonetheless, the future directions of the current study could involve by applying the
hybrid framework of PSO and other ML models, such as ANN, ELM, and ANFIS, to the
solution of other engineering problems, such as the prediction of the CS of various concrete
materials. As per the authors’ knowledge, this is the first research to estimate the CS of PET
and SCM blended cementitious grout using hybrid LSSVM models.
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